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Abstract

We present a trajectory optimization approach to animating human
activities that are driven by the lower body. Our approach is based
on contact-invariant optimization. We develop a simplified and gen-
eralized formulation of contact-invariant optimization that enables
continuous optimization over contact timings. This formulation is
applied to a fully physical humanoid model whose lower limbs are
actuated by musculotendon units. Our approach does not rely on
prior motion data or on task-specific controllers. Motion is synthe-
sized from first principles, given only a detailed physical model of
the body and spacetime constraints. We demonstrate the approach
on a variety of activities, such as walking, running, jumping, and
kicking. Our approach produces walking motions that quantita-
tively match ground-truth data, and predicts aspects of human gait
initiation, incline walking, and locomotion in reduced gravity.
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Graphics and Realism—Animation;
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1 Introduction

Creating realistic human motion from compact high-level objec-
tives is a fundamental problem in character animation. For ex-
ample, we would like to generate realistic walking for a given hu-
man character by simply specifying the desired velocity, or realistic
jumping by specifying the desired height. While animations can al-
ways be created by a skilled artist given sufficient time and effort,
a technique that can generate custom realistic motions can acceler-
ate the process by providing a high-quality animation that can be
refined by the artist. Such a technique can also be used for assisting
novice animators and for pre-visualization in production settings.

In this paper, we present a method for de novo synthesis of human
motion. Our method produces animations for given sparse objec-
tives: walking emerges when the objective specifies a velocity for
the torso, running emerges when the specified velocity is higher,
jumping emerges when a target height is given, and kicking is syn-
thesized when the character’s foot must have certain velocity at a
given point in space. The primary goal of our work is to enable
automatic synthesis of realistic lower body motion for human ac-
tivities that are driven by the lower body. Such activities include
walking, running, jumping, and kicking.

To synthesize high-fidelity lower limb motion we use a trajectory
optimization approach that is based on spacetime constraints. Tra-
jectory optimization techniques have been applied to human charac-
ters, but have either required objectives that depend on task-specific
motion capture data [Liu et al. 2005] or failed to produce realistic
results [Erez and Todorov 2012]. The problem is challenging be-
cause spacetime constraints on three-dimensional humanoid mod-
els lead to high-dimensional search spaces and complex nonlinear
constraints that are difficult to satisfy. Furthermore, ground contact
forces that change abruptly with body kinematics lead to discontin-
uous objective functions prone to poor local minima.

Nevertheless, we show that high-fidelity lower limb motions for a
range of activities can be generated by a single trajectory optimiza-
tion formulation that does not rely on prior task-specific motion
data. We achieve this using a reformulation of contact-invariant op-
timization (CIO) [Mordatch et al. 2012b]. CIO is an optimization
framework that smoothes out discontinuities in the objective and
allows a single continuous optimization to search over the space
of possible motion trajectories and contact patterns. While CIO
has been previously used on reduced character models, we apply
the framework to human characters with equations of motion that
capture the detailed dynamics of the body. In order to enable fine-
grained optimization over contact timings, we generalize and sim-
plify CIO by eliminating the quantization of contact patterns that
previous formulations relied on.

Since the actuation mechanism of the humanoid model has sig-
nificant impact on the realism of synthesized motion [Liu et al.
2005; Wang et al. 2012], we actuate the lower body joints with
Hill-type musculotendon units (MTUs). The MTUs regularize the
synthesized torque patterns and enable the use of a biologically-
plausible effort model. Unlike prior work that utilized MTUs
and biologically-inspired objectives to generate human locomotion
[Wang et al. 2012], we do not rely on a task-specific control struc-
ture. As a result, our approach is not limited to steady-state walking
and running.

We restrict our attention to the fidelity of lower limb motion since a
simplified model of the musculoskeletal system for the lower body
is readily available [Wang et al. 2012]. The ideas we present may
also enable de novo synthesis of human motion in which the en-
tire body moves with high fidelity to real-world human movement,
but this likely requires developing computationally efficient mus-
culoskeletal models for the full body, perhaps building on the work
of Lee et al. [2009]. We leave such development to future work.

Our work demonstrates that a single trajectory optimization formu-
lation can produce high-fidelity lower body motion for a range of
human activities, without the need for prior motion data or task-
specific control structures. We evaluate the presented approach by
synthesizing high-fidelity locomotion in a variety of conditions, as
well as jumping and kicking motions.

