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This paper presents an iterative Linear-Quadratic-Gaussian method for locally-optimal

control and estimation of non-linear stochastic systems. The new method constructs an affine

feedback control law, obtained by minimizing a novel quadratic approximation to the optimal

cost-to-go function, and a non-adaptive estimator optimized with respect to the current

control law. The control law and filter are iteratively improved until convergence. The

performance of the algorithm is illustrated on a complex biomechanical control problem

involving a stochastic model of the human arm.

1. Introduction

Optimal control theory has received a great deal
of attention since the late 1950s, and has found
applications in many fields of science and engineering
(Bryson and Ho 1969, Bitmead 1993, 2000, Bertsekas
2000, Kushner and Dupuis 2001). It has also provided
the most fruitful general framework for constructing
models of biological movement (Uno et al. 1989,
Harris and Wolpert 1998, Todorov and Jordan 2002,
Todorov 2004). In the field of motor control,
optimality principles not only yield accurate descrip-
tions of observed phenomena, but are well justified a
priori. This is because the sensorimotor system is the
product of optimization processes (i.e., evolution,
development, learning, adaptation) which continuously
act to improve behavioural performance. The majority
of existing optimality models in motor control have
been formulated in open-loop. However, the most
remarkable property of biological movements (in
comparison with synthetic ones) is that they can
accomplish complex high-level goals in the presence
of large internal fluctuations, noise, delays, and
unpredictable changes in the environment. This is
only possible through an elaborate feedback control

scheme. Indeed, focus has recently shifted towards

stochastic optimal feedback control models. This

approach has already clarified a number of long-

standing issues related to the control of redundant

biomechanical systems (Todorov 2005).
However, solving complex optimal control of

partially-observable stochastic systems (Phillis 1985,

1989) is generally intractable, because the optimal

estimator tends to be infinite-dimensional and

consequently the optimal controller is also

infinite-dimensional. The only notable exception is the

Linear-Quadratic-Gaussian (LQG) setting (Moore

et al. 1999), where the posterior probability over the

system state is Gaussian and the optimal controller only

depends on the mean of that Gaussian. Unfortunately

many real-world problems (including the biological

control problems we are interested in) are not LQG and

are not amenable to global LQG approximations. Local

LQG approximations, on the other hand, are often quite

reasonable: they rely on local low-order polynomial

approximations to the system dynamics, cost function

and noise log-probability—all of which tend to be

smooth functions. It then makes sense to construct

approximately-optimal estimators and controllers by

starting with a local LQG approximation, finding the

optimal solution, using it to construct a new LQG

approximation, and iterating until convergence.*Corresponding author. Email: wwli@mechanics.ucsd.edu
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This work represents the convergence of two lines
of research we have previously pursued. In one line
of research, we derived an iterative algorithm for
optimal estimation and control of partially-observable
linear-quadratic systems subject to state-dependent and
control-dependent noise (Todorov 2005). This was
possible due to a restriction to non-adaptive filters.
In another line of research, we derived an iterative
algorithm for optimal control of fully-observable
stochastic non-linear systems with arbitrary costs and
control constraints (Todorov and Li 2003, Li and
Todorov 2004). This was possible due to a novel
approximation to the optimal cost-to-go function.
Here we combine these ideas, and derive an algorithm
which can handle partially-observable non-linear
systems, non-quadratic costs, state-dependent and
control-dependent noise, and control constraints.
Before deriving our iterative Linear-Quadratic-
Gaussian (ILQG) method, we give a more detailed
overview of what is new here.

(1) Most dynamic programming methods use quadratic
approximations to the optimal cost-to-go function.
All such methods are ‘‘blind’’ to additive noise.
However, in many problems of interest the noise
is control-dependent (Chow and Birkemeier 1990,
De Oliveria and Skelton 2001, Gershon et al. 2001,
Jimenez and Ozaki 2002), and such noise can
easily be captured by quadratic approximations as
we show below. Our new ILQG method incorpo-
rates control-dependent and state-dependent noise
—which turns out to have an effect similar to an
energy cost. In practical situations, the state of the
plant is only available through noisy measurement.
When the state of the plant is fully observable,
optimal LQG-like solutions can be computed
efficiently as shown by McLane (1971), Willems
and Willems (1976), El Ghaoui (1995), Beghi
and D’Alessandro (1998) and Rami et al. (2001).
Such methodology has also been used to model
reaching movements (Hoff 1992). Most relevant to
the study of sensorimotor control, however, is the
partially-observable case. Our goal here is to
address that problem.

(2) Quadratic approximation methods are presently
restricted to unconstrained problems (Ng et al.
2002). Generally speaking, constraints make
the optimal cost-to-go function non-quadratic
(Abu-Khalaf and Lewis 2005), but since we are
approximating that function anyway, we might as
well take into account the effects of control
constraints to the extent possible. Our new ILQG
method does that—by modifying the feedback gain
matrix whenever an element of the open-loop
control sequence lies on the constraint boundary.

(3) Quadratic approximation methods are based on

Riccati equations: define a quadratic optimization

problem that the optimal controls satisfy at time

step t, solve it analytically, and obtain a formula

for the optimal cost-to-go function at time step

t� 1. Optimizing a quadratic is only possible when

the Hessian is positive-definite. This is of course true

in the classic LQG setting, but when LQG methods

are used to approximate general non-linear

dynamics (Isidori 1995) with non-quadratic costs,

the Hessian can (and in practice does) have zero and
even negative eigenvalues. The traditional remedy is

to ‘‘fix’’ the Hessian, using a Levenberg–Marquardt

method, or an adaptive shift scheme, or simply

replace it with the identity matrix (which yields the

steepest descent method). The problem is that after

fixing the Hessian, the optimization at time step t is

no longer performed exactly—contrary to what the

Riccati equations assume. Instead of making this

invalid assumption, our new method takes the fixed

Hessian into account, and constructs a cost-to-go

approximation consistent with the resulting control

law. This is done by modified Riccati-like equations.

While the new algorithm should be applicable to a

range of problems, our specific motivation for developing

it is the modelling of biological movement. Such

modelling has proven extremely useful in the study of

how the brain controls movement (Todorov and Jordan

2002). In x 2 we formalize the original optimal problem

we want to solve. In x 3 we present a LQG approximation

to our original optimal control problem and compute

an approximately-optimal control law under the con-

sideration that state estimates are obtained by an

unbiased non-adaptive linear filter. In x 4 we compute
the optimal feedback control law for any non-adaptive

linear filter, and show that it is linear in the state estimate.

In x 5 we derive the optimal filter corresponding to the

given control law. Section 6 illustrates the application of

our method to the analysis of reaching movements and

explores numerically the convergence properties of

the algorithm, in the context of reaching movements

using a model of the human arm.

