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Abstract— We derive Policy Gradients(PGs) with time vary-
ing parameterizations for nonlinear diffusion processes affine in
noise. The resulting policies have the form of reward weighted
gradient. The analysis is in continuous time and includes
the case of linear and nonlinear parameterizations. Examples
on stochastic control problems for diffusions processes are
provided.

I. INTRODUCTION

Improving the performance of an initial controller/policy
for dynamical systems with nonlinear and stochastic dynam-
ics by using PGs has been a research topic in control theory
and machine learning [7], [8]. The general approach relies on
1) the parameterization of the initial policy 2) Monte Carlo
simulations of the stochastic dynamics to approximate the
gradient of a performance criterion and 3) updates of the
policy parameters in the direction of the gradient to improve
performance.

A classical approach to solve nonlinear stochastic opti-
mal control problems is based on stochastic dynamic pro-
gramming [1], [7]. This method results in globally optimal
feedback policies but with the cost of, exponential in the
number of states, requirements in terms of memory and com-
putational complexity. Alternatively, the use of PGs methods
for nonlinear stochastic optimal control compromises global
optimality in favor of feasibility and scalability especially
for dynamical systems with many states and degrees of
freedom. Moreover there are ways to optimize feedback
policies with PGs by treating control gains as parameters and
then optimizing these parameters to improve performance.

Despite the vast amount of work on PGs [2]–[6], [10],
[11], most algorithms are derived in discrete time and for
linear policy parameterizations. In this paper we extent
our recent work on free energy policy gradients [9] to
policy parameterization with time varying parameters. The
resulting update rules are different when compared against
policy parameterizations with time independent parameter.
We provide results in the form of propositions for a number
of cases of PGs depending on the form of the nonlinearity
of the stochastic dynamics and the policy parameterization.

The paper is organized as follows: in Section (II) we
provide the formulation of the problem. In Section (III) we
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derive the nonlinear and time varying nonlinear PGs and
discuss special cases that include cost function of the form
of free energy. Section (IV) includes the cases of linear
time varying PGs. In Section (V) we provide a numerical
examples and in Section (VI) we conclude.

II. PROBLEM FORMULATION

We consider the stochastic dynamical system of the form:

dx(t) = F(x,u, t)dt+ C(x, t)dw(t) (1)

in which x ∈ <n is the state, u ∈ <p the controls and
dw ∈ <n is brownian noise. The functions F(x,u, t) and
C(x, t) are defined as F : <n×<p×< → <n and C(x, t) :
<n ×< → <n ×<n×n.

In this paper we will assume that control is parame-
terized as u = Φ(x,θ(t)) with the term θ(t) denoting
the time varying parameter. Let ~x = [x(t0), ....,x(tN )]
and ~Θ containing all the parameters θ(ti) ∈ <ν×1,∀ti ∈
[t0, tN−1] and thus ~Θ = [θ(t0),θ(t1), ...,θ(tN−1)] with
~Θ ∈ <ν×N . Moreover let ~u denoting the control trajectory
during the time horizon from t0 to tN . Therefore ~u =
[Φ(x(t0),θ(t0)), ...,Φ(x(tN−1),θ(tN−1))].

We consider the objective function ξ(x(t0), ~Θ) where
x(t0) is the initial state of the trajectories ~x sampled based
on (1). The objective function is defined as follows:

ξ(x(t0), ~Θ) =
1

ρ
log J(x(t0), ~Θ)

=
1

ρ
log

∫
S

(
~x, ~u(~x, ~Θ

)
dP(~x; ~Θ)

The term J(x(t0), ~Θ) is defined as J(x(t0), ~Θ) =

E
P(~x, ~Θ)

(
S(~x, ~u)

)
. The symbol E

P(~x; ~Θ)
denotes the ex-

pectation under the probability measure P(~x; ~Θ) which
corresponds to (1) and it is parameterized by ~Θ due to
control parameterization. Thus the expectation E

P(~x; ~Θ)
is

taken with respect to trajectories generated by (1). The term
S(~x, ~u(~x, ~Θ) is a functional which depends on the state
and control trajectories. The case in which S(~x, ~u(~x, ~Θ) is
defined as S(~x, ~u(~x, ~Θ) = exp

(
ρL(~x, ~u(~x, ~Θ)

)
is of par-

ticular interest. Under this definition the objective function
(2) is transformed to:

ξ(x(t0), ~Θ) =
1

ρ
log

∫
exp

(
ρL(~x, ~u(~x, ~Θ)

)
dP(~x; ~Θ) (2)



In the next section we find the gradient of the function above
with respect to parameters ~Θ. Since the control sequence ~u
depends on the state trajectories ~x and parameters ~Θ in the
rest of the analysis we use the notation L(~x, ~Θ) and S(~x, ~Θ)
for L(~x, ~u(~x, ~Θ) and S(~x, ~u(~x, ~Θ) respectively.