2 Related Work

One natural approach to human motion synthesis is to design con-
trollers for humanoid models in forward dynamical simulations.
Early efforts focused on hand-designing controllers for specific ac-
tivities, resulting in characters with impressive movement reper-

ACM Transactions on Graphics, Vol. 32, No. 6, Article 203, Publication Date: November 2013

http://doi.acm.org/10.1145/2508363.2508365
http://portal.acm.org/ft_gateway.cfm?id=2508365&type=pdf


toires [Hodgins et al. 1995; Faloutsos et al. 2001]. In recent years,
significant efforts have been devoted to improving controller robust-
ness and motion style for simulated locomotion [Yin et al. 2007;
de Lasa et al. 2010; Coros et al. 2010; Wang et al. 2012]. Yet
methods that produce the most human-like motions require signif-
icant customization of the target trajectory or the control structure
[Coros et al. 2010; Wang et al. 2012], while more flexible con-
trol algorithms fall short of generating motions that appear natural
[de Lasa et al. 2010]. For example, Wang et al. [2012] demonstrate
that human-like walking and running can emerge from biologically-
plausible modeling of the musculotendon units in the lower body.
However, their work relies on a detailed control structure that
was designed specifically for steady-state locomotion and produced
only fixed-velocity walking or running.

We adopt an alternative approach, which casts human motion syn-
thesis in terms of trajectory optimization. This approach simulta-
neously solves for the motion, the actuation forces, and the contact
forces. Specific requirements by the animator can be incorporated
as objectives or constraints. Trajectory optimization had shown
early promise with simple character models [Witkin and Kass 1988;
Cohen 1992], but applying it to full three-dimensional human mod-
els proved challenging. Traditional trajectory optimization formu-
lations have failed to produce high-fidelity human motion de novo,
both due to the difficulty of the optimization problem, and the dif-
ficulty of formulating general constraints or objectives that char-
acterize “human-like” motions. Successful applications have often
relied on using motion capture or prior animation data to constrain
the problem, or focused on ballistic motions that are determined by
relatively simple mechanical principles [Popović and Witkin 1999;
Liu and Popović 2002; Fang and Pollard 2003; Safonova et al.
2004; Sulejmanpašić and Popović 2005; Liu et al. 2005]. Wampler
and Popović [2009] presented impressive results for imaginary ani-
mal locomotion, but their work did not produce high-fidelity human
gaits. Al Borno et al. [2013] explored a wide range of humanoid
motions, but their work relied on many task-specific objectives and
produced results of limited fidelity.

Our approach is based on the contact-invariant optimization (CIO)
framework [Mordatch et al. 2012b]. CIO incorporates contact loca-
tions into the optimization problem, allows these contact locations
to apply virtual forces to the character while the optimization is in
progress, and makes these forces dynamically consistent as the op-
timization converges. This has the effect of reshaping the difficult
objective function into one that is smooth and easier to optimize. So
far, CIO has only been applied to simplified models with massless
limbs [Mordatch et al. 2012b] and fingers [Mordatch et al. 2012a].
In these prior applications, the models were largely non-physical
and joint angles were computed using inverse kinematics. We ex-
tend CIO to synthesize human motion using a fully physics-based
humanoid model. In the process, we simplify and generalize the
CIO formulation. Traditional CIO relies on introducing auxiliary
contact activation variables into the optimization to break the tra-
jectory up into piecewise constant contact phases for the purpose of
accurately modeling rigid contact forces. We show that these con-
tact phases are not necessary and that contact activation variables
do not need to be explicitly represented. In contrast to prior ap-
plications of CIO, our formulation enables continuous optimization
over contact timings.

In movement science, trajectory optimization with abstract models
had been used to study arm and saccadic eye movements [Harris
and Wolpert 1998], as well as human gait selection [Srinivasan and
Ruina 2006]. Anderson and Pandy [2001] used dynamic optimiza-
tion with a detailed musculoskeletal model of the lower body to
synthesize a single walk cycle. However, they dealt with a much
more restricted solution space, in which the first configuration in
the trajectory was specified based on human walking data and the
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Figure 1: Humanoid model. (a) A visualization of the model during
a walk. Red and blue cylinders in the legs correspond to the cur-
rently active and inactive MTUs. (b) Sagittal plane MTUs, defined
following Wang et al. [2012]. (c) Additional MTUs that provide
control in the coronal plane (HAD, HAB, AEV, TP) and the trans-
verse plane (HER, HIR).

motion was constrained to be cyclical. The same model was also
used to simulate a vertical jump [Anderson and Pandy 1999], again
with a fixed initial configuration. We likewise use a musculoskeletal
model for the lower body, which enables better modeling of energy
expenditure and restricts internal forces to be biologically plausible.
However, our optimization framework is considerably more power-
ful and supports motion synthesis for a broader range of activities.

3 Overview

Our method is based on the spacetime constraints framework
[Witkin and Kass 1988]. The input is a set of sparse objectives,
such as a target COM velocity for locomotion or a target foot posi-
tion and velocity for a kick. The output is a kinematic trajectory for
the humanoid model along with corresponding muscle activations,
contact locations, ground reaction forces, and other parameters that
describe the state of the simulated model over time. We provide an
overview of both the model and the objective terms in this section.

