
Reinforcement learning for non-prehensile manipulation:
Transfer from simulation to physical system

Kendall Lowrey1,2, Svetoslav Kolev1, Jeremy Dao1, Aravind Rajeswaran1 and Emanuel Todorov1,2

Abstract— Reinforcement learning for continuous control
has emerged as a promising methodology for training robot
controllers. Most results however, have been limited to sim-
ulation, due to the need for a large number of samples and
lack of automated-yet-safe data collection methods. Model-
based reinforcement learning methods provide an avenue to
circumvent these challenges, but the traditional concern has
been the mismatch between the simulator and the real world.
Here, we show that control policies learned in simulation can
successfully transfer to a dynamic physical system, composed
of three Phantom robots pushing an object to changing targets.
Learning is done with a natural policy gradient method, applied
to a carefully identified simulation model. The resulting policies,
trained in simulation, work well on the physical system without
additional training. In addition, we show that training with an
ensemble of models makes the learned policies more robust to
modeling errors, thus compensating for difficulties in system
identification. The results are illustrated in the accompanying
video.

I. INTRODUCTION

Non-prehensile object manipulation remains a challenge
for robotic control. In this work we focus on a particularly
challenging system using three Phantom robots as fingers.
These are haptic robots that are torque-controlled and have
higher bandwidth than the fingers of existing robotic hands.
In terms of speed and compliance (but not strength) they are
close to the capabilities of the human hand. This makes them
harder to control, especially in non-prehensile manipulation
tasks where the specifics of each contact event and the
balance of contact forces exerted on the object are very
important and need to be considered by the controller in
some form.

Here we develop a solution using Reinforcement Learning
(RL) within the MuJoCo physics simulator [1]. For Re-
inforcement Learning we use a normalized natural policy
gradient method [2], [3], [4]. While RL is in principle model-
free, in practice it requires large amounts of data. In the
absence of an automatic way to generate safe exploration
controllers, most learning is thus done in simulation. Indeed
the large majority of recent results in continuous RL have
been obtained in simulation. These studies often propose
to extend the corresponding methods to physical systems
in future work, but the scarcity of such results indicates
that ‘sim-to-real’ transfer is harder than it seems. The few
successful applications to real robots have been in tasks
involving position or velocity control that avoid some of the
difficulty of control.

*This work was supported by the NSF.
1 University of Washington, 2 Roboti LLC.

We use an accurate simulation model whose physics pa-
rameters have been carefully tuned via system identification
[5]. System identification has long been studied in robotics,
and it is reasonable to assume that the process are already
in place. While true model-free RL may one day become
feasible, we believe leveraging the capabilities of a physics
simulator will always help speed up the learning process.

As with any controller developed in simulation, perfor-
mance on the real system is likely to degrade due to
modeling errors. To assess, as well as mitigate, the effects
of these errors, we compare learning with respect to three
different models: (i) the nominal model obtained from system
identification; (ii) a modified model where the object mass
is intentionally mis-identified; (iii) an ensemble of models
where the mean is wrong but the variance is large enough
to cover the nominal model. We find that (i) achieves the
best performance as expected, but (iii) is also robust even
though it is not as performant. This is consistent with our
earlier observations using model ensembles in the context of
trajectory optimization [6].

A. Related Work

There are many methods towards developing safe and
robust robot controllers. Robot actions that involve dynamic
motions require not only precise control execution, but also
robust compensation when the action inevitably does not
go according to plan–the physics of the real world are
notoriously uncooperative. Control methods that depend on
physical models, whether reduced and simplified models or
not, are able to produce dynamic actions [7], [8], [9], [10],
[11], [12]. They frequently rely on physics simulations for
testing purposes, before usage on real hardware. This step is
critical, as any modeling errors can significantly contribute to
poor performance or even hardware damage [13]. Including
uncertainty in the planning stage is one way to avoid this
problem, and may also enable model learning simultaneously
[14], [15], [16], [17], [18]. These model centric approaches
offer strong performance expectations, but unless uncertainty
or robustness is explicitly taken into account, may be brittle
to external unknowns [19].