2. Problem formulation

Consider the non-linear dynamical system described by

the stochastic differential equations

dxpðtÞ ¼ f ðxp, upÞ dtþ Fðxp, upÞ d!ðtÞ, ð1Þ

along with the output equation

dypðtÞ ¼ gðxp, upÞ dtþ Gðxp, upÞ dvðtÞ, ð2Þ

1440 W. Li and E. Todorov
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where state variable xp 2R
nx , control input up 2R

nu ,
measurement output yp 2R

ny , and standard Brownian
motion noise !2R

n! , v2R
nv are independent of each

other.
Let ‘ðt, xp, upÞ be an instantaneous cost rate, h(xp(T))

the terminal cost incurred at the end of the process,
T a specified final time. Define the cost-to-go function
v�(t, xp) as the total cost expected to accumulate if the
system is initialized in state xp at time t and controlled
until time T according to the control law �

v�ðt, xpÞ ¼
�
E hðxpðT ÞÞ þ

Z T

t

‘ð�, xpð�Þ,�ð�, xpð�ÞÞÞ d�

� �
:

ð3Þ

The expectation is taken over the instantiations of the
stochastic process !. The admissible control signals may
be constrained: up 2U.
The objective of optimal control is to find the optimal

control law u* that minimizes v�(0, xp(0)). Note that the
globally-optimal control law does not depend on a
specific initial state. However, being able to find this
control law in complex problems is unlikely. Instead, we
seek locally-optimal control laws: we will present a LQG
approximation to our original optimal control problem
and compute an approximately-optimal control law.
The present formulation in this paper assumes that the
state of system is measurable through delayed and noisy
sensors. Therefore, we will also design an optimal filter
in order to extract the accurate state information from
noisy measurement data.

3. Local LQG approximation

3.1 Linearization

In this paper the locally-optimal control law is
computed using the method of dynamic programming.
Each sample time lasts N time steps with �t¼T/N.
Our derived algorithm is iterative. Each iteration
starts with a nominal control sequence �u

p
k, and a

corresponding nominal trajectory �x
p
k obtained by

applying �u
p
k to the deterministic system _xp ¼ fðxp, upÞ

with �xpð0Þ ¼ x
p
0. This can be done by Euler integration

�x
p
kþ1 ¼ �x

p
k þ�t fð �x

p
k, �u

p
kÞ.

By linearizing the system dynamics and quadratizing
the cost functions around ð �x

p
k, �u

p
kÞ, we obtain a discrete-

time linear dynamical system with quadratic cost. Note
that the linearized dynamics no longer describe the state
and control variables, instead they describe the state
and control deviations xk ¼ x

p
k � �x

p
k, uk ¼ u

p
k � �u

p
k, and

yk ¼ y
p
k � �y

p
k, where the value of the outputs at the

operating point are defined as �y
p
k ¼ gð �x

p
k, �u

p
kÞ. Written in

terms of these deviations—state variable xk 2R
nx ,

control input uk 2R
nu , and measurement output

yk 2R
ny , the modified LQG approximation to our

original optimal control problem becomes

xkþ1 ¼ Akxk þ Bkuk þ Ckðxk, ukÞ�k,

k ¼ 0, . . . ,N� 1 ð4Þ

yk ¼ Fkxk þ Ekuk þDkðxk, ukÞ�k, ð5Þ

costk ¼ qk þ xTkqk þ
1

2
xTkQkxk þ uTk rk

þ
1

2
uTkRkuk þ uTkPkxk, ð6Þ

Where

Ak ¼
@f

@xkp
, Bk ¼

@f

@upk
, Fk ¼

@g

@xpk
, Ek ¼

@g

@upk
, ð7Þ

Ckðxk, ukÞ ¼
�

c1, k þ Cx
1, kxk þ Cu

1, kuk, . . . , cn!, k

h
þCx

n!, k
xk þ Cu

n!, k
uk

i
, ð8Þ

Dkðxk, ukÞ ¼
�

d1, k þDx
1, kxk þDu

1, kuk, . . . , dnv, k

h
þDx

nv, k
xk þDu

nv, k
uk

i
, ð9Þ

ci,k ¼
ffiffiffiffiffiffi
�t

p
F ½i �, Cx

i,k ¼
ffiffiffiffiffiffi
�t

p @F ½i �

@xpk
,

Cu
i,k ¼

ffiffiffiffiffiffi
�t

p @F ½i �

@upk
, ð10Þ

di,k ¼
1ffiffiffiffiffiffi
�t

p G
½i �, Dx

i,k ¼
1ffiffiffiffiffiffi
�t

p
@G½i �

@xpk
,

Du
i,k ¼

1ffiffiffiffiffiffi
�t

p
@G½i �

@upk
, ð11Þ

and

qk ¼ �t‘, qk ¼ �t
@‘

@xpk
, Qk ¼ �t

@2‘

@
�
x
p
k

�2 , ð12Þ

rk ¼ �t
@‘

@upk
, Rk ¼ �t

@2‘

@
�
u
p
k

�2 , Pk ¼ �t
@2‘

@upk@x
p
k

,

ð13Þ

are computed at each ð �x
p
k, �u

p
kÞ.

The initial state has known mean x̂0 and covariance

�0. All the matrices Ak, Bk, Fk, Ek, ci,k, C
x
i,k,C

u
i,k, dj,k,

Dx
j,k,D

u
j,k (i ¼ 1, . . . , n!, and j ¼ 1, . . . , nv) are assumed to

be given with the proper dimensions. The independent

random variables �k 2R
n! and �k 2R

nv are zero-mean

Gaussian white noises with covariances ��
¼ I and

��
¼ I respectively. Note that F ½i � and G

½i � denote the

ith column of matrix F 2R
nx�n! and G2R

ny�nv respec-

tively. At the final time step k¼N, the cost is defined as

Optimal control and estimation of non-linear stochastic system 1441
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qN þ xTNqN þ 1
2 x

T
NQNxN, where qN¼ h, qN ¼ @h=@xpN, and

QN ¼ @2h=@ðxpNÞ
2.

Here we are using a noise model which includes
control-dependent, state-dependent and additive
noises. This is sufficient to capture noise in the
system—which is what we are mainly interested in.
Considering the sensorimotor control, noise in the
motor output increases with the magnitude of the
control signal. Incorporating the state-dependent noise
in the analysis of sensorimotor control could allow
more accurate modelling of feedback form sensory
modalities and various experimental perturbations. In
the study of estimation and control design for the
system with control-dependent and state-dependent
noises, the well-known separation principle of stan-
dard LQG design is violated. This complicates the
problem substantially, and forces us to develop a new
structure of recursive controller and estimator.

3.2 Computing the cost-to-go function
(partially observable case)

In practical situations, the state of the controlled plant is
only available through noisy measurement. While the
implementation of the optimal control law depends
on the state of the system, we have to design an
estimator in order to extract the correct information
of the state. In this paper we are assuming that the
approximately-optimal control law is allowed to be
an affine function of x̂k—the unbiased estimate of state
xk and the estimator has the form

x̂kþ1 ¼ Akx̂k þ Bkuk þ Kkðyk � Fkx̂k � EuukÞ, ð14Þ

where the filter gains Kk are non-adaptive, i.e., they
are determined in advance and cannot change as a
function of the specific controls and observations within
a simulation run. The detailed derivation for computing
the filter gain Kk will be presented in x 5.

The approximately-optimal control law for the
LQG approximation will be shown to be affine,
in the form

uk ¼ �kðx̂kÞ ¼ lk þ Lkx̂k, k ¼ 0, . . . ,N� 1, ð15Þ

where lk describes the open-loop control component (it
arises because we are dealing with state and control
deviations, and is needed to make the algorithm
iterative), and Lk is the feedback control gain.
The control law we design is approximately-optimal
because we may have control constraints and
non-convex costs, and also because we use linear
Gaussian approximations. Let the cost-to-go function
vkðxk, x̂kÞ be the total cost expected to accumulate
if the system (4) is initialized in state xk at time step k,

and controlled according to �k for the remaining

time steps.

Lemma 1: Suppose the control law �k for system (4)–(5)

has already been designed for time steps k, . . . ,N� 1.