3.1 Humanoid Model and Forces

The kinematic trajectory is a sequence of pose vectors over time.
Each pose q contains 36 degrees of freedom (DOFs), including 6
for the root translation and orientation and 30 for the joints. We
employ a model with mass distributions approximating a 180 cm,
70 kg male [Wang et al. 2012]. A physically consistent kinematic
trajectory for the model is determined by external forces due to
gravity and ground contact, as well as internal forces generated by
the model. The internal forces actuate the humanoid model through
torques generated at its 30 joint DOFs.

Our model of force generation for the lower body joints is motivated
by properties of human musculotendon units (MTUs). Physiolog-
ical properties of MTUs shape the torque patterns that can be pro-
duced by the human body. Given identical MTU control signals,
the actual torque output at a particular joint can differ greatly de-
pending on the current joint moment arms, muscle fiber length, and
contraction velocity. Moreover, biarticular MTUs generate torques
for pairs of joints, which leads to correlations in the torque patterns.
Consequently, the model’s capacity to generate a particular torque
pattern is highly dependent on its kinematic state. We capture this
dependency using Hill-type MTU models, which serve to increase
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the fidelity of the synthesized motion.

In particular, the lower body joints (hip, knee, and ankle) of our hu-
manoid model are actuated exclusively by Hill-type MTUs. We use
the MTUs that were used in the work of Wang et al. [2012], as well
as additional ones that support torque generation in the coronal and
transverse planes. Our model is illustrated in Figure 1. Four MTUs
in each leg generate torque in the coronal plane: the hip adductor
and abductor muscle groups (HAD/HAB), the ankle evertor group
(AEV), and the tibialis posterior (TP), which generates ankle in-
version torques. We also add the hip internal and external rotation
muscle groups (HIR/HER) that generate hip torque in the transverse
plane. The choice of MTUs and their parameters are based on sim-
plifying a more detailed musculoskeletal model [Delp et al. 1990].

While we do not model force generation in the upper body with
MTUs, we treat active motor torques and passive torques sepa-
rately. Passive torques provide a coarse approximation of the effects
of musculoskeletal structure by applying spring-damper forces to
the upper body joints as a function of kinematics [Liu et al. 2005;
Wampler and Popović 2009]. In particular, we assume that damp-
ing forces are applied to all upper-body joints, while the neck and
back have weak tendencies to stay upright. The primary function
of this treatment is to better model the effort of actively moving the
upper body (Section 4.5).

Ground reaction forces are applied to the system when specific
body parts come into contact with the ground. Since we are inter-
ested in capturing detailed pressure distributions over the feet, our
model has six potential contact points on each foot, as illustrated in
Figure 2. Two contact points are on the toe edge, two are on the
ball of the foot, and two are on the heel. Ground reaction forces
and foot locations are treated as free variables in the optimization.
Their specific forms are described in Section 4.2.

When the motion of the system is physically consistent, the quanti-
ties described above are related by the equations of motion (EOM)
for an articulated rigid body system:

M(q)q̈+ C(q, q̇) = fGRF + fMTU + fpassive + fmotor. (1)

Here M is the system inertia matrix, C is the matrix of Corio-
lis, centrifugal, and gravitational terms, and fGRF, fMTU, fpassive, and
fmotor are generalized forces due to ground reaction, musculotendon
units, passive structures, and joint motors. The matrices M and C
are determined by the mass distribution and the kinematics of the
humanoid model. We discuss individual terms in the EOM in more
detail in Section 4.

3.2 Objective Function

Since the input to our method is a set of sparse task objectives
(Jtask), a key requirement for our approach is to synthesize real-
istic movement for a variety of activities while keeping Jtask as
compact as possible. For example, the user only needs to change
the target velocity to synthesize locomotion gaits appropriate for
different speeds. Of course, in the absence of additional con-
straints, many trajectories q can satisfy Jtask, including ones that
are highly implausible. We must therefore use additional objectives
that prioritize physical and biomechanical consistency. These task-
independent objectives are universal for all motions we synthesize
and include an EOM term, a contact consistency term, a body in-
tegrity term, and a musculotendon actuation term.

The EOM term (JEOM) serves to enforce the equations of motion
(1), which capture the requirement for gross dynamical consis-
tency: bodies should move in ways that are consistent with their
mass properties and forces in the system. The contact consistency
term (JCIO) governs the behavior of contact forces, so that forces are

only applied when contact locations on the corresponding surfaces
align. The body integrity term (Jbody) enforces joint limits and pre-
vents self-collision (e.g., legs going through each other). The mus-
culotendon actuation term (JMTU) requires control forces generated
by musculotendon units to be consistent with muscle physiology.
Finally, to resolve the remaining ambiguities, we assume a pref-
erence for economy of effort (Jeffort). The complete objective is a
linear combination of these terms:

E =

∫ tf

ti

∑
k
wkJk, (2)

where k ∈ {task,EOM,CIO, body,MTU, effort}. The objective
is in general nonconvex and we seek solutions through gradient-
based optimization. The full state vector is defined in Section 5,
which also describes the optimization algorithm. All the motions
we synthesize use the same set of weights wk.