On the other hand, Reinforcement Learning offers a means
to directly learn from the robot’s experience [20], [21].
The difficulty, of course, is where the robot’s experiences
come from: as RL algorithms may need significant amounts
of data, doing this on hardware may be infeasible [22].
Directly training on hardware has been feasible in some
cases [23], [24], but domains with highly nonlinear dynamics
will always require more data to sufficiently explore, human

demonstrations with imitation learning, and/or parameterized
explorations [25], [26], [27]. Another common issue with
learning in the real world is how to reset the state of the
system, with some work being done [28]. For sensitive and
delicate systems, the only safe place to perform learning is
in simulation. Transferring to real hardware can take many
approaches as well, either through adaptation [29], [30], or
incorporating uncertainty [31], [32].

This work focuses on using a physics simulator to train
policies for manipulation using reinforcement learning. As
the manipulator is non-prehensile, we do not use any demon-
strations or guide the policy search. To facilitate transfer to
hardware, we also avoid the use of an estimator (i.e. the use
of a model to predict state like a Kalman filter) by learning
a function that directly converts from sensor values to motor
torques. The policy is then transfered to the hardware for
evaluation, and show that even for incorrect models used
during training, useful policies are obtained by using an
ensemble of models. Sections 2 and 3 detail the RL problem
formulation and solution. Section 4 explains the hardware
platform and details of the manipulation task are in section
5. Finally Section 6 contains the results and Section 7 the
discussion.

II. PROBLEM FORMULATION

We model the control problem as a Markov decision
process (MDP) in the episodic average reward setting, which
is defined using the tuple: M = {S,A,R, T , ρ0, T}. S ⊆
Rn, A ⊆ Rm, and R : S ×A → R are (continuous) set of
states, set of actions, and the reward function respectively.
T : S × A → S is the stochastic transition function; ρ0 is
the probability distribution over initial states; and T is the
maximum episode length. We wish to solve for a stochastic
policy of the form π : S × A → R, which optimizes the
average reward accumulated over the episode. Formally, the
performance of a policy is evaluated according to:

η(π) =
1

T
Eπ,M

[
T∑
t=1

rt

]
. (1)

In this finite horizon rollout setting, we define the value, Q,
and advantage functions as follows:

V π(s, t) = Eπ,M

[
T∑
t′=t

rt′

]

Qπ(s, a, t) = EM
[
R(s, a)

]
+ Es′∼T (s,a)

[
V π(s′, t+ 1)

]
Aπ(s, a, t) = Qπ(s, a, t)− V π(s, t)

We consider parametrized policies πθ, and hence wish to
optimize for the parameters (θ). Thus, we overload notation
and use η(π) and η(θ) interchangeably. In this work, we
represent πθ as a multivariate Gaussian with diagonal co-
variance. In our experiments, we use an affine policy as our
function approximator, visualized in figure 6.

III. METHOD

A. Natural Policy Gradient

Policy gradient algorithms are a class of RL methods
where the parameters of the policy are directly optimized
typically using gradient based methods. Using the score
function gradient estimator, the sample based estimate of the
policy gradient can be derived to be: [33]:

ĝ =
1

NT

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)Âπ(sit, ait, t) (2)

A straightforward gradient ascent using the above gradient
estimate is the REINFORCE algorithm [33]. Gradient ascent
with this direction is sub-optimal since it is not the steepest
ascent direction in the metric of the parameter space [34].
Consequently, a local search approach that moves along
the steepest ascent direction was proposed by Kakade [2]
called the natural policy gradient. This has been expanded
upon in subsequent works [3], [35], [36], [37], and forms a
critical component in state of the art RL algorithms. Natural
policy gradient is obtained by solving the following local
optimization problem around iterate θk:

maximize
θ

gT (θ − θk)

subject to (θ − θk)TFθk(θ − θk) ≤ δ,
(3)

where Fθk is the Fisher Information Metric at the current
iterate θk. We apply a normalized gradient ascent procedure,
which has been shown to further stabilize the training pro-
cess [35], [36], [4]. This results in the following update rule:

θk+1 = θk +

√
δ

gTF−1θk
g
F−1θk

g. (4)

The version of natural policy gradient outlined above was
chosen for simplicity and ease of implementation. The nat-
ural gradient performs covariant updates by rescaling the
parameter updates according to curvature information present
in the Fisher matrix, thus behaving almost like a second order
optimization method. Furthermore, due to the normalized
gradient procedure, the gradient information is insensitive to
linear rescaling of the reward function, improving training
stability. For estimating the advantage function, we use the
GAE procedure [38] and use a quadratic function approxi-
mator with all the terms in s for the baseline.

