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State Estimation With Finite
Signal-to-Noise Models via
Linear Matrix Inequalities
This paper presents estimation design methods for linear systems whose white noise
sources have intensities affinely related to the variance of the signal they corrupt. Systems
with such noise sources have been called finite signal-to-noise (FSN) models, and the
results provided in prior work demonstrate that estimation problem for FSN systems
(estimating to within a specified covariance error bound) is nonconvex. We shall show
that a mild additional constraint for scaling will make the problem convex. In this paper,
sufficient conditions for the existence of the state estimator are provided; these conditions
are expressed in terms of linear matrix inequalities (LMIs), and the parametrization of all
admissible solutions is provided. Finally, a LMI-based estimator design is formulated,
and the performance of the estimator is examined by means of numerical examples.
�DOI: 10.1115/1.2432358�
Introduction
The traditional noise model used in estimation and control

heory is white noise, whose intensity is independent of the vari-
nce of the signal it is corrupting. However, in many engineering
pplications, this traditional noise model has serious deficiencies.
s an example, the level of turbulence on an aircraft increases
ith the angle of attack, where surface error leads to turbulence
enerators. A new noise model, the finite signal-to-noise �FSN�
odel, which fits many practical situations, was proposed in

1–3�, where the intensity of the noise corrupting the signal de-
ends affinely on the variance of that signal.

FSN noise models are more practical than normal white noise
odels because they allow the variances of the noises to be af-
nely related to the variances of the signals they corrupt. Such
SN noises are found in digital signal processing with both fixed-
oint and floating-point arithmetic. Yet it is known that the influ-
nce of round-off errors are realization dependent �4�, larger sig-
als suffer larger computational errors; hence, increasing the
umber of bits in the computation does not solve the finite preci-
ion computing problem. Such FSN models are found in analog
ensors and actuators �5�, which produce more noise when the
ower supplies in these devices must provide more power �for an
ncreased dynamic range of the signals in the estimation or control
roblem�. Therefore, both the research to solve the finite precision
omputing problem and the research to create novel system design
heories would benefit from the FSN models.

One important benefit of the FSN model in a linear control
roblem is that it keeps the control finite at the maximal accuracy,
ince a larger control signal comes at the price of larger noise,
hich degrades the system performance. This is in contrast to
QG theory, where the maximal accuracy is achieved at infinite
ontrol gain, which has a greater tendency to destabilize the sys-
em dynamics. Therefore, the FSN model has a significant effect
n the robustness of the controller �3,6,7�.

Recent studies also show the use of the FSN model for eco-
omic system design �8�. Today, most control system design be-
ins with a selection of components, and many engineering prob-
ems involve economic considerations, especially in mechanical
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and biochemical engineering. Since the signal-to-noise ratio is one
way to define precision, assuming that the component cost is pro-
portional to its signal-to-noise ratio, it is reasonable to integrate
the instrumentation and control design, to obtain a low-cost sys-
tem for given performance requirements.

Furthermore, the FSN noise model has also been widely used in
studying biological movements. The substantial variability of bio-
logical movements indicates that the sensory-motor system oper-
ates in the presence of large disturbances. Noise in the motor
commands described the uncertainty of actual force produced by
the muscle, which will lead to movement inaccuracy and variabil-
ity. By studying the goal-directed eye and arm movements, Harris
and Wolpert, in 1998, proposed that the noise in the motor com-
mands is also signal dependent �9�. This is a very important as-
sumption, which is consistent with the observation captured by the
empirical Fitts’ law. Control of such systems should obviously
take this phenomenon into account because an appropriately cho-
sen control signal can actually decrease the noise.

There has been great effort in recent years to provide a control
theory for the FSN model. See �1,6,7� for a discussion of control
problems with FSN noise models. Since the FSN model reflects
more realistic properties in engineering, as well as neuroscience
�9–13�, a complete theory, which includes control and estimation,
should be developed.

This paper focuses on the study of estimation problem for the
FSN model. Reference �3� demonstrates that the estimation prob-
lem is nonconvex. We shall show that a mild additional constraint
for scaling will make the problem convex. The basic problem
solved is to find a state estimator that bounds the estimation error
below a specified error covariance.