Note that ideally all terms except for Jeffort should be satisfied fully.
Accordingly, we assign high weights to these terms so that they con-
verge to near-zero values at the end of the optimization. In contrast,
Jeffort is inherently a soft constraint that disambiguates otherwise
admissible motions that minimize all other terms. The effort term
is particularly important for low-energy activities such as walking:
there are many physically and biomechanically consistent ways to
move forward at low speed. For more energetic motions such as
jumping and kicking, where the other terms sufficiently constrain
the motion, Jeffort does not influence the solution significantly.

4 Objective Terms

4.1 Equations of Motion

The synthesized trajectory is physically consistent if it respects the
equations of motion (1). In practice, we compute all quantities in
(1) except for the active motor torques fmotor, which is recovered by
rearranging the equation:

fmotor = M(q)q̈+ C(q, q̇)− fGRF − fMTU − fpassive. (3)

As discussed previously, only the upper body DOFs are actuated us-
ing joint motor torques, hence elements of fmotor that correspond to
the root and lower body DOFs (denoted by Qroot and Qlower) should
vanish for physical consistency. We define the EOM term to drive
the residuals for these DOFs towards zero:

JEOM =
∑

i
(f i

motor)
2, (4)

where qi ∈ Qroot ∪ Qlower. The matrices M and C are computed
using MuJoCo [Todorov et al. 2012] We discuss how the other gen-
eralized forces on the right hand side of (3) are computed in the rest
of this section.

4.2 Contact Consistency

In principle, since fGRF is a function of the body kinematics (q) and
contact geometry, one could naively employ a procedure that de-
tects collisions and applies contact forces accordingly. In practice,
however, such an approach results in intractable optimization prob-
lems, since hard dynamics constraints and contact discontinuities
break the state space up into a jagged landscape with poor local
minima. Traditional formulations of spacetime constraints avoid
the issue by requiring user-specified fixed contact locations, which
significantly restrict the range of motions that can be explored by
the optimizer.
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Figure 2: Contact-invariant optimization (CIO). Left: Although the
contact points ribody on the foot are not coincident with the ground,

CIO can still employ ground reaction forces f i originating at points
ri. Such “virtual” contacts are penalized by the contact consis-
tency term JCIO, but serve to smooth out the objective and assist the
optimization. Right: A valid contact state is achieved when JCIO is
minimized.

We instead adopt contact-invariant optimization (CIO), which in-
corporates contact positions and forces into the optimization, and
treats contact consistency as an objective term to be optimized
alongside others. Figure 2 illustrates our treatment of contact po-
sitions and forces. Each foot has a virtual contact location with
the ground at a planar world-space position rfoot and orientation
θfoot. Six individual contacts ri are calculated relative to this virtual
frame. The corresponding points on the body are denoted by ribody.

The ground applies a reaction force f i at contact point ri. For each
foot, the contact location [rfoot θfoot] ∈ R

3 and individual contact

forces f i ∈ R
3 are free variables in the optimization. Contacts

contribute to (3) through the total contact force:

fGRF =
∑

i
J (q, ri)⊤f i, (5)

where J (q, ri) is the Jacobian matrix mapping generalized veloc-

ities q̇ to contact force origin ri.

Three conditions should be satisfied for the combination of contact
locations and forces to be physically plausible. First, the contact
force should lie within the friction cone, which we enforce using
bound constraints of the optimizer. Second, when a contact is not
active, the contact force should be zero. Third, active contacts on
the body and the ground should be touching and not sliding.

We now explain how the second condition is satisfied by the opti-
mization. Consider a variable ci ∈ [0, 1] whose value correlates

with the validity and activity of contact i. Specifically, ci = 1 if
the contact is active and ci = 0 if it is not. Unlike previous formu-
lations of CIO, we do not maintain {ci} as separate free variables.
Instead, we define them in terms of the normal contact force:

ci = 0.5 tanh(k1‖f
i
⊥‖ − k2) + 0.5. (6)

This forces the contact to deactivate when the normal force magni-
tude is zero. The parameters k1 and k2 govern the physical realism
of the contact model. The closer (6) is to a step function, the more
realistic the contact. However, if (6) is too sharp, the smoothing ef-
fect of CIO is reduced and the optimizer may fail to find a good so-
lution. In practice, we first run the optimizer with k1 = 10, k2 = 3
and increase the sharpness to k1 = 20, k2 = 2 in a second opti-
mization pass.

The function (6) is incorporated into the contact consistency term
JCIO, which also enforces the third condition:

JCIO = ci(‖ri − r
i
body‖

2 + ‖[ṙfoot θ̇foot]‖
2). (7)

m

l

l l

Figure 3: Hill-type musculotendon model. We employ an accelera-
tion model [Millard and Delp 2012] that regulates the acceleration
of lCE by introducing a point mass (mCE) between the contractile
(CE) and the serial-elastic (SE) elements.