III. TIME VARYING NONLINEAR POLICY GRADIENTS.

Let δ ~Θ
(j)

(ti) defined as δ ~Θ
(j)

(ti) =
δθ[0ν×1, ..., e

(j)(ti), ..., 0ν×1] with e(j)(ti) a vector
with zero elements besides the jth element that equals 1
and therefore e(j)(ti) = [0, ...1, ...0]T . The perturbation
δ ~Θ

(j)
(ti) corresponds to the variation of the jth parameter

at time instant ti. Next we consider the gradient of the
objective function ξ(x(t0), ~Θ) as expressed in (2) and we
will have:

lim
δθj(ti)→0

δξ(x(t0), ~Θ)

δθj(ti)
=

1

ρJ(x(t0), ~Θ)
lim

δθj(ti)→0

δJ(x, ~Θ)

δθj(ti)

=
1

ρJ(x(t0), ~Θ)

× lim
δθj(ti)→0

(
J(x(t0), ~Θ + δ ~Θ

(j)
(ti))− J(x, ~Θ)

δθj(ti)

)
(3)

We work with the expression inside the parenthesis in
the last equation. To keep the notation short we also de-
fine P0 = P(~x; ~Θ) and P1 = P(~x; ~Θ + δ ~Θ

(j)
(ti)) the

probability measures corresponding to trajectories generated
by (1) under the policy parameterization ~u

(
~x, ~Θ

)
and

~u
(
~x, ~Θ + δ ~Θ

(j)
(ti))

)
. More precisely we will have that:

δJ

δθj(ti)
=

EP1

(
S(~x, ~Θ + δ ~Θ

(j)
(ti))

)
− EP0

(
S(~x, ~Θ)

)
δθj(ti)

=

EP0

(
S(x, ~Θ + δ ~Θ

(j)
(ti))

dP1

dP0

)
− EP0

(
S(x, ~Θ)

)
δθj(ti)

=

EP0

(
S(~x, ~Θ + δ ~Θ

(j)
(ti))

dP1

dP0
− S(~x, ~Θ)

)
δθj(ti)

We add and subtract the term 1
δθj(ti)

S(~x, ~Θ)dP1

dP0
in the

equation above. Therefore we will have the expression that
follows:

δJ

δθj(ti)
=

= EP0

(
S(~x, ~Θ + δ ~Θ

(j)
(ti))

dP1

dP0
− S(~x, ~Θ)dP1

dP0

δθj(ti)

)
+ EP0

(
S(~x, ~Θ)dP1

dP0
− S(~x, ~Θ)

δθj(ti)

)

Thus the resulting gradient of J takes the form:

δJ

δθj(ti)
=

=

EP0

[(
S(~x, ~Θ + δ ~Θ

(j)
(ti))− S(~x, ~Θ)

)
dP1

dP0

]
δθj(ti)

+

EP0

[
S(~x, ~Θ)

(
dP1

dP0
− 1

)]
δθj(ti)

We incorporate the last line into (3) and we have:

lim
δθ(ti)→0

δξ(x(t0), ~Θ)

δθ(ti)
=

1

ρJ(x(t0), ~Θ)
M(x(t0), ~Θ) (4)

where the term M(x, ~Θ) is defined as follows:

M(x(t0), ~Θ) = lim
δθ(ti)→0

(
EP0

[
δS(~x, ~Θ)

δθj(ti)

dP1

dP0

])
+ lim
δθ(ti→0

(
EP0

[
S(~x, ~Θ)

δθj(ti)

(
dP1

dP0
− 1

)])
(5)

To find the limit in both terms in the expression above
as δθj(ti) → 0 we will make use of the Radon Nikodým
derivative dP1

dP0
as applied to nonlinear diffusion processes.