The paper is organized as follows. In Sec. 2, the estimation
problem for the FSN model is formulated. In Sec. 3, sufficient
conditions for the existence of the state estimator are given. Sec-
tion 4 derives a linear estimator subject to a performance require-
ment; a numerical example is presented, and the comparison be-
tween the FSN filter design and the Kalman filter is discussed.
The discrete-time counterparts of the continuous-time results pre-
sented in Secs. 3 and 4 are given in Sec. 5, where two more
numerical examples are presented. Some concluding remarks are
drawn in Sec. 6.

2 System Model and Problem Formulation
Consider the following linear system with state space
representation
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ẋ = Ax + D� �1�

y = Cx + v �2�

z = Czx �3�

here x�Rnx is state variable, y�Rny is the measurement output,
nd z�Rnz is the output of interest for performance evaluation;
�Rnw and v�Rny are zero-mean FSN white noises with un-

nown intensities W, V, respectively; A, C, Cz, and D are given
onstant matrices that have proper dimensions. Here we consider
hat the noise source is modeled according to the FSN assumption,
here the intensity of the noise corrupting a signal is proportional

o the intensity of that signal. That is, assuming

�����t�� = 0, �����t�����T� = W��t − �� �4�

���v�t�� = 0, ���v�t�v���T� = V��t − �� �5�

here for a given stationary stochastic process ��t�, the notation

����t���t�T� denotes the asymptotic operation
imt→�����t���t�T�.

Suppose the vector �a�Rnw describes the signal that is cor-
upted by the noise �, and �a is linearly related to the state vari-
ble x

�a = Mx �6�

here matrix M is given. By defining the state covariance matrix

X = ���x�t�x�t�T� �7�

e obtain the intensities of noise � and v as

W = W0 + ��MXMT�� �8�

V = V0 + �vCXCT�v �9�

here W0, V0 are given positive definite constant matrices, and

�� = diag���1
,��2

, . . . ,��n�

� �10�

�v = diag��v1
,�v2

, . . . ,�vny
� �11�

here ��i
,�vi

are noise-to-signal ratio �NSR� of the ith channel,
espectively.

For this system, the objective is to design a linear filter with
tate space representation

ẋ̂ = Ax̂ + F�y − Cx̂� �12�

ẑ = Czx̂ �13�

here x̂ is the estimate of the state x, F is the filter gain to be
etermined such that �A−FC� is asymptotically stable, and the
stimation error has covariance less than a specified matrix. The
stimation error is x̃=x− x̂, and the estimation error system is
iven by

ẋ̃ = �A − FC�x̃ + D� − Fv �14�

z̃ = Czx̃ �15�

here z̃ denotes the estimation error of particular interests. The
ey idea of this filtering problem is to find the estimate x̂ of x such
hat the performance criterion ���z̃ z̃T��	 is satisfied.

In this paper, the following two problems are analyzed. First,
e will explore the existence condition of the state estimator. We
ill be able to provide the sufficient conditions for the existence
f the state estimator based on linear matrix inequalities �LMIs�.
econd, we will determine if there exists a filter gain F such that
˜˜T
��z z ��	 is satisfied for the given 	.

ournal of Dynamic Systems, Measurement, and Control
3 Existence Condition
In the following, we consider the augmented estimation error

dynamics

ẋ = Ax + Dw , �16�

where

x = �x̃

x̂
�, w = ��

v
� �17�

A = �A − FC 0

FC A
� = A0 + B0FC0 �18�

D = �D − F

0 F
� = D0 + B0FE0 �19�

A0 = �A 0

0 A
�, B0 = �− I

I
� �20�

C0 = �C 0 �, D0 = �D 0

0 0
�, E0 = �0 I � �21�

We start by defining the upper bound of the state covariance
matrix of system �16� as

X 
 ���x�t�x�t�T� �22�

if it exists, it satisfies the following inequality:

0 � XAT + AX + D�W 0

0 V
�DT �23�

Definition 1 �Mean Square Stable�. The error system �16� with
FSN noise inputs is mean square stable if there exists a positive
definite covariance matrix X satisfying the inequality �23�.