The key idea of this formulation is that during the optimization con-
tact points on the body may invoke ground reaction forces at a dis-
tance, through “virtual” contacts with points in the environment.
That is, the optimization is allowed to explore intermediate solu-
tions in which active “virtual” contacts (ci>0, ri 6=ribody) generate
non-zero ground reaction forces (fGRF) to reduce JEOM. However,
minimizing JCIO minimizes such “virtual” ground reaction forces.

As mentioned above, we found it unnecessary to treat contact ac-
tivations {ci} as additional variables in the optimization. Further-
more, by not explicitly modeling contact activation trajectories us-
ing piecewise constant functions, we remove the assumption that
motions are broken up into discrete contact phases [Mordatch et al.
2012a]. Thus the precise timing of the contacts can be adjusted by
the optimizer.

4.3 Musculotendon Actuation

Our Hill-type model is illustrated in Figure 3. It consists of a con-
tractile element (CE), a serial-elastic element (SE), and a parallel-
elastic element (PE). Let lCE and lSE denote the lengths of the ele-
ments connected in series. The total MTU length is then given by
lMTU = lCE + lSE. Conceptually, CE corresponds to the muscle fiber
and SE corresponds to the tendon. Note that while the MTU length
lMTU is fully determined by the body pose q, the length lCE of the
contractile element must be recovered separately and is included as
a variable in the optimization.

The contractile element is responsible for generating active force
FCE given the control signal a ∈ [0, 1]:

FCE = Fmaxfl(lCE)fv(l̇CE)a, (8)

where fl, fv are the force-length and force-velocity relations and
Fmax is an MTU-specific maximum isometric force parameter,
which captures the strength of the muscle.

The serial-elastic element exerts a unidirectional nonlinear spring
force that is a function of lSE:

FSE = Fmax0.5 ln(1 + exp(4(F ′
SE − 0.5))), (9)

where F ′
SE = 0.04−1(lSE/lslack − 1), and lslack is an MTU-specific

tendon slack length constant. Note that (9) is a smooth approxima-

tion to the typical form: FSE = Fmaxmax(0, F ′
SE)

2
, where force

generation can change abruptly (e.g., when the tendon becomes
slack) and create difficulties for gradient-based optimization. The
approximation is based on Tassa and Todorov [2010].

Following Millard and Delp [2012], the length of the contractile el-
ement lCE is governed by its own set of equations of motion, which
is derived by assuming that a point mass mCE lies in between the
contractile element and the tendon. The point mass (and therefore
lCE) is accelerated by the net force acting on it:

FSE − FCE − FPE = mCE l̈CE, (10)
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where FPE models the passive force generated by the MTU, which
is also a function of the lCE. We empirically set mCE = 0.1.

Auxiliary variables introduced by the i-th MTU into the optimiza-
tion are the control signal ai and the length liCE of the contractile
element. The total force applied by the MTUs on the body is

fMTU =
∑

i
mi(q)F

i
SE, (11)

where mi is the moment arm vector of the MTU.

Our moment arms are computed as the derivative of corresponding
MTU lengths (lMTU) with respect to q [An et al. 1984]. The MTU
length model is based on Geyer and Herr [2010]. While effective
for locomotion, their model for MTU-joint pairs with variable mo-
ment arms lead to unrealistic negative values for non-locomotion
poses (e.g., knee extension angle in a crouch position). To prevent
non-physical values while still capturing how MTU length changes
with respect to the joint angles, we define

lMTU = lslack + lopt + r0ρ(P (q − qmax)− P (qref − qmax)), (12)

where P (x) = 2.0(1 + exp(−2.1x))−1 is a scaled logistic func-
tion; lopt is a MTU-specific optimal CE length; r0 and ρ are MTU-
specific attachment parameters; qref is the angle at which the lMTU is
in its default length, and qmax is the angle at which the moment arm
is maximized.

The value of fMTU is valid when Equation 10 is satisfied. We there-
fore define the musculotendon force objective in terms of the resid-
uals of (10):

JMTU =
∑

i
(F i

SE − F i
CE − F i

PE −mCE l̈
i
CE)

2. (13)

The contraction dynamics model (10) accounts for the influence of
the force generated by the MTU on the acceleration of the muscle
mass. While the commonly used equilibrium models have been
reported to be more efficient in forward simulations [Millard et al.
2013], we found that explicit modeling of acceleration is effective
both for encouraging smooth lCE trajectories and for guiding the
optimization to biomechanically consistent solutions.