B. Distributed Processing

As the natural policy gradient algorithm is an on-policy
method, all data is collected from the current policy. How-
ever, the NPG algorithm allows for the rollouts and most
computation to be performed independently as only the gra-
dient and the Fisher matrix need to be synced. Independent
processes can compute the gradient and Fisher matrix, with
a centralized server averaging these values and performing
the matrix inversion and gradient step as in equation (4).
The new policy is then shared with each worker. The
total size of messages passed is proportional to the size
of the Fisher Matrix used for the policy, and linear in the

number of worker nodes. Policies with many parameters may
experience message passing overhead, but the trade-off is that
each worker can perform as many rollouts during sample
collection without changing the message size, encouraging
more data gathering (which large policies require).

50 100 150 200 250 300
0

200

400

600

800

1000

Avg. Policy Training Reward, 3 seeds

Training Iteration

R
ew

ar
d

Linear Policy Reward

Fig. 1. Learning curve of our linear/affine policy. We show here the curve
for the policy trained with the correct mass as a representative curve.

We implemented our RL code and interfaced with the Mu-
JoCo simulator with the Julia programming language [39].
The built-in multi-processing and multi-node capabilities of
Julia facilitated this distributed algorithm’s performance; we
are able to train a linear policy on this task in less than 3
minutes on a 4 node cluster with Intel i7-3930k processors.

Algorithm 1 Distributed Natural Policy Gradient
1: Initialize policy parameters to θ0
2: for k = 1 to K do
3: Distribute Policy and Value function parameters.
4: for w = 1 to Nworkers do
5: Collect trajectories {τ (1), . . . τ (N)} by rolling out

the stochastic policy π(·; θk).
6: Compute ∇θ log π(at|st; θk) for each (s, a) pair

along trajectories sampled in iteration k.
7: Compute advantages Aπk based on trajectories in

iteration k and approximate value function V πk−1.
8: Compute policy gradient according to eq. (2).
9: Compute the Fisher matrix (4).

10: Return Fisher Matrix, gradient, and value function
parameters to central server.

11: end for
12: Average Fisher Matrix gradient, and perform gradient

ascent (5)
13: Update parameters of value function.
14: end for

IV. HARDWARE AND PHYSICS SIMULATION

A. System Overview

We use our Phantom Manipulation Platform as our hard-
ware testbed. It consists of three Phantom Haptic Devices,

Fig. 2. Phantom Manipulation Platform.

each acting as a robotic finger. Each haptic device is a 3-
DOF cable driven system shown in figure 2. The actuation is
done with Maxon motors (Model RE 25 #118743), three per
Phantom. Despite the low gear reduction ratio, they are able
to achieve 8.5N instantaneous force and 0.6N continuous
force at the middle of their range of motion, with very low
friction for the entire range of motion.

The three robots are coupled together to act as one
manipulator. Each robot’s end effector was equipped with
a silicon covered fingertip to enable friction and reliable
grasping of objects. The softness of the silicon coating
was an additional challenge in both contact modeling and
robust policy learning. For this work, we had the robots
manipulating a 3D printed cylinder with a height of 14cm
and diameter of 11cm, and a mass of 0.34kg.

The soft contacts, combined with the direct torque control
and high power-to-weight ratio–leading to high acceleration–
make this platform particularly difficult to control. Systems
with more mass and natural damping in their joints naturally
move more slowly and smoothly; this is not the case here.
Being able to operate in this space, however, allows for the
potential for high performance, dynamic manipulation, and
the benefits that come with torque based control. However,
this requires that we operate our robot controller at 2kHz to
successfully close the loop.

B. Sensing

As we wish to learn control policies that map from obser-
vations to controls, the choice of observations are critical to
successful learning. Each Phantom is equipped with 3 optical
encoders at a resolution of 5K steps per radian. We use a low-
pass filter to compute the joint velocities. We also rely on a
Vicon motion capture system, which gives us position data at
240Hz for the object we are manipulating. While being quite
precise (0.1mm error), the overall accuracy is significantly
worse (< 1mm) due, in part, to imperfect object models and
camera calibrations. While the Phantoms’ position sensors

are noiseless, they often have small biases due to imperfect
calibration. One Phantom robot is equipped with an ATI
Nano17 3-axis force/torque sensor. This data is not used
during training or in any learned controller, but used as a
means of hardware / simulation comparison described in
a later section. The entire system is simulated for policy
training in the MuJoCo physics engine [1].