If the control law is affine in the form (15), then the

cost-to-go function vkðxk, x̂kÞ has the form

vkðxk, x̂kÞ ¼
1

2
xTkS

x
kxk þ

1

2
x̂
T
kS

x̂
kx̂k þ xTkS

xx̂
k x̂k

þ xTk s
x
k þ x̂

T
k s

x̂
k þ sk ð16Þ

for all k. The parameters Sx
k,S

x̂
k,S

xx̂
k , sxk, s

x̂
k and sk for

k<N can be computed recursively backwards in time as

Sx
k ¼ Qk þ AT

kS
x
kþ1Ak þ FT

kK
T
kS

x̂
kþ1KkFk

þ 2AT
kS

xx̂
kþ1KkFk þ

Xn!
i¼1

�
Cx

i,k

�T
Sx
kþ1C

x
i,k

þ
Xnv
i¼1

�
Dx

i,k

�T
KT

kS
x̂
kþ1KkD

x
i,k, Sx

N ¼ QN, ð17Þ

Sx̂
k ¼ ðAk � KkFkÞ

TSx̂
kþ1ðAk � KkFkÞ þ LT

kHLk

þ LT
kG

x̂ þ ðGx̂Þ
TLk, Sx̂

N ¼ 0, ð18Þ

Sxx̂
k ¼ FT

kK
T
kS

x̂
kþ1ðAk � KkFkÞ þ AT

kS
xx̂
kþ1ðAk � KkFkÞ

þ ðGxÞ
TLk, Sxx̂

N ¼ 0, ð19Þ

sxk ¼ qk þ AT
k s

x
kþ1 þ FT

kK
T
k s

x̂
kþ1 þ

�
Gx
�T
lk

þ
Xn!
i¼1

�
Cx

i,k

�T
Sx
kþ1ci,k þ

Xn�
i¼1

�
Dx

i,x

�T
KT

kS
x̂
kþ1Kkdi,k,

sxN ¼ qN, ð20Þ

sx̂k ¼ ðAk � KkFkÞ
Tsx̂kþ1 þ LT

kHlk þ LT
kgþ ðGx̂Þ

Tlk,

sx̂N ¼ 0, ð21Þ

sk ¼ qk þ skþ1 þ lTkgþ
1

2
lTkHlk þ

1

2

Xn!
i¼1

cTi,kS
x
kþ1ci,k

 

þ
Xn�
i¼1

dTi,kK
T
kS

x̂
kþ1Kkdi,k

!
, sN ¼ qN ð22Þ

and

H¼
�
RkþBT

k

�
Sx
kþ1þSx̂

kþ1þ2Sxx̂
kþ1

�
Bk

þ
Xn!
i¼1

�
Cu

i,k

�T
Sx
kþ1C

u
i,kþ

Xnv
i¼1

�
Du

i,k

�T
KT

kS
x̂
kþ1KkD

u
i,k, ð23Þ

g¼
�
rkþBT

k

�
sxkþ1þ sx̂kþ1

�
þ
Xn!
i¼1

�
Cu

i,k

�T
Sx
kþ1ci,k

þ
Xnv
i¼1

�
Du

i,k

�T
KT

kS
x̂
kþ1Kkdi,k, ð24Þ

1442 W. Li and E. Todorov
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Gx ¼
�
PkþBT

k ðS
x
kþ1þSxx̂

kþ1ÞAkþBT
k ðS

x̂
kþ1þSxx̂

kþ1ÞKkFk

þ
Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

x
i,kþ

Xn�
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1KkD

x
i,k, ð25Þ

Gx̂ ¼
�
BT
k

�
Sx̂
kþ1þSxx̂

kþ1

�
ðAk�KkFkÞ: ð26Þ

Proof: Consider the control law which has been

designed for time steps k, . . . ,N� 1, and at time step k

is given by uk ¼ �kðx̂kÞ ¼ lk þ Lkx̂k (note that in the

later derivation we will use the shortcut �k in place of

the control signal �kðx̂kÞ that our control law generates).

Let vkðxk, x̂kÞ be the corresponding cost-to-go function,

then the Bellman equation is

vkðxk, x̂kÞ ¼ immediate cost

þ E vkþ1ðxkþ1, x̂kþ1Þjxk, x̂k,�k½ �: ð27Þ

Based on the dynamics function (4) and (14), the

conditional mean and covariance of xkþ1 and x̂kþ1 are

E ½xkþ1jxk, x̂k,�k� ¼ Akxk þ Bk�k, ð28Þ

E ½x̂kþ1jxk, x̂k,�k� ¼ ðAk � KkFkÞx̂k þ Bk�k þ KkFkxk,

ð29Þ

Cov½xkþ1jxk, x̂k,�k� ¼
Xn!
i¼1

�
ci,k þ Cx

i,kxk þ Cu
i,k�k

�
�
�
ci,k þ Cx

i,kxk þ Cu
i,k�k

�T
, ð30Þ

Cov½x̂kþ1jxk, x̂k,�k� ¼Kk

Xn�
i¼1

�
di,kþDx

i,kxkþDu
i,k�k

�
�
�
di,kþDx

i,kxkþDu
i,k�k

�T
KT

k : ð31Þ

Since

E
�
xkþ1x

T
kþ1jxk, x̂k,�k

�
¼ Cov½xkþ1jxk, x̂k,�k�

þ E ½xkþ1jxk, x̂k,�k�ðE ½xkþ1jxk, x̂k,�k�Þ
T, ð32Þ

E
�
x̂kþ1x̂

T
kþ1jxk, x̂k,�k

�
¼ Cov½x̂kþ1jxk, x̂k,�k�

þ E ½x̂kþ1jxk, x̂k,�k�ðE ½x̂kþ1jxk, x̂k,�k�Þ
T, ð33Þ

E
�
x̂kþ1x

T
kþ1jxk, x̂k,�k�

¼ ððAk � KkFkÞx̂k þ KkFkxk þ Bk�kÞ

� ðAkxk þ Bk�kÞ
T, ð34Þ

applying the formulation of cost-to-go function defined

in (16) and substituting (28)–(34) into the conditional

expectation in Bellman equation, it yields

E vkþ1ðxkþ1, x̂kþ1Þjxk, x̂k,�k½ �

¼
1

2
trSx

kþ1

Xn!
i¼1

�
ci,k þ Cx

i,kxk þ Cu
i,k�k

��
ci,k þ Cx

i,kxk

"

þ Cu
i,k�k

�T
þ ðAkxk þ Bk�kÞðAkxk þ Bk�kÞ

T

#

þ
1

2
trSx̂

kþ1 Kk

Xnv
i¼1

�
di,k þDx

i,kxk þDu
i,k�k

�"

�
�
di,k þDx

i,kxk þDu
i,k�k

�T
KT

k

#

þ
1

2
trSx̂

kþ1

�
ðAk � KkFkÞx̂k þ KkFkxk þ Bk�k

	h
�

�
Ak � KkFk

�
x̂k þ KkFkxk þ Bk�k

� �Ti
þ trSxx̂

kþ1 ðAk � KkFkÞx̂k þ KkFkxk þ Bk�kð Þ½

� ðAkxk þ Bk�kÞ
T
�
þ ðAkxk þ Bk�kÞ

Tsxkþ1

þ ðAk � KkFkÞx̂k þ KkFkxk þ Bk�kð Þ
T
sx̂kþ1 þ skþ1:

Using the fact that tr(UV)¼ tr(VU) in the above

equation, and substituting the immediate cost (6) and

the above equation into (27), the resulting cost-to-go

function becomes

vkðxk, x̂kÞ

¼
1

2
xTk QkþAT

kS
x
kþ1AkþFT

kK
T
kS

x̂
kþ1KkFk

"