4.4 Body Integrity

Incorporating reasonable joint limits and preventing collisions be-
tween different segments of the body is clearly important for mo-
tion realism. Without a collision term, for example, the character
can adopt gaits in which the legs pass through each other. We define

Jbody = Jlimit + Jcollision (14)

Jlimit =
∑

i
{qi − qihlim}

2
+ + {qillim − qi}2+ (15)

Jcollision =
∑

a,b∈B
{dist(a, b)− (rad(a) + rad(b))}2+, (16)

where {x}+ = 0 if x < 0 and {x}+ = x otherwise. qihlim and

qillim are upper and lower joint limit values based on previous work
[Delp et al. 1990; Wang et al. 2012]. B is the set of rigid segments
in our model, all of which are geometrically represented as cap-
sules; dist(a, b) is the shortest distance between the line segments
representing the major axes of a and b, and rad(a) is the radius of
capsule a.

4.5 Economy of Effort

Our effort model consists of two components: a lower body term
and an upper body term:

Jeffort = Jlower + Jupper. (17)

The effort Jlower exerted by the MTUs in the lower body is modeled
using the metabolic energy expenditure model first presented by
Anderson [1999], which is the sum of heat released and mechanical
work done by the MTUs. In particular, at every time step, the total
rate of metabolic energy expenditure is given by

Jlower = Ȧ+ Ṁ + Ṡ + Ẇ , (18)

where Ȧ is the muscle activation heat rate, Ṁ is the muscle main-
tenance heat rate, Ṡ is the muscle shortening heat rate, and Ẇ is
the positive mechanical work rate. The specific terms are defined in
detail by Anderson [1999].

The upper body term Jupper penalizes large active motor torques and
accelerations generated by the upper body DOFs. As discussed in
Section 4.1, active torques are obtained by rearranging the EOM
after calculating other generalized forces in the system. We have
already defined the contact force (fGRF) and the MTU force (fMTU).
It remains to specify fpassive: forces that capture passive effects of
the musculoskeletal structure in the upper body. These are spring-
damper forces for the set of upper body DOFs (Qupper) [Wampler
and Popović 2009]. These passive forces are designed to be a prop-
erty of the humanoid model, and are task independent.

Let f i
passive denote the i-th element of fpassive. For qi ∈ Qupper, we

define f i
passive = −kpq

i − kdq̇
i. For all other DOFs, f i

passive =
0. Specifically, we set kp = 50, kd = 1 for the neck and back,
capturing a weak tendency for the body to stay straight, and kp =
0, kd = 1 for all other upper body joints.

We can now recover fmotor through (3), and define the upper body
effort term as follows:

Jupper = wm

∑
i
(f i

motor)
2 + q̈

⊤
Waq̈, (19)

where qi ∈ Qupper. This penalizes large active torques and acceler-
ations. Wa is a diagonal weight matrix, set to 10−5 for the neck
DOFs, 10−4 for the back DOFs, and 10−6 for the rest of the DOFs
in the upper body. Note the difference between Jupper and JEOM:
the upper body effort term encodes a preference for motions that
require smaller active torques, while the EOM term approximates a
hard constraint that there should not be any non-zero active torque
in the root and lower body DOFs. Accordingly, we place a much
higher weight on the EOM term.

5 Trajectory Optimization

The full set of variables that are optimized for each time step is

st = [qt rt ft at lt],

which includes the generalized coordinate values of the humanoid
(qt), contact locations on the ground (rt = [r1t , . . . , r

10
t ]), ground

reaction forces (ft = [f1t , . . . , f
10
t ]), MTU activation signals

(at ∈ R
28), and MTU contractile element lengths (lt ∈ R

28).

By concatenating the state vectors and their time derivatives over
M time steps, we obtain the vector x = [s1 ṡ1 . . . sM ṡM ].
The full trajectory is encoded with cubic splines, which serve to
interpolate x and improve computational efficiency. At any time
t, the state and its velocities and accelerations can be calculated as
Atx, where At is the spline encoding matrix. We thus numerically
integrate the objective (2):

E(x) =
∑

t

∑
k
wkJk(Atx). (20)

For all experiments, we set wtask = 10, wEOM = 102, wCIO = 103,
wbody = 103, wMTU = 10, weffort = 10−2.5, and discretize the inte-
gral at 30 Hz.
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(a) Joint Angles (b) Normalized Joint Moments
Figure 4: Locomotion at
1.5 m/s. The orange shaded
areas represent one standard
deviation of ground truth hu-
man data. Dashed lines
represent walking data syn-
thesized by the approach of
Wang et al. [2012]. Solid
lines represent our approach.
Although our approach does
not assume a locomotion-
specific control structure, it
produces lower limb motion
that is quantitatively closer to
the ground truth in average
standard error. In particu-
lar, our approach yields bet-
ter predictions for the kine-
matics of the knee.

We use L-BFGS for optimization with numerically approximated
gradients. We found the accuracy of the gradients obtained by stan-
dard finite differencing to be insufficient, causing premature ter-
mination. To obtain more accurate gradients, we use finite differ-
ences with complex arithmetic for the approximation [Martins et al.

2003]:
dJk

dsn
(s) ≈ Im[Jk(s+ihen)]

h
, where h is an extremely small

step size (we use 10−20) and en is the nth standard basis vector.