In total, our control policy has an observational input of
36 dimensions with 9 actuator outputs– the 9 positions and
9 velocities of the Phantoms are converted to 15 positions
and 15 velocities for modeling purposes due to the parallel
linkages. We additionally use 3 positions for both the ma-
nipulated object and the tracked goal, with 9 outputs for the
3 actuators per Phantom. Velocity observations are not used
for the object as this would require state estimation that we
have deliberately avoided.

C. System Identification

System identification of model parameters was performed
in our prior work [5], but modeling errors are difficult to
eliminate completely. For system ID we collected various
behaviors with the robots, ranging from effector motion in
free space to infer intrinsic robot parameters, to manipulation
examples such as touching, pushing and sliding between
the end effector and the object to infer contact parameters.
The resulting data is fed into the joint system ID and state
estimation optimization procedure. As explained in [5], state
estimation is needed when doing system ID in order to
eliminate the small amounts of noise and biases that our
sensors produce.

The recorded behaviors are represented as a list of sensor
readings S = {s1, s2, . . . , sn} and motor torques U =
{u1, u2, . . . , un}. State estimation means finding a trajectory
of states Q = {q1, q2, . . . , qn}. Each state is a vector qi =
(θ1, . . . , θk′ , x, y, z, qw, qx, qy, qz), representing joint angles
and object position. We also perform system ID which is
finding the set of parameters P, which include coefficients of
friction, contact softness, damping coefficients, link inertias
and others. We then pose system ID and estimation joint
problem as the following optimization problem:

min
P,Q

∑
i=1...n

‖τ̂i − ui‖∗1 +
∑
i=1...n

‖ŝi − si‖∗2

where τ̂i (predicted control signal) and ŝi (predicted sensor
outputs) are computed by the inverse dynamics generative
model of MuJoCo: (τ̂i, ŝi) = mjinverse(qi−1, qi, qi+1). The
optimization problem is solved via Gauss-Newton method
[5].

V. TASK & EXPERIMENTS

In this section we first describe the manipulation task used
to evaluate learned policy performance, then describe the
practical considerations involved in using the NPG algorithm
in this work. Finally, we describe two experiments evaluat-
ing learned policy performance in both simulation and on
hardware.

A. Task Description

We use the NPG algorithm to learn a pushing task. The
goal is to reduce the distance of the object, in this case
the cylinder, to a target position as much as possible. This
manipulation task requires that contacts can be made and
broken multiple times during a pushing movement. As there
are no state constraints involved in this RL algorithm, we
cannot guarantee that the object will reach the target location
(the object can be pushed into an un-reachable location). We
feel that this is an acceptable trade-off if we can achieve
more robust control over a wider state space.

For these tasks we model the bases of each Phantom as
fixed, arrayed roughly equilateral around the object being
manipulated–this is to achieve closure around the object. We
do not enforce a precise location for the bases to make the
manipulation tasks more challenging and expect them to shift
during operation regardless.

B. Training Considerations

Policy training is the process of discovering which actions
the controller should take in which state to achieve a good
reward score, as such, it has implications for how well-
performing the final policy is. Training structured informs
the policy of good behavior, but is contrasted with the time
required to craft the reward function. In this task’s case, we
use a very simple reward structure. In addition to the primary
reward of reducing the distance between the object and the
goal location, we provide the reward function with terms to
reduce the distance between each finger tip and the object.
This kind of hint term is common in both reinforcement
learning and trajectory optimization. There is also a control
cost, a, that penalizes using too much torque. The entire
reward function at time t is as follows:

Rt(s) = 1−3‖|Oxy−Gxy||−
3∑
i

||fi −Oxy||−0.1a2 (5)

Where Oxy is the current position on the xy-plane of the
object, Gxy is the goal position, and fi is the Phantom end
effector position.

The initial state of each trajectory rollout is with the
Phantom robots at randomized joint positions, deliberately
not contacting the cylinder object. The cylinder location is
kept at the origin on the xy-plane, but the desired goal
location is set to uniformly random point within a circle
of 12 cm diameter around the origin. To have more diverse
initializations and to encourage robust policies, new initial
states have a chance of starting at some state from one of
the previous iteration’s trajectories, provided the previous
trajectory had a high reward. If the initial state was a
continuation of the previous trajectory, the target location
was again randomized: performing well previously only
gives an initial state, and the policy needs to learn to push the
object to a new goal. This is similar to a procedure outlined
in [40] for training interactive and robust policies.