þ2AT
kS

xx̂
kþ1KkFkþ

Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1C

x
i,k

þ
Xnv
i¼1

ðDx
i,kÞ

TKT
kS

x̂
kþ1KkD

x
i,k

#
xk

þ
1

2
x̂
T
k ðAk�KkFkÞ

TSx̂
kþ1ðAk�KkFkÞx̂k

þ
1

2
�T
k

"
RkþBT

k ðS
x
kþ1þSx̂

kþ1þ2Sxx̂
kþ1ÞBk

þ
Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

u
i,kþ

Xnv
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1KkD

u
i,k

#
�k

þxTk FT
kK

T
kS

x̂
kþ1ðAk�KkFkÞþAT

kS
xx̂
kþ1ðAk�KkFkÞ

h i
x̂k

þ�T
k

"
PkþBT

k ðS
x
kþ1þSxx̂

kþ1ÞAkþBT
k ðS

x̂
kþ1þSxx̂

kþ1ÞKkFk

þ
Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

x
i,kþ

Xn�
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1KkD

x
i,k

#
xk

þ�T
kB

T
k ðS

x̂
kþ1þSxx̂

kþ1ÞðAk�KkFkÞx̂k
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þxTk

"
qkþ

Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1ci,kþ

Xnv
i¼1

ðDx
i,kÞ

TKT
kS

x̂
kþ1Kkdi,k

þAT
k s

x
kþ1þFT

kK
T
k s

x̂
kþ1

#

þ x̂
T
k ðAk�KkFkÞ

Tsx̂kþ1

þ�T
k

"
rkþ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1ci,kþ

Xnv
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1Kkdi,k

þBT
k ðs

x
kþ1þ sx̂kþ1Þ

#

þqkþ skþ1þ
1

2

Xn!
i¼1

cTi,kS
x
kþ1ci,kþ

Xnv
i¼1

dTi,kK
T
kS

x̂
kþ1Kkdi,k

 !
:

ð35Þ

Substituting (23)–(26) into the above equation, the

�k-dependent terms in (35) becomes

1

2
�T
kH�k þ �T

k

�
gþ Gxxk þ Gx̂x̂k

�
: ð36Þ

Since we assume that the control law has the general

form given in (15), replacing �k with lk þ Lkx̂k, it yields

1

2
x̂
T
k

�
LT
kHLk þ LT

kG
x̂ þ ðGx̂Þ

TLk

�
x̂k þ xTk ðG

xÞ
TLkx̂k

þ xTk ðG
xÞ

Tlk þ x̂
T
k

�
LT
kHlk þ LT

kgþ ðGx̂Þ
Tlk

	
þ lTkgþ

1

2
lTkHlk: ð37Þ

Now the cost-to-go function vkðxk, x̂kÞ becomes

vkðxk, x̂kÞ

¼
1

2
xTk

"
Qk þ AT

kS
x
kþ1Ak þ FT

kK
T
kS

x̂
kþ1KkFk

þ2AT
kS

xx̂
kþ1KkFk þ

Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1C

x
i,k

þ
Xnv
i¼1

ðDx
i,kÞ

TKT
kS

x̂
kþ1KkD

x
i,k

#
xk

þ
1

2
x̂
T
k

h
ðAk � KkFkÞ

TSx̂
kþ1ðAk � KkFkÞ þ LT

kHLk

þ LT
kG

x̂ þ ðGx̂Þ
TLk

i
x̂k

þ xTk FT
kK

T
kS

x̂
kþ1ðAk � KkFkÞ

h
þ AT

kS
xx̂
kþ1ðAk � KkFkÞ þ ðGxÞ

TLk

i
x̂k

þ xTk qk þ
Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1ci,k

"

þ
Xnv
i¼1

ðDx
i,kÞ

TKT
kS

x̂
kþ1Kkdi,k þ AT

k s
x
kþ1

þ FT
kK

T
k s

x̂
kþ1 þ ðGxÞ

Tlk

#

þ x̂
T
k ðAk � KkFkÞ

Tsx̂kþ1 þ LT
kHlk þ LT

kgþ ðGx̂Þ
Tlk

h i

þ qk þ skþ1 þ
1

2

Xn!
i¼1

cTi,kS
x
kþ1ci,k

 

þ
Xnv
i¼1

dTi,kK
T
kS

x̂
kþ1Kkdi,k

!
þ lTkgþ

1

2
lTkHlk: ð38Þ

By applying the defined formulation of cost-to-go
function given in (16), we can obtain (17)–(22)
immediately which completes the proof.

3.3 Computing the cost-to-go function
(fully observable case)

Suppose the state of system (4) is available for
measurement in the implementation of the optimal
control design, then Lemma 1 readily leads to the
following corollary.

Corollary 1: Suppose the control law �k for system (4)
has already been designed for time steps k, . . . ,N� 1.
If the control law is affine in the form uk¼ lkþLkxk,
k ¼ 0, . . . ,N� 1, then the cost-to-go function vk(xk) has
the form

vkðxkÞ ¼
1

2
xTkS

x
kxk þ xTk s

x
k þ sk ð39Þ

where the parameters Sx
k, s

x
k, and sk can be computed

recursively backwards in time as

Sx
k ¼ Qk þ AT

kS
x
kþ1Ak þ

Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1C

x
i,k þ LT

kHLk

þ LT
kGþ GTLk, Sx

N ¼ QN, ð40Þ

sxk ¼ qk þ AT
k s

x
kþ1 þ

Xn!
i¼1

ðCx
i,kÞ

TSx
kþ1ci,k

þ LT
kHlk þ LT

kgþ GTlk, sxN ¼ qN, ð41Þ

sk ¼ qk þ skþ1 þ
1

2

Xn!
i¼1

cTi,kS
x
kþ1ci,k þ

1

2
lTkHlk þ lTkg,

sN ¼ qN, ð42Þ

and

H ¼
�
Rk þ BT

kS
x
kþ1Bk þ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

u
i,k, ð43Þ

g ¼
�
rk þ BT

k s
x
kþ1 þ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1ci,k, ð44Þ

G ¼
�
Pk þ BT

kS
x
kþ1Ak þ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

x
i,k: ð45Þ
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4. Controller design

As we saw in (35), the cost-to-go function vkðxk, x̂kÞ
depends on the control uk ¼ �kðx̂kÞ through the term

aðxk, x̂k,�kÞ ¼
1

2
�T
kH�k þ �T

k ðgþ Gxxk þ Gx̂x̂kÞ:

This expression is quadratic in �k and can be minimized
analytically, but the problem is that the minimum
depends on xk while �k is only a function of x̂k. To
obtain the optimal control law at time step k, we have to
take an expectation over xk conditional on x̂k, and find
the function �k that minimizes the resulting expression.
Since E ½xkjx̂k� ¼ x̂k, we have

�ðx̂k,�kÞ ¼
�
E ½aðxk, x̂k,�kÞjx̂k�

¼
1

2
�T
kH�k þ �T

k ðgþ Gx̂kÞ, ð46Þ

where G ¼ Gx þ Gx̂. Ideally we would choose �k that
minimizes �ðx̂k,�kÞ subject to whatever control con-
straints are present. However, this is not always possible
within the family of affine control laws
�kðx̂kÞ ¼ lk þ Lkx̂k that we are considering. Since the
goal of the LQG stage is to approximate the optimal
controller for the non-linear system in the vicinity of �x

p
k,

we will give preference to those control laws that are
optimal/feasible for small xk, even if that (unavoidably)
makes them sub-optimal/infeasible for larger xk.