Substitution of �8�, �9�, �18�, �19� into the above inequality,
yields

0 � X�A0 + B0FC0�T + �A0 + B0FC0�X + NXN T

+ �B0FG0�X�B0FG0�T + �D0 + B0FE0�W�D0 + B0FE0�T

�24�

where

N = �D��M D��M

0 0
� �25�

W = �W0 0

0 V0
� �26�

G0 = �− �vC − �vC � �27�

LEMMA 1. �assume W= I� The inequality of �24� can be written
as

�F + ��F�T + � � 0 �28�

where

� = 	A0X + XA0
T + NXN T 0 D0

0 − X 0

D0
T 0 − I


 �29�

� = 	B0

0

0

 �30�
 = �C0X G0X E0 � �31�
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Proof. By using the Schur complement formula, the inequality
24� can be written as

	XAT + AX + NXN T �B0FG0�X D0 + B0FE0

X�B0FG0�T − X 0

�D0 + B0FE0�T 0 − I

 � 0

here A is defined in �18�. Breaking the above matrix into two
atrices and substituting �29� into the above inequality yields

� + 	�B0FC0�X + X�B0FC0�T �B0FG0�X B0FE0

X�B0FG0�T 0 0

�B0FE0�T 0 0

 � 0

Rewrite the above inequality as follows:

� + 	B0

0

0

F�C0X G0X E0 � + �	B0

0

0

F�C0X G0X E0 ��

T

� 0

With the definition of � and  given in �30� and �31�, the above
ondition can be equivalently written as �28�. �

In order to find the existence conditions of the state estimator
nd the parametrization of all the solutions, the following lemma
rom �14� can be applied.

LEMMA 2 �FINSLER’S LEMMA�. Let x�Rn, �=�T�Rn�n, �
Rn�m, and �Rk�n. For a given matrix � with rank r, let

��R�n−r��n be an orthogonal complement of � such that ���

0 and ����T
�0. Let T�

be any appropriate matrix such that
T�

T=0 and T�
T�T

�0. The following statements are
quivalent:

i . xT�x � 0, ∀ �Tx = 0, x = 0, x � 0 �32�

ii . �����T
� 0 �33�

T�

�T�T

� 0 �34�

iii . ∃ �1,�2 � R:� − �1��T � 0 �35�

� − �2T � 0 �36�

iv . ∃ F � Rm�k:�F + ��F�T + � � 0 �37�
Finsler’s lemma is a specialized version of the projection

emma �14�, and it can be applied to obtain LMI formulations in
ontrol and estimation theory. By applying the Finsler’s lemma,
e obtain the following theorem.
LEMMA 3. Condition �28� is equivalent to the following state-

ent: there exist symmetric positive definite matrices X , P
R2nx�2nx that satisfy

XP = I �38�

B0
��A0X + XA0

T + NXN T + D0D0
T�B0

�T
� 0 �39�

	C0
T

G0
T

E0
T 


�

	PA0 + A0
TP + PNXN TP 0 PD0

0 − P 0

D0
TP 0 − I


	C0
T

G0
T

E0
T 


�T

� 0

�40�
Proof. The result follows from Lemma 1 and Finsler’s lemma,

here we note that

�� = 	B0

0

0



�

= 	B0
� 0 0

0 I 0

0 0 I



Substituting the above equation and �29� into �33� yields
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	B0
��A0X + XA0

T + NXN T�B0
�T

0 B0
�D0

0 − X 0

D0
TB0

�T
0 − I


 � 0

A Schur complement of this matrix is

�B0
��A0X + XA0

T + NXN T�B0
�T

0

0 − X � + �B0
�D0

0
��D0

TB0
�T

0 �

� 0

therefore

�B0
��A0X + XA0

T + NXN T + D0D0
T�B0

�T
0

0 − X � � 0

which is equivalent to B0
��A0X+XA0

T+NXN T+D0D0
T�B0

�T

�0,X�0.
Furthermore, since

T�

= 	XC0
T

XG0
T

E0
T 


�

= 	C0
T

G0
T

E0
T 


�

	X−1 0 0

0 X−1 0

0 0 I



substituting �29� and the above equation into �34�, yields

	C0
T

G0
T

E0
T 


�

	X−1A0 + A0
TX−1 + X−1NXN TX−1 0 X−1D0

0 − X−1 0

D0
TX−1 0 − I



�	C0

T

G0
T

E0
T 


�T

� 0

By defining X−1= P, we could obtain �40� immediately.
The above theorem provides the existence condition for the

state estimator, and the characterization given in Lemma 3 is nec-
essary and sufficient. However, we introduce a nonconvex con-
straint XP= I, which makes our problem more difficult to solve.
Furthermore, the inequality �40� is still nonlinear. The next theo-
rem shows how to write these conditions into convex constraints
by using Finsler’s Lemma again from �14�.