Finally, to further encourage robust behavior, we vary
the location of the base of the Phantom robots by adding

Fig. 3. In these plots, we seed our simulator with the state measured from the hardware system. We use the simulator to calculate the instantaneous
forces measured by a simulated force sensor, per time-step of real world data, and compare it to the data collected from hardware. These plots are in the
frame of the contact, with the force along the normal axis being greatest. Note that the Y-axis of the Normal Axis Torque plot is different from the other
torque plots.

Gaussian noise before each rollout. The standard deviation
of this noise is 0.5cm. In this way an ensemble of models
is used in discovering robust behavior, similar to [41]. As
discussed above, we expect to have imprecisely measured
their base locations and for each base to potentially shift
during operation. We examine this effect more closely as
one of our experiments.

C. Experiments

We devised two experiments to explore the validity of
the Natural Policy Gradient reinforcement learning algorithm
to discover robust policies for difficult robotic manipulation
tasks.

First, we collect runtime data of positions, velocities, and
force-torque measurements from a sensor equipped Phantom
from the hardware using the best performing controller we
have learned. We use this hardware data (positions and cal-
culated velocities of the system) to seed our simulator, where
instantaneous forces are calculated using a simulated force-
torque sensor. This data is compared to force-torque data
collected from the hardware. Instantaneous force differences
highlight the inaccuracies between a model in simulation and
data in the real world that eventually lead to divergence.

We also compare rollouts in simulation that have been
seeded with data collected with hardware. This compares the
policies behavior, not the system’s, as we wish to examine
the performance of the policy in both hardware and simu-
lation. Ideally, the simulation environment matches closely
to the hardware environment as an indication that system
identification as well as any state estimations have been
performed correctly. Secondly, we would like to compare the
behavior of the learned control policy. From the perspective
of task completion, the similarity or divergence of sim and
real is less important as long as the robot completes the tasks
satisfactorily. Said another way, poor system identification
or sim/real divergence matters less if the robot gets the job
done.

In these experiments, the target location is set by the user
in moving a second tracked object above the cylinders used in

our experiments. This data was recorded and used to collect
the above datasets for analysis.

As a second experiment direction, we show how the
effects of model ensembles during training affect robustness
and feasibility. To do this, we explicitly vary the mass of
the object being manipulated. The object (cylinder) was
measured to be 0.34kg in mass, therefore, we train a policy
with the mass set to this value. The objects mass was chosen
to be modified due to the very visible effects an incorrect
mass would have on performance. We train two additional
policies, both with a mass of 0.4kg (approximately 20%
more mass). One of the additional policies is trained with
an approximated ensemble: we add Gaussian noise to the
object mass parameter with standard deviation of 0.03 (30
grams). All three policies are evaluated in simulation with a
correctly measured object mass, and in the real world with
our 0.34kg cylinder.

To evaluate the policies, we calculate a path for the target
to follow. The path is a spiral from the origin moving outward
until it achieves a radius from the origin of 4 cm, at which it
changes to a circular path and makes a full rotation, still at a
radius of 4cm. This takes 4 seconds to complete. This path
was programmatically set in both the simulator and on the
real hardware to be consistent. This object ideally follows
this trajectory path, as it presents a very visible means to
explore policy performance.

VI. RESULTS

The results for the two experiments are presented as
follows, with additional discussion in the next section.

A. Simulation vs Hardware

We show comparisons between calculated forces and
torques in simulation and hardware in figure 3. Our simulated
values closely match the sensed hardware values, but are at
times different. This is most likely due to the discretization
of hardware sensors for the joint positions and velocities
not being as precise as simulation expects, resulting in the
calculation of instantaneous forces being different. While
MuJoCo can represent soft contacts, the parameters defining

Fig. 4. 10 rollouts are performed where the target position of the object is the path that spirals from the center outward (in black) and then performs
a full circular sweep (the plots represent a top-down view). We compare three differently trained policies: one where the mass of the object cylinder is
0.34kg, one where the mass is increased by 20 percent (to 0.4kg), and finally, we train a policy with the incorrect mass, but add model noise (at standard
deviation 0.03) during training to create an ensemble. We evaluate these policies on the correct (0.34kg) mass in both simulation and on hardware. In both,
the policy trained with the incorrect mass does not track the goal path. We also calculate the per time-step error from the goal path, averaged from all 10
rollouts (right-most plots).

them were not identified accurately. Critically, we can see
that when contact is not being made, the sensors, simulated
and hardware, are in agreement.