4.1 Second-order methods

If the symmetric matrix H in (46) is positive semi-
definite, we can compute the unconstrained optimal
control law

�k ¼ �H�1ðgþ Gx̂kÞ, ð47Þ

and deal with the control constraints as described below,
but when H has negative eigenvalues, there exist �0

ks that
make a arbitrarily negative. Note that the cost-to-go
function for the non-linear problem is always non-
negative, but as we are using an approximation to the
true cost, we may encounter situations where a does not
have a minimum. In that case we use H to resemble H,
because H still contains correct second-order informa-
tion; and so the true cost-to-go decreases in the direction
�H�1ðgþ Gx̂kÞ for any positive definite matrix H.
One possibility is to setH ¼ Hþ ð�� lminðH ÞÞI where

lmin(H ) is the minimum eigenvalue of H and �>0. This
is related to the Levenberg–Marquardt method, and has
the potentially undesirable effect of increasing all
eigenvalues of H and not just those that are negative.
Another possibility is to compute the eigenvalue
decomposition [V,D]¼ eig(H ), replace all elements
of the diagonal matrix D that are smaller than � with �

(obtaining a new diagonal matrix D), and then set
H ¼ VDVT. The eigenvalue decomposition is not a
significant slowdown, because we have to perform a
matrix inversion anyway and we can do so by
H�1 ¼ VD�1VT. It is not yet clear which of the two
methods works better in practice. Note that we may also
want to use H instead of H when the eigenvalues are
positive but very small—because in that case H�1 can
cause very large control signal that will push the original
system outside the range of validity of our LQG
approximation.

Lemma 2: The optimal control law is computed as

uk ¼ lkþLkx̂k, k¼ 0, . . . ,N�1,

lk ¼�H�1g, Lk ¼�H�1G,

H¼Hþð��lminðHÞÞI, �> 0,

H¼
�
BT
k ðS

x
kþ1þSx̂

kþ1þ2Sxx̂
kþ1ÞBkþ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

u
i,k

þ
Xnv
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1KkD

u
i,k,

g¼
�
rkþBT

k ðs
x
kþ1þ sx̂kþ1Þþ

Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1ci,k

þ
Xnv
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1Kkdi,k,

G¼
�
PkþBT

k ðS
x
kþ1þSx̂

kþ1þ2Sxx̂
kþ1ÞAk

þ
Xn!
i¼1

ðCu
i,kÞ

TSx
kþ1C

x
i,kþ

Xnv
i¼1

ðDu
i,kÞ

TKT
kS

x̂
kþ1KkD

x
i,k, ð48Þ

where Sx
kþ1, S

x̂
kþ1, S

xx̂
kþ1, s

x
kþ1, s

x̂
kþ1, skþ1 can be obtained

through (17)–(22) backwards in time.

4.2 Constrained second-order methods

The problem here is to find the control law
uk ¼ �kðx̂kÞ ¼ lk þ Lkx̂k minimizing (46) subject to
constraints uk þ �u

p
k 2U, assuming that H has already

been replaced with a positive definite H (see the above
section). Given that xk is unconstrained, the only general
way to enforce the constraints U is to set Lk¼ 0. In
practice we do not want to be that conservative, since we
are looking for an approximation to the non-linear
problem that is valid around xk¼ 0. Either way we can
ignore the Lkx̂k term in the constraint satisfaction phase,
and come back to the computation of Lk after the open-
loop component lk has been determined.

The unconstrained minimum of uTkgþ
1
2u

T
kHuk is

u�k ¼ �H�1g. If it satisfies the constraint u�k þ �u
p
k 2U

we are done. Otherwise we have two options. The more
efficient but less accurate method is to backtrack once,
i.e. to find the maximal �2 ½0; 1� such that �u�k þ �u

p
k 2U.

Optimal control and estimation of non-linear stochastic system 1445
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This is appropriate in the early phase of the iterative
algorithm when the nominal trajectory �x

p
k is still far

away from �x
p�

k ; in that phase it makes more sense to
quickly improve the control law rather than refine the
solution to a LQG problem that is an inaccurate
approximation to the original problem. However in
the final phase of the iterative algorithm we want to
obtain the best control law possible for the given LQG
problem. In that phase we use quadratic programming.
When the constraint set is specified by a collection of
linear inequalities, and given that H is positive definite,
the active set algorithm (which is a greedy quadratic
programming method) can be used to quickly find the
global constrained minimum.
Once the open-loop component lk is determined, we

have to compute the feedback gain matrix Lk. If lk þ �u
p
k

is inside U, small changes Lkx̂k will not cause constraint
violations and so we can use the optimal Lk ¼ �H�1G.
But if lk þ �u

p
k lies on the constraint boundary @U, we

have to modify Lk so that Lkx̂k can only cause changes
along the boundary. This is not only because we want to
avoid constraint violations. The fact that lk þ �u

p
k is on

@U means that the unconstrained minimum u�k is actually
outside U, and so a change of Lkx̂k orthogonal to the
boundary @U cannot produce a better feasible control.
Modifying Lk is straightforward in the typical case

when the range of each element of uk is specified
independently. In that case we simply set to zero the
rows of �H�1G corresponding to elements of lk þ �u

p
k

that have reached their limits.

5. Estimator design

It is well known that, for models with control-dependent
and state-dependent noises, the optimal filter is very
difficult to compute in practice. For this kind of model,
the construction of suboptimal filters that approximate
the optimal one becomes very important.
So far we computed the optimal control law for any

fixed sequence of filter gains Kk. In order to preserve the
optimality of the control law obtained in the previous
section and attain an iterative algorithm with guaran-
teed convergence, we need to compute a fixed sequence
of filter gains that are optimal for a given control law.
Thus our objective here is the following: given the
control law u0, . . . , uN�1 (which is optimal for the
previous filter K0, . . . ,KN�1), compute a new suboptimal
filter evaluated by minimizing the magnitude of its
estimation errors, in conjunction with the given control
law, which results in minimal expected cost. Once the
iterative algorithm has converged and the control law

has been designed, we could use an adaptive filter in

place of the fixed-gain filter in run time.