THEOREM 1. There exists a state estimator gain F to solve �23�
if there exist a symmetric matrix P�R2nx�2nx, a scalar �1�0,
and a scalar �2�0 that satisfy

P � 0 �41�

	
PA0 + A0

TP PN PD0 PB0

N TP − P 0 0

D0
TP 0 − I 0

B0
TP 0 0 �1

−1I

 � 0 �42�

	
PA0 + A0

TP 0 PD0 C0
T PN

0 − P 0 G0
T 0

D0
TP 0 − I E0

T 0

C0 G0 E0 �2
−1I 0

N TP 0 0 0 − P

 � 0 �43�

Proof. The result follows from Lemma 3 and Finsler’s lemma.
If the inequality �39� holds, it is equivalent to the following: there
exists a �1�R such that:

A0X + XA0
T + NXN T + D0D0

T − �1B0B0
T � 0
Apply the congruence transformation
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X−1�A0X + XA0
T + NXN T + D0D0

T − �1B0B0
T�X−1 � 0

ith the definition PªX−1�0, it yields

PA0 + A0
TP + PNP−1N TP + PD0D0

TP − �1PB0B0
TP � 0

ith the assumption �1�0, the above condition can be equiva-
ently written as �42� by using the Schur complement.

Similarly, if the inequality �40� holds, it is equivalent to the
xistence of a �2�R such that

	PA0 + A0
TP + PNXN TP 0 PD0

0 − P 0

D0
TP 0 − I


 − �2	C0
T

G0
T

E0
T 
�C0 G0 E0 �

� 0

By assuming �2�0 and applying Schur complements twice on
he above inequality, it obtains the LMI �43�, which completes the
roof of the theorem. �

FSN Filter Design
In Sec. 3, a sufficient LMI condition to examine the existence

f state estimator for FSN models has been given. This section is
edicated to determine an estimator gain F that additionally guar-
ntees the performance criterion, ���z̃ z̃T��	. We know that

��z̃ z̃T� can be computed from

���z̃ z̃T� = Cz���x̃ x̃T�Cz
T = C̄zXC̄z

T �44�

here the state covariance matrix X is defined in �22� and C̄z
Cz�I 0 �. The algorithm to solve the filtering problem can be
erived from the following theorem.

THEOREM 2. For a given 	, if there exist a positive definite
ymmetric matrix P�R2nx�2nx, a scalar �1�0, and a scalar �2

0 that satisfy �42�, �43�, and

�	 C̄z

C̄z
T P

� � 0 �45�

hen there exists a filter gain F such that ���z̃ z̃T��	. All the
olutions F are given by

F = − R−1�T�T��T�−1 + S1/2L��T�−1/2 �46�

here

S = R−1 − R−1�T�� − �T��T�−1���R−1 �47�

is an arbitrary matrix such that L  �1, and R is an arbitrary
ositive definite matrix that

� = ��R−1�T − ��−1 � 0 �48�

nd

� = 	A0P−1 + P−1A0
T + NP−1N T 0 D0

0 − P−1 0

D0
T 0 − I



� = 	B0

0

0



 = �C0P−1 G0P−1 E0 �

Proof. The inequality �45� can be manipulated by ���z̃ z̃T�
C̄zXC̄z

T�	, then we can use Schur complement to convert it

nto a LMI

ournal of Dynamic Systems, Measurement, and Control
�	 C̄z

C̄z
T X−1� = �	 C̄z

C̄z
T P

� � 0

The proof solving for F follows a similar approach to �14�. �
We observe that the optimization approach proposed in the

above theorem is a convex programming problem stated as LMIs,
which can be solved by efficient methods.