More precisely based on our analysis in section (VII) we
have the expression:

dP1

dP0
= exp

[
δF(ti)

TC(x(ti), ti)
−T dwθ(ti)

]
× exp

[
− 1

2
δF(ti)

TΣ−1C δF(ti)dt

]
(6)

The term δF(ti) above is defined as the difference
δF(t) = F(x,u(x,θ(t)+ δθej), t)−F(x,u(x,θ(t)), t) and
we assume that lim

δθ→0
δF = 0. In addition the term ΣC

is defined as:

ΣC(x, t) = C(x, t)C(x, t)T (7)

Next we find the terms limδθj(ti)→0

(
dP1

dP0

)
and

limδθj(ti)→0

(
1

δθj(ti)

(
dP1

dP0
− 1

))
. Since ex−1 = x+ x2

2! +

x2

3! we will have that:

1

δθj(ti)

(
dP1

dP0
− 1

)
= T1 + T2 + T3 + High Order Terms

(8)

where the terms T1, T2 and T3 are defined as follows:

T1 =(
δF(ti)

TC(x(ti), ti)
−T dwθ(ti)− 1

2
δF(ti)

TΣ−1
C δF(ti)dt

)
δθj(ti)



T2 =(
δF(ti)

TC(x(ti, ti)
−T dwθ(ti)− 1

2
δF(ti)

TΣ−1
C δF(ti)dt

)2

2δθj(ti)

and T3 = 1
δθj(ti)

O(δF3). We take the limit [12] of the
expression (8) which results in the following expression:

lim
δθj(ti)→0

1

δθj(ti)

(
dP1

dP0
− 1

)
=

=

(
δF(ti)

δθj(ti)

)T
C(x(ti), ti)

−T dwθ(ti)

Also limδθ(ti)→0

(
dP1

dP0

)
= 1 and therefore the final result

is:

lim
δθj(ti)→0

δξ(x(t0), ~Θ))

δθ(ti)
=(

EP0

[
δS(~x,

~Θ)
δθ(ti)

]
+ EP0

[
S(~x, ~Θ)δπ(ti)

])
ρJ(x, ~Θ))

(9)

where the term δπj(ti) is defined as:

δπj(ti) =

(
δF(ti)

δθj(ti)

)T
C(x(ti), ti)

−T dwθ(ti)

The gradient of the objective function with respect to
θ(ti) = (θ1(ti), θ2(ti), ..., θν(ti))

T is given as follows:

∇θ(ti)
ξ(x(t0), ~Θ)) =

1

ρJ(x(t0), ~Θ))
×(

EP0

[
∇θ(ti)

S(~x, ~Θ)

]
+ EP0

[
S(~x, ~Θ)δπ(ti)

])
(10)

where the vector δπ(ti) ∈ <ν×1 is defined as:

δπ(ti) =

(
δF(ti)

δθ(ti)

)T
C(x(ti), ti)

−T dwθ(ti) (11)

or as:

δπ(ti) =

(
Jθ(ti)

F

)T
C(x, ti)

−T dwθ(ti) (12)

where Jθ(ti)
F is the Jacobian of the drift term

F(x,u(x,θ(t), t) of the stochastic dynamics with respect to
parameters θ(ti). Note that this result is different from the
case in which the policy is parameterized as u = Φ(x(t),θ)
and the parameter θ time independent [9].

We summarize the analysis above regarding the time vary-
ing nonlinear policy gradients with the following theorem:

Theorem 1: (Nonlinear Policy Gradient) Consider the
objective function:

ξ(x(t0), ~Θ) =
1

ρ
log

∫
S(~x, ~Θ)dP(~x, ~Θ) (13)

subject to:

i) the nonlinear stochastic dynamics affine in noise ex-
pressed as in (1) and,

ii) the nonlinear and time varying policy parameterization
of the form u = Φ(x,θ(t)).

The policy gradient for this objective function is given by
equations (10) and (12).