We use seven spline knots per DOF for walking and running re-
sults, and 14 for jumping and kicking. The resulting dimension-
ality of the problem is over 2000, but the optimization does not
require example-specific initialization. All examples are initialized
to a default “zero” pose throughout the motion duration, where all
elements of qt, rt, ft,at are set to zero. The MTU contractile el-
ement lengths (lt) are set to their respective optimal values (lopt).
From this initialization, we then proceed to run two optimization
passes with different contact model settings. The first pass employs
a smooth version of (6) with k1 = 10, k2 = 3. The result of the
first pass is used to initialize a second pass with a sharper setting
for (6): k1 = 20, k2 = 2. Both passes are run for a maximum of
3000 iterations.

Note that the objectives Jk are defined to be functions of the state
vector at a single time instant, which means that the objective (20)
and its gradient can be evaluated for different time steps in parallel.
The independent nature of these terms enables rapid computation of
numerical derivatives. As a result, despite the high dimensionality
of the problem, all of the presented examples converge within 6 to
10 minutes on a machine with two Intel Xeon X5680 processors.

6 Results

6.1 Basic Locomotion

Locomotion is a particularly common human activity that is driven
by the lower body. In the study of human locomotion gaits [Perry
and Burnfield 2010], the legs and pelvis are referred to as the “loco-
motor system” and the upper body is referred to as the “passenger
unit.” The passenger unit is “virtually a passive entity that is car-
ried by the locomotor system”; it is also often referred to as the
HAT (head, arms, and trunk/torso) to emphasize its secondary role
in locomotion [Perry and Burnfield 2010].

We synthesize locomotion by specifying task terms that capture the
goal of moving the model’s trunk forward with a target velocity

and a target upright head orientation. Additionally, we require the
motion to be periodic and symmetric. The periodicity constraint is
implemented by requiring the last spline knot to be identical to the
first. This constraint implicitly specifies the duration of the step.
We select human-like durations given our desired target velocity
based on relations between locomotion velocity and stride length
derived from empirical observations [Alexander 2003]. The sym-
metry constraint restricts the variables associated with the left side
of the body to be the same as the corresponding variables from the
right side a period later.

Figure 4 compares the sagittal hip, knee, and ankle kinematics and
joint moments of a 1.5 m/s walk synthesized by our approach to
motion generated by a prior approach that relies on a task-specific
control structure [Wang et al. 2012]. Our results match the hu-
man ground truth more closely than the results of the prior ap-
proach, without reliance on a locomotion-specific control structure.
(The joint angle and moment curves we compare to here are part
of a dataset consisting of 20 healthy subjects walking and run-
ning at multiple speeds on an instrumented treadmill, see Wang et
al. [2012] for details.) Specifically, we obtain an average standard
error of 1.37 compared to 1.53 for Wang et al. [2012]. Notably,
our results better capture the knee trajectories. One likely reason
is that the control structure assumed by Wang et al. was overly re-
strictive in defining the set of allowable control torque patterns. On
the other hand, our hip kinematics indicate a lack of hip extension,
which results in a shorter stride length relative to human data.

As demonstrated in the supplementary video, running gaits emerge
when we specify larger velocity and corresponding durations, with-
out making any other modifications. However, we observe signifi-
cant differences in knee and ankle angles during swing. In particu-
lar, our results exhibit both a lack of knee flexion and a slight over-
plantarflexion during early swing phase. A closer look at the gait
reveals that the tip of our foot model stays almost parallel over time
and hugs the ground plane during the majority of the swing phase.
A likely cause of this behavior is the lack of modeling of robustness
and stability in our approach. Taking robustness into account would
likely yield a gait with higher ground clearance and increased knee
flexion during the swing phase, as observed in human running.

To evaluate the effect of musculoskeletal modeling and the fine-
grained metabolic energy expenditure model, we replaced Jlower

by the sum of squared torques of the lower body joints and opti-
mized directly for joint torques in the lower body, without the use
of MTUs. The weights on the squared torques were chosen so that
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Figure 5: COP trajec-
tory during simulated
gait initiation. The
shape of the trajectory
matches human data.

the contribution of the effort term to the objective is comparable
to Jlower for the MTU-driven model. The results are shown in the
video. Walking synthesized by the purely torque-driven model suf-
fers from severe crouching. The running gaits produced by the re-
stricted model likewise suffer from dramatic artifacts.

The supplementary video also demonstrates walking results gener-
ated using the original CIO algorithm, which operates on a simpli-
fied character model with massless limbs [Mordatch et al. 2012b].
The original CIO formulation yields unnatural shuffling gaits in
which the feet stay close to the ground. For running speeds, the
original CIO algorithm fails to converge to reasonable solutions.

6.2 Locomotion Variations

Unlike the approach of Wang et al. [2012], our approach is not lim-
ited to fixed-velocity locomotion. By modifying the environment
and the simple task objectives, our approach can generate a variety
of motions that are appropriate to different scenarios.