4.1 Numerical Example. In order to determine the applica-
bility of the method, an example of filter design is presented next.
We will consider a simple mechanical system that consists of a
mass, a spring, and a damper. The plant noise and measurement
noise are modeled as FSN white noise

�ẋ = � 0 1

− 1 − 1
�x + �1

1
��

y = �3 3 �x + v

z = �1 1 �x



For simplicity, we assume that ��=��I, �v=�vI. The noise-to-
signal ratio �NSR� is ��=0.1, �v=0.1, respectively, and M
= �1 0.5 �.

The performance criterion for the filter design is ���z̃ z̃T��	
where 	=4.

The filter that results from our method is

ẋ̂ = �− 0.00895 0.99105

− 0.99494 − 0.99494
�x̂ + � 0.002985

− 0.001685
�y

The simulation result shows that the output covariance of the
estimation error is

���z̃ z̃T� = 2.9585

which satisfies the design requirement, since 2.9585�4.
The performance of the FSN filter introduced in this paper is

illustrated in Fig. 1, where the error of each state variable is plot-
ted. When compared to Fig. 1, Fig. 2 demonstrates the inferiority
of the Kalman filter, which ignores the FSN structure of the noise
by setting W=W0 and V=V0 in �8� and �9�. Note that the peak
values of the state error using the standard Kalman filter �from
Fig. 2� are approximately 38 and 23, respectively, as compared to
peak errors of approximately, 7 and 13, respectively for the FSN
estimator.

Another interesting observation is that, in this example, the up-
per bound 	 is a scalar; therefore, the problem of minimizing the
upper bound 	 can also be defined based on Theorem 2. The
solution to the problem of minimizing 	 subject to the inequali-

Fig. 1 Estimation error of FSN filter „solid line corresponds to
the error of state variable x1, dashed-dotted line corresponds to
the estimation error of state variable x2…
ties �42�, �43�, and �45� produces the optimal filter that is associ-
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ted with the optimal cost. Indeed, Fig. 3 illustrates the tradeoff
etween the optimal performance and the precision of system de-
ices, where the optimal output variance is plotted as a function of
nformation quality ��w+�v�−1. Given a certain performance, one
an obtain what is the required precision on the sensors and other
evices from that plot. As expected, a qualitative interpretation of
his plot is to show that better performance requires more infor-

ation quality.

Discrete-Time Systems
In this section, we develop the discrete-time counterpart of the

lter design presented in Secs. 3 and 4. Consider the following
iscrete-time system with state space representation

x�k + 1� = Ax�k� + D��k�

y�k� = Cx�k� + v�k�

z�k� = Czx�k� �49�

here x�k��Rnx is the state variable; y�k��Rny is the measure-
ent output; z�k��Rnz is the output of interest for performance

valuation; ��k��Rnw and v�k��Rny are zero-mean FSN white
oises with unknown covariances W and V respectively; all ma-
rices A, C, Cz, D are given and assumed to have proper dimen-
ions. As in the continuous-time case, we consider that the noise
ource is modeled according to the FSN assumption. That is,
ssuming

ig. 2 Estimation error of Kalman filter „solid line corresponds
o the error of state variable x1, dashed-dotted line corresponds
o the estimation error of state variable x2…

ig. 3 Optimal performance as a function of information

uality

40 / Vol. 129, MARCH 2007
�����k�� = 0, �����k�����T� = W��k − �� �50�

���v�k�� = 0, ���v�k�v���T� = V��k − �� �51�

Suppose the vector �a�k��Rnw describes the signal that is cor-
rupted by the noise ��k�, and �a�k� is linearly related to state
variable x�k�

�a�k� = Mx�k� �52�

where M is given. Assuming that the state covariance matrix X
=���x�k�x�k�T� associated with the system �49� exists, we could
compute

W = W0 + ��MXMT�� �53�

V = V0 + �vCXCT�v �54�

where W0, V0 are given positive definite constant matrices;
��=diag���1

,��2
, . . . ,��n�

�, �v=diag��v1
,�v2

, . . . ,�vny
�, and

��i
,�vi

are noise-to-signal ratio �NSR� of the ith channel,
respectively.