For the cases where the functional S(~x, ~Θ) is defined as
S(~x, ~Θ) = StNto (~x, ~Θ) =

∫ tN
t0

q(x(t),θ(t))dt = Stito(~x, ~Θ)+

StNti (~x, ~Θ) the gradient in (10) is expressed as follows:

∇θ(ti)
ξ(x(t0), ~Θ)) =

1

ρJ(x(t0), ~Θ))
×(

EP0

[
∇θ(ti)

q(x(ti),θ(ti))dt

]
+ EP0

[
StNti (~x, ~Θ)δπ(ti)

])
where StNti (~x, ~Θ) = S(~x(ti → tN ), ~Θ(ti → tN−1)) is the

cost accumulated starting from time ti to tN while ~x(ti →
tN ) and ~Θ(ti → tN−1) are the states and parameters starting
from time ti to tN . To get the result above we make use of
the fact that:

EP0

[
Stit0(~x, ~Θ)δπ(ti)

]
= EP0

[
Stit0(~x, ~Θ)

]
EP0

[
δπ(ti)

]
and

EP0

[
δπ(ti)

]
= EP0

[(
δF

δθ(ti)

)T
C(x(ti), ti)

−T
]

× EP0

[
dwθ(ti)

]

with the last term EP0

[
dwθ(ti)

]
= 0.

A. Nonlinear Risk Seeking/Sensitive Policy Gradients

We consider functionals S(~x, ~Θ) of the form S(~x, ~Θ) =

exp
(
ρL(~x, ~Θ)

)
. The gradient of the objective function can

be formulated as follows:

∇θ(ti)
ξ(x(t0), ~Θ) =

1

ρJ(x(t0), ~Θ)
×(

EP0

[
S(~x, ~Θ)δπ(ti)

]
+ EP0

[
∇θ(ti)

S(~x, ~Θ)

])
=

1

J(x(t0), ~Θ)
×(

1

ρ
EP0

[
S(~x, ~Θ)δπ(ti)

]
+ EP0

[
∇θ(ti)

L(~x, ~Θ)S(~x, ~Θ)

])
=

1

ρ
EQ(~x;θ)

[
δπ(ti)

]
+ EQ(~x;θ)

[
∇θ(ti)

L(~x, ~Θ)

]

The term Q(~x;θ) is defined as follows:



dQ(~x; ~Θ) =
S(~x, ~Θ)dP0(~x; ~Θ)∫
S(~x, ~Θ)dP0(~x; ~Θ)

=
exp

(
ρL(~x, ~Θ)

)
dP0(~x; ~Θ)∫

exp
(
ρL(~x, ~Θ)

)
dP0(~x; ~Θ)

(14)

The analysis above is summarized by the following propo-
sition:

Proposition 1: Consider the objective function:

ξ(x(t0),θ) =
1

ρ
log

∫
exp

(
ρL(~x, ~Θ)

)
dP(~x, ~Θ) (15)

subject to:
i) the nonlinear stochastic dynamics affine in noise ex-

pressed as in (1) and,
ii) the nonlinear and time varying policy parameterization

of the form u = Φ(x,θ(t)).
The policy gradient for this objective function is given as:

∇θ(ti)
ξ(x(t0),θ) =

=
1

ρ
EQ(~x;θ)

[
δπ(ti)

]
+ EQ(~x;θ)

[
∇θ(ti)

L(x,θ)

]
The term δπ(ti) is defined as in (11) while the expectation
EQ(~x;θ)

is under dQ(~x;θ) that is defined in (14).

IV. LINEAR TIME VARYING POLICY GRADIENTS.

For linear and time varying policy linear parameterizations
we will have that:

u(x(t),θ(t)) = Ψ(x)θ(t) (16)

In this case the policy gradient has the same expression
as in (10) but now the term δπ(ti) is defined as:

δπ(ti) =

(
δF(ti)

δu(ti)

δu

δθ(ti)

)T
C(x(ti), ti))

−T dwθ(ti)

=

(
δF(ti)

δu(ti)
Ψ(x(ti))

)T
C(x(ti), ti)

−T dwθ(ti) (17)

A special class of systems of this form in (1) may include
dynamics affine in controls. Such dynamics are formulated
as follows:

dx(t) = f(x, t)dt+B(x, t)udt+
1√
λ

L(x, t)dw(x, t) (18)

For stochastic systems as in (18) we will have that:

δπ(ti) =

(
δF(ti)

δu(ti)

δu

δθ(ti)

)T
C(x(ti), ti))

−T dwθ(ti)

=
√
λ

(
B(x, t)Ψ(x(ti))

)T
L(x(ti), ti)

−T dwθ(ti)

These results are summarized by the proposition that
follows.