Lemma 3: By defining the unconditional means

me
k ¼

�
E ½ek�, mx̂

k ¼
�
E ½x̂k�, and the unconditional covar-

iances �e
k ¼

�
E ½eke

T
k �,�

x̂
k ¼

�
E ½x̂kx̂

T
k �, and �x̂e

k ¼
�
E ½x̂ke

T
k �,

and assuming that the initial state of system has known

mean x̂0 and covariance �0, the optimal filter gain for

system (4)–(5) is computed as

x̂kþ1 ¼ Akx̂k þ Bk�k þ Kkð yk � Fkx̂k � Ek�kÞ, ð49Þ

Kk ¼ Ak�
e
kF

T
k Fk�

e
kF

T
k þ Pk

� ��1
, ð50Þ

mx̂
kþ1 ¼ ðAk þ BkLkÞm

x̂
k þ KkFkm

e
k þ Bklk,

mx̂
0 ¼ x̂0, ð51Þ

me
kþ1 ¼ ðAk � KkFkÞm

e
k, me

0 ¼ 0, ð52Þ

�x̂
kþ1 ¼ ðAk þ BkLkÞ�

x̂
kðAk þ BkLkÞ

T
þ KkFk�

e
kA

T
k

þ ðAk þ BkLkÞ�
x̂e
k FT

kK
T
k þ KkFk�

ex̂
k ðAk þ BkLkÞ

T

þ ðAk þ BkLkÞm
x̂
k þ KkFkm

e
k

� 	
lTkB

T
k

þ Bklk ðAk þ BkLkÞm
x̂
k þ KkFkm

e
k

� 	T
þ Bklkl

T
kB

T
k , �x̂

0¼ x̂0x̂
T
0 , ð53Þ

�e
kþ1 ¼ ðAk � KkFkÞ�

e
kA

T
k þMk, �e

0 ¼ �0, ð54Þ

�x̂e
kþ1 ¼ ðAk þ BkLkÞ�

x̂e
k ðAk � KkFkÞ

T

þ Bklk
�
me

k

�T
ðAk � KkFkÞ

T, �x̂e
0 ¼ 0, ð55Þ

Pk ¼
Xnv
i¼1

"
di,kd

T
i,k þ di,k

�
mx̂

k þme
kÞ

T
ðDx

i,k

�T

þDx
i,k

�
mx̂

k þme
kÞd

T
i,k þ di,k

�
lk þ Lkm

x̂
k

�T�
Du

i,k

�T
þDu

i,k

�
lk þ Lkm

x̂
k

�
dTi,k

þDx
i,k ðmx̂

k þme
kÞl

T
k þ �x̂

k þ�ex̂
k

� 	
LT
k

� 	�
Du

i,k

�T
þDu

i,k lkðm
x̂
k þme

kÞ
T
þ Lk �x̂

k þ�x̂e
k

� 	� 	�
Dx

i,k

�T
þDx

i,k �x̂
k þ�x̂e

k þ�ex̂
k þ�e

k

� 	�
Dx

i,k

�T
þDu

i,k lkl
T
k þ lk

�
mx̂

k

�T
LT
k þ Lkm

x̂
kl

T
k þ Lk�

x̂
kL

T
k

� 	

�
�
Du

i,k

�T#
, ð56Þ
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Mk ¼
Xn!
i¼1

"
ci,kc

T
i,k þ ci,k

�
mx̂

k þme
k

�T�
Cx

i,k

�T

þCx
i,k

�
mx̂

k þme
k

�
cTi,k þ c

i,k

�
lk þ Lkm

x̂
k

�T�
Cu

i,k

�T
þ Cu

i,k

�
lk þ Lkm

x̂
k

�
cTi,k

þ Cx
i,k

�
mx̂

k þme
k

�
lTk

�
þ
�
�x̂

k þ�ex̂
k

�
LT
k

	�
Cu

i,k

�T
þ Cu

i,k lk
�
mx̂

k þme
k

�T
þ Lk

�
�x̂

k þ�x̂e
k

�� 	�
Cx

i,k

�T
þ Cx

i,k �x̂
k þ�x̂e

k þ�ex̂
k þ�e

k

� 	�
Cx

i,k

�T
þCu

i,k

�
lkl

T
k þ lk

�
mx̂

k

�T
LT
k þ Lkm

x̂
kl

T
k

þLk�
x̂
kL

T
k

��
Cu

i,k

�Ti
: ð57Þ

Proof: Rewrite the system dynamics and state

estimator as the following:

xkþ1 ¼ Akxk þ Bkuk þ Ckðxk, ukÞ�k,

yk ¼ Fkxk þ Ekuk þDkðxk, ukÞ�k,

x̂kþ1 ¼ Akx̂k þ Bkuk þ Kkðyk � Fkx̂k � EkukÞ,

where uk ¼ �kðx̂kÞ ¼ lk þ Lkx̂k, ðk ¼ 0, . . . ,N� 1Þ, and

Kk is the filter gain that minimizes the functional

J ¼ E eTkþ1T ekþ1

� �
, T � 0, ð58Þ

where the estimation error ekþ1 ¼ xkþ1 � x̂kþ1, and the

estimation error dynamics are given by

ekþ1 ¼ ðAk � KkFkÞek þ Ckðxk,�kÞ�k � KkDkðxk,�kÞ�k:

ð59Þ

Note that we use the shortcut �k in place of the control

signal for the convenience. Based on the estimation error

dynamics (59), the conditional mean and covariance of

ekþ1 are

E ½ekþ1jxk, x̂k,�k� ¼ ðAk � KkFkÞek, ð60Þ

Cov½ekþ1jxk, x̂k,�k� ¼ Ckðxk,�kÞCkðxk,�kÞ
T

þKkDkðxk,�kÞDkðxk,�kÞ
TKT

k : ð61Þ

By applying the properties of conditional expectation,

we obtain

E ½ekþ1e
T
kþ1jxk, x̂k,�k�

¼ Cov½ekþ1jxk, x̂k,�k�

þ E ½ekþ1jxk, x̂k,�k�ðE ½ekþ1jxk, x̂k,�k�Þ
T, ð62Þ

E ½ekþ1e
T
kþ1� ¼ E E ½ekþ1e

T
kþ1jxk, x̂k,�k�

� �
: ð63Þ

The terms in E ½ekþ1e
T
kþ1jxk, x̂k,�k� that dependent

on Kk are

ðAk � KkFkÞeke
T
k ðAk � KkFkÞ

T

þ KkDkðxk,�kÞDkðxk,�kÞ
TKT

k :

With the definition of �e
k ¼

�
E
�
eke

T
k

�
and

Pk ¼ E Dkðxk,�kÞD
T
k ðxk,�kÞ

� �
, ð64Þ

the unconditional expectation of the Kk-dependent

expression above becomes

ðAk � KkFkÞ�
e
kðAk � KkFkÞ

T
þ KkPkK

T
k :

Using the fact that E ½eTkþ1T ekþ1� ¼ trðE ½ekþ1e
T
kþ1�T Þ,

it follows that the Kk-dependent terms in J becomes

�ðKkÞ ¼ trT ðAk � KkFkÞ�
e
kðAk � KkFkÞ

T

þ trT KkPkK
T
k , ð65Þ

and that the minimum of �(Kk) is found by setting the

derivative with respect to Kk to zero. Using the matrix

identities ð@=@XÞtrðXAÞ ¼ AT and ð@=@XÞtrðAXBXTÞ ¼

ATXBT þ AXB, we obtain

@�ðKkÞ

@Kk
¼ T Kk Fk�

e
kF

T
k þ Pk

� �
� Ak�

e
kF

T
k

� �
¼ 0: ð66Þ

Hence

Kk ¼ Ak�
e
kF

T
k Fk�

e
kF

T
k þ Pk

� ��1
: ð67Þ

To complete the proof of the lemma, we need to

compute the unconditional covariance. By substituting

the control law uk ¼ �kðx̂kÞ ¼ lk þ Lkx̂k, we can rewrite

the state estimator as

x̂kþ1 ¼ ðAk þ BkLkÞx̂k þ Bklk þ KkFkek

þ KkDkðxk,�kÞ�k: ð68Þ

With the definition of the unconditional means

me
k, m

x̂
k, the unconditional covariances �x̂

k, �
x̂e
k and

the additional definition

Mk ¼ E Ckðxk,�kÞC
T
k ðxk,�kÞ

� �
, ð69Þ

given in Lemma 3, using the fact that �ex̂
k ¼ ð�x̂e

k Þ
T and

�x
k ¼ Eðx̂k þ ekÞðx̂k þ ekÞ

T
� ¼ �x

k þ�x̂e
k þ�ex̂

k þ�e
k and

equations (59) and (68), the updates for the uncondi-

tional means and covariances are

mx̂
kþ1 ¼ ðAk þ BkLkÞm

x̂
k þ KkFkm

e
k þ Bklk,

me
kþ1 ¼ ðAk � KkFkÞm

e
k,

Optimal control and estimation of non-linear stochastic system 1447
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�x̂
kþ1 ¼ ðAk þ BkLkÞ�

x̂
kðAk þ BkLkÞ

T
þ KkFk�

e
kF

T
kK

T
k

þ KkPkK
T
k þ ðAk þ BkLkÞ�

x̂e
k FT

kK
T
k

þ KkFk�
ex̂
k ðAk þ BkLkÞ

T

þ ðAk þ BkLkÞm
x̂
k þ KkFkm

e
k

� 	
lTkB

T
k

þ Bklk ðAk þ BkLkÞm
x̂
k þ KkFkm

e
k

� 	T
þBklkl

T
kB

T
k ,

ð70Þ

�e
kþ1 ¼ ðAk � KkFkÞ�

e
kðAk � KkFkÞ

T
þ KkPkK

T
k þMk,

ð71Þ

�x̂e
kþ1 ¼ ðAk þ BkLkÞ�

x̂e
k ðAk � KkFkÞ

T

þ Bklkðm
e
kÞ

T
ðAk � KkFkÞ

T

þKkFk�
e
kðAk � KkFkÞ

T
� KkPkK

T
k : ð72Þ

By substituting Kk (67) into the above equations

and combining the term KkFk�
e
kF

T
kK

T
k þ KkPkK

T
k ,

we can rewrite the update equations (70)–(72) into

forms (53)–(55) which are exactly the same as those we

obtain in Lemma 3.
Furthermore, based on the definition given in (64) and

(69), and all the definitions of the unconditional means

and unconditional covariances, Pk and Mk can be

computed using (56)–(57) which completes the proof.

The complete iteration algorithm is as follows:

(1) Apply the current control law and obtain the

nominal state-control trajectory �x
p
k, �u

p
k. Discretize

system using time step �t, linearize the dynamics

and quadratize the cost, we then build a local LQG

approximation around �x
p
k, �u

p
k.

(2) Based on the current control law, in a forward pass

through time, compute an improved suboptimal

filter (49) evaluated by minimizing the magnitude of

its estimation errors.
(3) In a backward pass through time, compute an

improved affine feedback control law (48) in the

form uk ¼ lk þ Lkx̂k, and update its value function

in the quadratic form (16).
(4) Apply the new control law forward in time and

repeat iteration (1), the new open-loop controls

~u
p
k ¼ �u

p
k þ uk and the corresponding average state

trajectory are computed. Iterate the above steps

until convergence.

In the next section we will test the above algorithm on

the reaching movements for a 2-link 6-muscle arm

model, which has non-linear dynamics, non-quadratic

costs and multiplicative noise.

6. Application to reaching movements

6.1 2-link 6-muscle human arm model

Consider an arm model with 2 joints (shoulder

and elbow), moving in the horizontal plane (figure 1).

The inverse dynamics is

Mð	Þ €	 þ Cð	, _	Þ þ B _	 ¼ �, ð73Þ

where 	 2R2 is the joint angle vector (shoulder: 	1,
elbow: 	2), Mð	Þ 2R2�2 is a positive definite symmetric

inertia matrix, Cð	, _	Þ 2R2 is a vector centripetal and

Coriolis forces, B2R2�2 is the joint friction matrix, and

� 2R2 is the joint torque. In (73), the expressions of the

different variables and parameters are given by

M ¼
a1 þ 2a2 cos 	2 a3 þ a2 cos 	2

a3 þ a2 cos 	2 a3


 �
,

C ¼
� _	2ð2 _	1 þ _	2Þ

_	21

 !
a2 sin 	2, B ¼

b11 b12

b21 b22


 �
,

ð74Þ

a1 ¼ I1 þ I2 þm2l
2
1, a2 ¼ m2l1s2, a3 ¼ I2, ð75Þ

where b11 ¼ b22 ¼ 0:05, b12 ¼ b21 ¼ 0:025, mi is the mass

(1.4 kg, 1 kg), li is the length of link i (30 cm, 33 cm), si is

the distance from the joint centre to the centre of the

mass for link i (11 cm, 16 cm), and Ii is the moment

of inertia (0.025 kgm2, 0.045 kgm2). Based on equations

(73)–(75), we can compute the forward dynamics

€	 ¼ Mð	Þ�1
ð� � Cð	, _	Þ � B _	Þ: ð76Þ

As we see in figure 1a, there are a large number of

muscles that act on the arm in the horizontal plane. But

since we have only 2 degrees of freedom, these muscles

can be organized into 6 actuator groups: elbow

flexors (1), elbow extensors (2), shoulder flexors (3),

shoulder extensors (4), biarticulate flexors (5), and

biarticulate extensors (6). The joint torques produced

by a muscle are a function of its moment arms

(figure 1b), length-velocity-tension curve (figure 1c),

and activation dynamics (figure 1d), which is given by

� ¼ Mð	ÞTða, lð	Þ, vð	, _	ÞÞ: ð77Þ

The moment arm Mð	Þ 2R2�6 is defined as the

perpendicular distance from the muscle’s line of action

to the joint’s center of rotation. Moment arms are

roughly constant for extensor muscles, but vary

considerably with joint angle for flexor muscles.

For each flexor group, this variation is modelled with

a function of the form aþ bcos(c 	), where the constants
have been adjusted to match experimental data. This

function provides a good fit to data—not surprising,

since moment arm variations are due to geometric
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factors related to the cosine of the joint angle. It can also
be integrated analytically, which is convenient since all
muscle lengths need to be computed at each point
in time.
The tension produced by a muscle obviously depends

on the muscle activation a, but also varies substantially
with the length l and velocity v of that muscle. Figure 1c,
based on the publicly available virtual muscle model
(Brown et al. 1999), illustrates that dependence for
maximal activation. We will denote this function with
T(a, l, v).

Tða, l, vÞ ¼ Aða, l ÞðFLðl ÞVVðl, vÞ þ FPðl ÞÞ

Aða, l Þ ¼ 1� exp �
a

0:56Nfðl Þ


 �Nfðl Þ
 !

Nfðl Þ ¼ 2:11þ 4:16
1

l
� 1


 �

FLðl Þ ¼ exp �
l1:93 � 1

1:03

����
����
1:87

 !

FVðl, vÞ ¼

�5:72� v

�5:72þ ð1:38þ 2:09l Þv
, v � 0

0:62� ð�3:12þ 4:21l� 2:67l2Þv

0:62þ v

8>>><
>>>:

FPðl Þ ¼ �0:02 expð13:8� 18:7l Þ:

Mammalian muscles are known to have remarkable

scaling properties, meaning that they are all similar after

proper normalization: length is expressed in units of L0

(the length at which maximal isometric force is

generated), and velocity is expressed in units of L0/sec.