Combining the linear filter

x̂�k + 1� = Ax̂�k� + F�y�k� − Cx̂�k�� �55�

ẑ�k� = Czx̂�k� �56�

and the estimation error dynamics

x̃�k + 1� = �A − FC�x̃�k� + D��k� − Fv�k� �57�

z̃�k� = Czx̃�k� �58�

where x̂�k� is the unbiased estimate of the state x�k�, F is the filter
gain to be determined, the estimation error x̃�k�=x�k�− x̂�k�, and
z�k� denotes the estimation error of particular interest, we obtain
the augmented adjoint system

x�k + 1� = Ax�k� + Dw�k� �59�

where

x�k� = �x̃�k�
x̂�k�

�, w�k� = ���k�
v�k�

� �60�

A = �A − FC 0

FC A
� = A0 + B0FC0 �61�

D = �D − F

0 F
� = D0 + B0FE0 �62�

A0 = �A 0

0 A
�, B0 = �− I

I
� �63�

C0 = �C 0 �, D0 = �D 0

0 0
�, E0 = �0 I � �64�

The objective in this section is to provide the existence condi-
tion of the state estimator for discrete-time FSN systems based on
linear matrix inequalities �LMIs�. The key idea of this filtering
problem is to find the estimate x̂�k� of x�k� such that the perfor-
mance criterion ���z̃�k�z̃�k�T��	 is satisfied for the given 	.

5.1 Existence Condition. As for continuous-time system, we
start by defining the upper bound of the state covariance matrix of
system �59� as

X 
 ���x�k�x�k�T� �65�
if it exists, it should satisfy the following Lyapunov inequality:
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0 � AXAT − X + D�W 0

0 V
�DT �66�

here W and V are symmetric and positive definite. Substitution
f �53� and �54� and �61� and �62� into the above inequality yields

0 � �A0 + B0FC0�X�A0 + B0FC0�T − X + NXN T

+ �B0FG0�X�B0FG0�T + �D0 + B0FE0�W�D0 + B0FE0�T

�67�
here

N = �D��M D��M

0 0
� �68�

W = �W0 0

0 V0
� �69�

G0 = �− �vC − �vC � �70�
LEMMA 4. The inequality �67� can be rewritten in a form

�F + ��F�T + � � 0 �71�
here

� = 	
− X + NXN T 0 A0X D0W

0 − X 0 0

XA0
T 0 − X 0

WD0
T 0 0 − W


 �72�

� =	
B0

0

0

0

 �73�

 = �0 G0X C0X E0W � �74�
The proof can be obtained following the same steps as used in

he proof of Lemma 1. It is important to note that the filtering
esign problem has been converted into a search for the solution F
n inequality �71�. Using the same techniques as in Sec. 3, one can
btain the existence conditions of the state estimator and a param-
trization of all admissible solutions.

LEMMA 5. Condition �71� is equivalent to the following state-
ent: there exist symmetric positive definite matrices X , P
R2nx�2nx that satisfy

XP = I �75�

B0
��A0XA0

T − X + NXN T + D0WD0
T�B0

�T
� 0 �76�

	
0

G0
T

C0
T

E0
T



�

	
− P + PNXN TP 0 PA0 PD0

0 − P 0 0

A0
TP 0 − P 0

D0
TP 0 0 − W−1


	
0

G0
T

C0
T

E0
T



�T

� 0

�77�
This lemma also relies on the use of Schur complement and on

insler’s lemma. Its proof can be easily obtained following the
ame steps as used in Lemma 3. Lemma 5 provides the necessary
nd sufficient condition for the existence of the state estimator.
owever, the problem becomes more difficult to solve after intro-
ucing a nonconvex constraint XP= I, and the inequality �77�
eeds to be constructed as a LMI. Using techniques that parallel
he developments performed in Sec. 3, it is possible to rewrite
hese conditions into convex constraints by applying Finsler’s

emma for discrete-time FSN systems. Again the proof is omitted
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for brevity.
THEOREM 3. A state estimator gain F solving �67� exists if there

is a symmetric matrix P�R2nx�2nx, a scalar �1�0, and a scalar
�2�0 that satisfy

P � 0 �78�

	
− P PA0 PN PD0 PB0

A0
TP − P 0 0 0

N TP 0 − P 0 0

D0
TP 0 0 − W−1 0

B0
TP 0 0 0 �1

−1I

 � 0 �79�

	
− P 0 PA0 PD0 0 PN
0 − P 0 0 G0

T 0

A0
TP 0 − P 0 C0

T 0

D0
TP 0 0 − W−1 E0

T 0

0 G0 C0 E0 �2
−1I 0

N TP 0 0 0 0 − P


 � 0 �80�

5.2 Filter Design. In Sec. 5.1, a sufficient LMI condition for
checking the existence of state estimator has been given. Here, we
provide conditions that guarantee the additional closed loop sys-
tem performance. We will determine a state estimator F such that
the performance criterion, ���z̃�k�z̃�k�T��	, is satisfied. The fun-
damental algorithm that enables us to solve the filtering problem
is derived from Theorem 4.