We find that our learned controllers are still able to
perform well at task completion, despite differences between
simulation and hardware. We can see in figure 5 that for
the correct policy (learned with a correct model), when we
perform a rollout in simulation based on hardware data,
the simulated rollout is close to the data collected from
hardware. The policy performance in simulation is close to
the policy performance in hardware. This is not the case for
the incorrect (learned with a wrong model) and ensemble
policies, where the simulated rollout is different from the
hardware data. We presume that because the incorrect policy
has over-fit to the incorrect model, it is taking advantage of
that model’s parameters to perform the task. As such, that
over-fitting could have different effects when evaluated on
hardware or in the correctly simulated model. Despite the
correct simulation being similar to hardware, the controller’s
behavior could cause divergence on whatever remaining
small parameter differences. The ensemble policy, as ex-
pected, lies somewhere between the correct and incorrect
policy.

B. Training with Ensembles

We find that training policies with model ensembles to
be particularly helpful. Despite being given a very incorrect
mass of the object, the policy trained with the ensemble
performed very well (figure 4). In addition to performing

well in simulation, we found it to perform nearly as well
as the correctly trained policy in hardware. This mirrors our
comparison in the previous section, where the correct policy
performs comparably in both hardware and simulation, with
the other policies less so. This is important to note given the
poor performance of the incorrect policy: this task’s training
is indeed sensitive to this model parameter. The implication
of the ensemble approach is not just that it can overcome
poor or incorrect modeling, but can provide a safe initial
policy to collect valuable data to improve the model.

TABLE I
AVERAGE DISTANCE FROM TARGET, 10 ROLLOUTS

Sim Hardware
0.34kg Policy (correct) 2.1cm 2.33cm
0.4kg Policy (incorrect) 2.65cm 3.4cm
0.4kg Policy ensemble 2.15cm 2.52cm

VII. DISCUSSION

Our results suggest two interesting observations. It is
not easy to discover robust control policies for challenging
real-world tasks, but with the appropriate consideration and
techniques, successful control can provide a useful baseline
for additional control opportunities. Simulation can provide
a safe backdrop to test and develop none-intuitive controllers
(see figure 6). This controller was developed for a robotic
system without an intermediate controller such as PID, and

Fig. 5. We show the effects of different controllers. We seed our simulator
with the hardware state, and, in simulation, perform a rollout of 200
time-steps – about 0.1 seconds. The correct policy (trained with measured
mass), has rollouts that closely match the measured hardware state data.
The incorrect policy (trained with an incorrect mass), performs differently
in simulation. The remaining ensemble policy performs better than the
incorrect one; this demonstrates that a ’safe’ policy can be learned to at
least begin an iterative data collection process. While it could be expected
that the policies perform similarly in both simulation and hardware, we see
that it is not the case here. A policy trained on an incorrect model would
over-fit to the incorrect model, and changing to one of two different models
(i.e. simulation or hardware) can have un-intuitive effects.

without human demonstrations to shape the behavior. We
also eschewed the use of a state estimator during training
and run-time as this would add additional modeling reliance
and complexity.

Additionally, we show how simulated ensemble methods
provide two major benefits. Firstly, it can partially make up
for incorrectly measured / identified model parameters. This
benefit should be obvious: it can be difficult to measure
model parameters affecting nonlinear physical phenomena.
Additionally, training in an ensemble has the added benefit of
allowing for more conservative policies to enable appropriate
data collection for actual model improvement. A natural
extension of this observation would be full model adaptation
using a technique such as EPopt [42].

Model adaptation suggests an obvious separation between

Fig. 6. We render the learned linear policy by combining the matrix and
bias vector. A distinct pattern can be seen in the three negative weights
above input dimensions 1-15, and 16-30. These correspond to the control
outputs for the each of three three Phantom’s turret joint; as each robot is
sensitive, the policy outputs a negative gain to avoid large control forces.
Additionally, we can see that the first and second Phantom contributes
primarily the object’s X location, while the third Phantom handles the Y
location. Otherwise, the learned policy is not intuitive; the learned values
between columns 1-30 seemingly have no pattern other than what was
mentioned above.

model-based and model-free RL methods. Leveraging a
model in simulation can provide a useful policy to begin
robot operation. Very dynamic behaviors may not be suited
to RL on hardware itself, without significant human imposed
safety constraints, that both take time to develop and may
not account for all use cases. Given that most robots are
manufactured using modern techniques, a model to be used
in simulation is very likely to exist: this should be used.