The unitless tension in figure 1c is scaled by 31.8N per

square centimeter of physiological cross-sectional

area (PCSA) to yield physical tension T. The PCSA

parameters used in the model are the sums of the

corresponding parameters for all muscles in each group

(1: 18 cm2; 2: 14 cm2; 3: 22 cm2; 4: 12 cm2; 5: 5 cm2;

6: 10 cm2). Muscle length (and velocity) are converted

into normalized units of L0 using information about

the operating range of each muscle group (1: 0.6 � 1.1;

2: 0.8 � 1.25; 3: 0.7 � 1.2; 4: 0.7 � 1.1; 5: 0.6 � 1.1;

6: 0.85 � 1.2).
Muscle activation ai ði ¼ 1, . . . , 6Þ is not equal to

instantaneous neural input ui, but is generated by

passing ui through a filter that describes calcium

dynamics. This is reasonably well modelled with a first

order non-linear filter of the form

_ai ¼
ð1þ 
u"Þui � aið Þ

tðui, aiÞ
, ð78Þ

where

tðui, aiÞ ¼
tdeact þ uiðtact � tdeactÞ ui > ai,
tdeact otherwise:
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Figure 1. (a) 2-link 6-muscle arm; (b) joint torques; (c) length-velocity-tension curve; (d) muscle activation dynamics.
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The input-dependent activation dynamics tact¼ 50msec
is faster than the constant deactivation dynamics
tdeact¼ 66msec. Figure 1d illustrates the response of
this filter to step inputs that last 300msec. Note that the
half-rise times are input-dependent, while the half-fall
times are constant (crosses in figure 1d). The neural
inputs ui is disturbed by the multiplicative noise, whose
standard deviation is 20% of its magnitude—which
means 
u¼ 0.2 in (78), while " is a zero-mean Gaussian
white noise with unity covariance.
We notice that adding muscles to the dynamical

system results in 6 new state variables. Combining the
forward dynamics (76) and muscle actuator model (78),
we could write the system into a state space form

_x ¼ FðxÞ þ GðxÞð1þ 
u"Þu, ð79Þ

where the state and control are given by x ¼ ð	1, 	2,
_	1, _	2, a1, . . . , a6Þ

T and u ¼ ðu1, . . . , u6Þ
T respectively.

The sensory feedback carries the information about
position and velocity

y ¼ ð 	1 	2 _	1 _	2 Þ
T
þ v: ð80Þ

where the sensory noise v has zero-mean Gaussian
distribution with unity covariance.
The first task we study is reaching movement, where

the arm has to start at some initial position and move to
a target in a specified time interval. It also has to stop at
the target, and do all that with minimal energy
consumption. There are good reasons to believe that
such costs are indeed relevant to the neural control of
movement (Todorov and Jordan, 2002). The cost
function is defined as

J1 ¼ eð	ðTÞÞ � e�
�� ��2þ 0:001 _e 	ðTÞ, 	ð _T Þ

� ��� ��2
þ
1

2

Z T

0

0:0001kuk2 dt, ð81Þ

where e(	) is the forward kinematics transformation
from joint coordinates to end-point coordinates, and the
desired target e* is defined in end-point coordinates.

6.2 Numerical results

In order to demonstrate the effectiveness of our design,
we applied ILQG method to the human arm model
described above. Note that this model is stochastic: we
include multiplicative noise in the control signal, with
standard deviation equal to 20% of the control signal.
Here we use the center-out reaching task which is
commonly studied in the motor control—the targets are
arranged in a circle with 0.1m radius around the starting
position. Figure 2 shows average behavior for the fully
observable case: hand paths in (a), tangential speed
profiles in (b), and muscle activations in (c). We found

out that both the movement kinematics and the muscle
activations share many features with experimental data
on human arm movements, but a detailed discussion of
the relevance to motor control is beyond the scope of
this paper. Another encouraging result is the CPU time.
On average, the algorithm can find a locally-optimal
time-varying feedback control law in about 10 seconds
(on a 2.8GHz Pentium 4 machine, in Matlab), for
reaching in 16 different directions.

Figure 3 illustrates the robustness to noise: open-
loop control in (a), closed-loop control in (b),
and closed-loop control optimized for a deterministic
system in (c). Closed-loop control is based on the time-
varying feedback gain matrix L generated by the ILQG
method, while open-loop control only uses the final u
constructed by the algorithm. As the endpoint error
ellipses show, the feedback control scheme substantially
reduces the effects of the noise, and benefits from being
optimized for the correct multiplicative noise model.

Now we look at the partial observable case where the
states of system are obtained by the estimator. Although
the state of the controlled plant are only available
through noisy measurement, figure 4(a) shows that the
hand could still arrive to the desired target position
(shown as red stars in figure 4a) as accurately as
possible. Figure 4(b) shows tangential speed profiles, for
reaching in 16 different directions, and they remain in
bell shapes. Figure 4(c) shows the muscle activation
patterns for elbow flexor, elbow extensor, shoulder
flexor, shoulder extensor, biarticulate flexor and biarti-
culate extensor.

Trajectory-based algorithms related to Pontryagins
Maximum Principle in general find locally-optimal
solutions, and complex control problems may exhibit
many local minima. To explore the issue of local
minima for the arm control problem, we used 50
different initializations, for each of 8 movement
directions. The final trajectories are given in figure 5,
where figure 5(a) shows that, for the fully observable
case, all the optimization runs converged to a solution
very similar to the best solution we found for the
corresponding target direction. Figure 5(b) shows how
the cloud of 50 randomly initialized trajectories
gradually converge for the partial observable case by
using ILQG method. There are local minima, but half
the time the algorithm converges to the global
minimum. Therefore, a small number of restarts of
ILQG are sufficient to discover what appears to be the
global minimum in a relatively complex control
problem.

Finally we studied the convergence properties of the
algorithm. The complete algorithm is that we initialize
K0, . . . ,KN�1, and iterate (48) and (49)–(57) until
convergence. Convergence is guaranteed, because the
expected cost is non-negative by definition, and we are
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using a coordinate-descent algorithm, which decreases
the expected cost in each step. Figure 6 shows how the
cost decreases with the number of iterations, obtained
by averaging 50 random conditions over each of
8 movement directions. In all cases convergence is very
rapid, with the relative change in expected cost decreas-
ing exponentially.

7. Conclusion

Optimal control theory plays a very important role in
the study of biological movement. Further progress in
the field depends on the availability of efficient methods
for solving non-linear optimal control problems. For the
real control system design, feedback is based on delayed
and noisy sensors that may not measure all the state
variables, hence we extend the algorithm to the partially
observable case by combining it with an extended
Kalman filter. This results in a coupled estimation-
control problem, which is complicated in the presence of
multiplicative noise. This paper developed a new
iterative local method for optimal feedback control
and estimation design of non-linear stochastic dynami-
cal systems. It provided an iterative coordinate-descent
algorithm, which is guaranteed to converge to a filter
and a control law optimal with respect to each other. We
illustrated its application to a biomechanical model of
the human arm. The simulation results numerically
demonstrated that the solutions were close to the global
minimum.
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Figure 2. Fully observable case: average behaviour of the ILQG controller for reaching movements, using a 2-link 6-muscle human

arm model: (a) hand paths for movement in 16 directions; (b) speed profiles; (c) muscle activations.

Figure 3. Effects of control-dependent noise on hand reach-

ing trajectories, under different control laws: (a) open-loop

control; (b) closed-loop control; (c) closed-loop controller

optimized for deterministic system.
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Finally there are several extensions to the work we

presented here. While we assumed a specified final

time T, the algorithm can be applied in model-predictive

mode, using a fixed time horizon rather than a fixed

final time. The final cost h(x) will have to be replaced

with some approximation to the optimal cost-to-go,

but that has to be done whenever fixed-horizon

model-predictive control is used. Additional work is

needed to ascertain the properties of the algorithm in
more complex problems, where we cannot use global
methods for validation. We are going to implement a
very detailed model of the human arm, including 4
degrees of freedom and around 20 muscles; it will be
interesting to see if the algorithm can handle such a
complex system in a reasonable amount of time.
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Figure 4. Partial observable case: average behavior of the ILQG controller and estimator for reaching movements, using a 2-link

6-muscle human arm model: (a) Hand paths for movement in 16 directions; (b) Speed profiles; (c) Muscle activations.
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