THEOREM 4. For a given 	, if there exist a positive definite
symmetric matrix P�R2nx�2nx, a scalar �1�0, and a scalar �2
�0 that satisfy �79�, �80�, and

� 	 Cz
¯

Cz
¯ T P

� � 0 �81�

where

Cz
¯ = Cz� I 0 � �82�

then there exists a state estimator gain F such that ���z̃�k�z̃�k�T�
�	. All the solutions F are given by

F = − R−1�T�T��T�−1 + S1/2L��T�−1/2 �83�

where

S = R−1 − R−1�T�� − �T��T�−1���R−1 �84�

L is an arbitrary matrix such that L  �1 and R is an arbitrary
positive definite matrix such that

� = ��R−1�T − ��−1 � 0 �85�

and

� = 	
− P−1 + NP−1N T 0 A0P−1 D0W

0 − P−1 0 0

P−1A0
T 0 − P−1 0

WD0
T 0 0 − W



� =	

B0

0

0

0

,  = �0 G0P−1 C0P−1 E0W �

This result establishes the counterpart of Theorem 2 for

discrete-time FSN systems. As in the continuous-time case, the
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ptimization approach proposed in this theorem is a convex pro-
ramming problem expressed in forms of LMIs, which can be
olved by many efficient methods.

5.3 Numerical Examples. In order to determine the applica-
ility of the method, two examples to solve for the system design
re presented next.

5.3.1 Four Mass Mechanical System. Consider the four mass
echanical system with springs and dampers depicted in Fig. 4.
he discrete-time system dynamics is described in the following
tate space form

x�k + 1� = � I �I

− �M−1K I − �M−1G
�x�k� + � 0

�M−1D
���k�

�86�
ith the measurement

y�k� = Cx�k� + v�k� �87�
nd the desired output

z�k� = Czx�k� �88�

here � is the time step �0.01 s� and

x�k� = �q

q̇
�, y�k� = �q1

q̈4
�, ��k� = ��1

�2
�

q= �q1 q2 q3 q4 �T

M = �
m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

�, G = �
b1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 b5

�
K = �

k1 + k2 − k2 0 0

− k2 k2 + k3 − k3 0

0 − k3 k3 + k4 − k4

0 0 − k4 k4 + k5

�
D = �1 0 0 0

0 1 0 0
�T

z=C= �1 0 0 0 0 0 0 0

0 0 k4�m4 − �k4+k5��m4 0 0 0 −b5�m4 �
m1 = m2 = m4 = 1, m3 = 2, b1 = 5, b5 = 2

k1 = k3 = k4 = 1, k2 = 2, k5 = 4

Note that ��k� and v�k� are modeled as FSN white noises with
ovariance

W =
W1 0

, W = �2 � �x �k�x �k�T�,

ig. 4 Four mass mechanical system with springs and
ampers
�
0 W2

� 1 w � 5 5
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W2=�w
2 ���x6�k�x6�k�T� , �w=0.1

V = �v
2C���x�k�x�k�T�CT, �v = 0.1

The performance criterion for the filter design is
����z̃�k�z̃�k�T��i,i�0.1 �i=1,2�. Figure 5 demonstrates the perfor-
mance of the FSN state estimator introduced in this paper. We
know that the signal-to-noise ratio of all measurement and control
devices plays an important role in certain properties of a FSN
model. With the same specified performance requirement, we de-
sign a state estimator for each different pair of �w and �v. The
simulation results show that the output covariances of the estima-
tion errors only change within a very small amount of value, the
state estimators we design can always satisfy the performance
criterion.