Gait initiation. To animate walking initiation, we specify an ini-
tial key pose (standing) at time zero, a final key pose at time 1.5 s,
and linearly interpolate the target torso velocity from 0 to 1.5 m/s.
The final key pose is set to one of the walking poses synthesized by
our method. We found the method to be effective regardless of the
precise choice of the walking pose. One salient characteristic of hu-
man gait initiation is the movement of the center of pressure (COP)
[Elble et al. 1994]. As walking is initiated, COP moves backwards
towards the heels and laterally towards the swing foot. Then, be-
fore the swing foot leaves the ground, the COP shifts laterally to
the stance foot and moves from heel to toe as the step is taken. As
shown in Figure 5, the motion generated by our approach exhibits
this stereotypical COP trajectory. In the accompanying video, we
demonstrate this walking initiation animation, as well as similarly
generated running initiation.

Incline walking. By varying the slope of the ground, we can syn-
thesize appropriate incline walking gaits. In the video, we demon-
strate 1.5 m/s walking for different incline angles (−40◦, −15◦,
15◦, and 40◦). A notable feature of human walking on inclined
surfaces is the maximum hip extension angle, which corresponds to
how far the stance leg stretches behind the pelvis before it enters the
swing phase. This angle is largest when we walk on level ground,
and decreases for both upslope and downslope walking [Lay et al.
2006]. As seen in the video, the gaits synthesized by our approach
reproduce these changes in lower limb kinematics. The peak an-
kle joint moments in the synthesized motions also increase as slope
increases, as observed in human data [Lay et al. 2006].

Locomotion in reduced gravity. Gravitational acceleration has
a direct effect on locomotion. It is well-known that a change in
gravitational force, as on the Moon, leads to a change in human

locomotion gait. Notably, at typical terrestrial walking speeds, hu-
mans adopt gaits that are closer to running when gravity is reduced
[Margaria and Cavagna 1964; Cavagna et al. 1998]. Our approach
predicts this behavior. We set gravity to 0.16g, as on the Moon,
and synthesized locomotion at 1.5 m/s. As shown in the supple-
mentary video, the synthesized gait resembles the gaits adopted by
astronauts on the Moon.

6.3 Jumping and Kicking

Our approach can be used to animate a range of motions. We
demonstrate its generality by synthesizing jumping and kicking mo-
tions. To animate jumping, we specify the initial and final poses
(standing upright) and the trunk’s height mid-jump. With these
simple constraints, we synthesize forward, backward, and sideway
jumps. As demonstrated in the video, features of human jumping
such as knee flexion before lift-off emerge from the optimization.
To animate kicking, we specify a target position and velocity for the
ankle. As demonstrated in the video, a variety of different kicking
motions can be generated by changing these simple constraints.

7 Discussion

We presented a trajectory optimization approach to animating hu-
man activities that are driven by the lower body. Our work demon-
strates for the first time that a single optimization formulation can
produce high-fidelity lower body motion for a range of human ac-
tivities, without the need for prior motion data or task-specific con-
trol structures. This is achieved using a simplified and generalized
formulation of CIO that optimizes over continuous contact timings
and is applied directly to a detailed humanoid model in which the
lower limbs are actuated by musculotendon units.

While effective, CIO does not completely prevent the optimization
from converging to poor local minima. In particular, care must be
taken to specify weights that trade off the importance of different
terms in the objective. Visibly non-physical solutions that appear to
“float” in the air can result from setting weights to EOM and CIO
terms too low, while low weights on the MTU and effort terms tend
to generate unnatural bent-knee gaits. Characterizing weights that
can reliably generate a wide range of natural human motion is an
interesting avenue for future work.

Like most methods based on spacetime constraints, the resulting
control torques and activation signals generated by our work can-
not be directly used in a forward simulation. This is both due to the
spline encoding of the trajectories and the formulation of physical
and biomechanical plausibility through soft constraints. Our trajec-
tories could serve to initialize more complex optimization schedules
designed to generate strictly physical trajectories, which would be
important for applications outside of animation as well as for syn-
thesizing motions that further approach human ground truth.

The focus of this work was on the fidelity of the synthesized lower
body motion. The movement of the upper body in our results does
not match human ground truth in general. A likely reason is that
our simple spring-damper model for upper body actuation does not
properly represent the passive effects of the musculoskeletal struc-
ture in the upper body. A natural direction for future work is to de-
velop a musculoskeletal model for the entire body, including the up-
per body. The highly detailed model developed by Lee et al. [2009]
provides a promising starting point, but some work is required to
develop a simplified model that supports effective trajectory opti-
mization. Such development would enable high-fidelity animation
of activities that center on the upper body, such as reaching and
pointing, as well as activities that require precise coordination of
the entire body, such as ball sports, combat sports, and parkour.
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