A. Future Work

Additional future work would be to push the capabilities
of this automated policy learning method. This hardware
platform acts as a representation of in-hand manipulation;
lifting, rotating, rolling, throwing, are all very dynamic
behaviors that would be better suited to initial exploration
in simulation before attempting on hardware.

REFERENCES

[1] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” pp. 5026–5033, 2012.

[2] S. Kakade, “A natural policy gradient,” in NIPS, 2001.
[3] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,

vol. 71, pp. 1180–1190, 2007.
[4] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade, “Towards

generalization and simplicity in continuous control,” arXiv preprint
arXiv:1703.02660, 2017.

[5] S. Kolev and E. Todorov, “Physically consistent state estimation and
system identification for contacts,” in Humanoid Robots (Humanoids),
2015 IEEE-RAS 15th International Conference on. IEEE, 2015, pp.
1036–1043.

[6] I. Mordatch, K. Lowrey, and E.Todorov, “Ensemble-CIO: Full-body
dynamic motion planning that transfers to physical humanoids,” in
IROS, 2015.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 4906–4913.

[8] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[9] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 1168–1175.

[10] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-
based full body control for the darpa robotics challenge,” Journal of
Field Robotics, vol. 32, no. 2, pp. 293–312, 2015.

[11] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control ap-
plied to the hrp-2 humanoid,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 3346–3351.

[12] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the
rough-terrain quadruped robot,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 10 822–10 825, 2008.

[13] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[14] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining
model-based policy search with online model learning for control of
physical humanoids,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016, pp. 242–248.

[15] Y. Pan and E. A. Theodorou, “Data-driven differential dynamic pro-
gramming using gaussian processes,” in American Control Conference
(ACC), 2015. IEEE, 2015, pp. 4467–4472.

[16] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking con-
trollers for uncertain inputs and environments,” in ACM Transactions
on Graphics (TOG), vol. 29, no. 4. ACM, 2010, p. 73.

[17] G. Lee, S. S. Srinivasa, and M. T. Mason, “Gp-ilqg: Data-driven
robust optimal control for uncertain nonlinear dynamical systems,”
arXiv preprint arXiv:1705.05344, 2017.

[18] S. Ross and J. A. Bagnell, “Agnostic system identification for model-
based reinforcement learning,” arXiv preprint arXiv:1203.1007, 2012.

[19] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman, et al., “Team ihmc’s
lessons learned from the darpa robotics challenge trials,” Journal of
Field Robotics, vol. 32, no. 2, pp. 192–208, 2015.

[20] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in Proceedings of the third IEEE-RAS interna-
tional conference on humanoid robots, 2003, pp. 1–20.

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[22] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[23] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy up-
dates,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 3389–3396.

[24] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[25] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine, “Path integral guided policy search,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on. IEEE,
2017, pp. 3381–3388.

[26] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Col-
lective robot reinforcement learning with distributed asynchronous
guided policy search,” arXiv preprint arXiv:1610.00673, 2016.

[27] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

[28] W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine, “Reset-
free guided policy search: efficient deep reinforcement learning with
stochastic initial states,” in Robotics and Automation (ICRA), 2017
IEEE International Conference on. IEEE, 2017, pp. 3373–3380.

[29] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation
in temporal difference reinforcement learning,” Annals of Operations
Research, vol. 134, no. 1, pp. 215–238, 2005.

[30] S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for reinforce-
ment learning on a physical robot,” in Ninth International Conference
on Autonomous Agents and Multiagent Systems-Adaptive Learning
Agents Workshop (AAMAS-ALA), 2010.

[31] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 3888–3895.

[32] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 1–8.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, 1992.

[34] S. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, pp. 251–276, 1998.

[35] J. Peters, “Machine learning of motor skills for robotics,” PhD
Dissertation, University of Southern California, 2007.

[36] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
region policy optimization,” in ICML, 2015.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[38] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in ICLR, 2016.

[39] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia:
A fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012.

[40] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov,
“Interactive control of diverse complex characters with neural net-
works,” in Advances in Neural Information Processing Systems, 2015,
pp. 3132–3140.

[41] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body
dynamic motion planning that transfers to physical humanoids,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 5307–5314.

[42] A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