Remark 1. The comparison between the FSN filter and the Kal-
man filter for the discrete-time system demonstrates the same re-
sult as obtained in continuous case, hence the simulation results
for the discrete-time system is omitted for brevity. Since the FSN
system allows the noise variance to be affinely related to the vari-
ance of the signal corrupted by the noise, such system has prop-
erties that system with traditional noise sources cannot possess,
i.e., improving performance in the presence of a finite-precision
computing environment �4�.

5.3.2 Biomechanical Hand Movement System. Consider the
hand modeled as a point mass �m=1 kg� whose one-dimensional
position at time t is p�t�, and the velocity at time t is v�t�. The
combined action of all muscles is represented with the force f�t�
acting on the hand. The control signal u�t� is transformed into
force by adding control-dependent noise and applying a second-
order musclelike low-pass filter

�1�2 f̈�t� + ��1 + �2� ḟ�t� + f�t� = u�t�

where �1=�2=0.04 s. We know that the above filter can be written
as a pair of coupled first-order filters

�1ġ + g = u, �2 ḟ + f = g

The sensory feedback carries the information about position, ve-
locity, and force. The discrete-time system dynamics is described
as follows:

x�k + 1� = Ax�k� + B�1 + �c��k��u�k� + ��k�

y�k� = Cx�k� + v�k�

z�k� = Czx�k� �89�
where

p�k� �k� f�k� g�k� T p�k� �k� f�k� T

Fig. 5 Performance as a function of �w+�v corresponding to
the two different noise contributions „Star curve corresponds
to the output covariance of the first estimation error, diamond
curve corresponds to the output covariance of the second es-
timation error…
x�k� = � v � , y�k� = � v �
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A = �
1 � 0 0

0 1 �/m 0

0 0 1 − �/�2 �/�2

0 0 0 1 − �/�1

�, B = �
0

0

0

�/�1

�
C = Cz = �1 0 0 0

0 1 0 0

0 0 1 0
�

nd ��k� ,v�k� ,��k� are independent zero-mean Gaussian white
oise sequences with covariance

	� = �diag�0.01,0.001,0.01,0.01��2,

	v= �diag�0.01,0.1,0.5��2 , 	�= I
ote that �c=0.5 is a unitless quantity that defines the noise mag-
itude relative to the control signal magnitude. And the time step
=0.01 s.
Given a controller

u�k� = �− 1.6032 − 3.0297 − 0.3361 − 2.7793 �x�k�
uch that the system �89� is mean square stable, the objective is to
nd a state estimator that bounds the estimation error below a
pecified error covariance: ����z̃�k�z̃�k�T��i,i�	 �i=1,2 ,3�,
here 	=0.1.
Figure 6 illustrates the performance of the filter introduced in

his paper, where the error of each state variable is plotted. The
imulation result shows that the output covariance of the estima-
ion error are ����z̃�k�z̃�k�T��1,1=0.0198, ����z̃�k�z̃�k�T��2,2

0.0037, ����z̃�k�z̃�k�T��3,3=0.0018�0.1, which satisfy the de-
ign requirement.

Remark 2. Here we add a mild additional constraint to make the
stimation design for FSN systems into a convex problem. Al-
hough the scaler �1�0 and �2�0 are in a sense conservative for
he design purpose, from the many numerical illustrations in the
aper, it demonstrates that �1 ,�2 negative is not restrictive in the
ltering problem.

Conclusions
FSN noise models are more practical than normal white noise
odels, since they allow the size �intensity� of the noises to be

ffinely related to the size �variance� of the signals they corrupt.
uch noises are found in digital signal processing with both fixed-
nd floating-point arithmetic. Such models are found in analog
ensors and actuators that produce more noise when the power
upplies in these devices must provide more power �for an in-
reased dynamic range of the signals in the estimation or control

ig. 6 Estimation error for hand movement system, each
urve corresponds to the error of each state variable
roblem�.

ournal of Dynamic Systems, Measurement, and Control
This paper derives sufficient conditions for the existence of the
state estimator with FSN noise models. By adding a mild con-
straint, the original problem �of estimating to within a specified
covariance error bound�, is solved as a convex problem. Associ-
ated with the solvable convex conditions, a LMI-based approach
is examined for the design of the estimator with the FSN model.
This estimator design guarantees the performance requirement
and the design algorithm is convergent �15–26�.
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