Proposition 2: The gradient of the objective function in
(13), subject to

i) the nonlinear stochastic dynamics affine in control and
noise expressed as in (18),

ii) the linear and time varying policy parameterization in
(16),

is expressed as:

∇θ(ti)
ξ(x(t0), ~Θ)) =

1

ρJ(x(t0), ~Θ))
×(

EP0

[
∇θ(ti)

S(~x, ~Θ)

]
+
√
λEP0

[
S(~x, ~Θ)δπ∗(ti)

])
(19)

The term δπ∗(ti) above is defined as :

δπ∗(ti) = Ψ(x(ti))
TB(x(ti), ti)

TL(x(ti), ti)
−T dwθ(ti)

(20)
Similarly to the previous section when S(~x, ~Θ) is de-

fined as S(~x, ~Θ) = StNto (~x, ~Θ) =
∫ tN
t0

q(x(t),θ(t))dt =

Stito(~x, ~Θ)+StNti (~x, ~Θ) the PG in proposition 2 will take the
form:

∇θ(ti)
ξ(x(t0), ~Θ)) =

1

ρJ(x(t0), ~Θ))
×(

EP0

[
∇θ(ti)

q(x,θ(t))dt

]
+
√
λEP0

[
StNti (~x, ~Θ)δπ∗(ti)

])
(21)

For the cases where the functional S(~x, ~Θ) takes the form
S(~x, ~Θ) = exp

(
ρL(~x, ~Θ)

)
we have the following propo-

sition which provides risk seeking and risk sensitive PGs
depending on the sign of the parameter ρ. More precisely:

Proposition 3: The gradient of the objective function in
(15), subject to

i) the nonlinear stochastic dynamics affine in control and
noise expressed as in (18),

ii) the linear and time varying policy parameterization in
(16),

is expressed as:

∇θξ(x(t0),θ) =

=

√
λ

ρ
EQ(~x;θ)

[
δπ∗(ti)

]
+ EQ(~x;θ)

[
∇θL(x,θ)

]
The term δπ∗(ti) is defined as in (20) while the expectation
EQ(~x;θ)

is under dQ(~x;θ) defined as in (14). More over for
ρ > 0 and ρ < 0 the gradient above corresponds to a risk
sensitive and risk seeking version of the objective function
in (15).

Further simplifications of proposition 3 can be found re-
garding risk seeking and risk sensitive PGs when ρ = ±

√
λ.

Furthermore in the cases where the term L is independent of
the policy parameters ~Θ(t) meaning that L(~x(t), ~Θ) = L(x)
then the PG in proposition 3 simplifies to:



∇θξ(x(t0),θ) = ± EQ(~x;θ)

[
δπ∗(ti)

]
In the next section we provide numerical examples for

nonlinear stochastic control based on sampling.

V. EXAMPLES

We apply the PG of proposition 2 in a iterative form. The
parameter updates are expressed as follows:

θk+1(ti) = θk(ti)− γ
∂ξ(x, ~Θ)

∂θ(ti)
, ∀ti ∈ [t0, ttN−1

]

with γ > 0 playing the role of learning rate. We also
consider the system with state multiplicative noise expressed
as follows:

dx = Axdt+ u(t, x)dt+
1√
λ
xdw(t)

The control is parameterized linearly with respect to
the state and parameters. Thus it has the form u(t, x) =
K(t)x(t) with the policy parameter is θ(t) = K(t). We
define a cost for minimization as:

ξ = − 1

|ρ|
logE

[
exp

(
− |ρ|

∫ tN

ti

(x(t)− p(t)∗)2dt
)]

For our examples we used the values ρ = −
√
λ = −30,

A = 1 and learning rate γ = 1. The task is to steer the state
x(t) to the target state trajectories p(t)∗ = 10 and p(t)∗ =
2, ∀t ∈ [t0, tN ], starting from x(t0) = 5. Results of the
average trajectories are shown in the Figure 1.

Next we increase the instability of the dynamics by
increasing A to A = 4, while the desired state trajectory
is a periodic movement p(t) = 4 + cos(t). The resulting
controlled trajectory is illustrated in Figure 2. Note that to
track the sinusoidal target trajectory we did not have to make
use of a special purpose nonlinear limit cycle attractor as
in [9]. This is because the time varying characterization of
the underlying control policy increases the capability of the
policy to steer the actual trajectory to a target trajectory.

VI. CONCLUSION

In this paper we derive time varying PGs in continuous
time for linear and nonlinear parameterizations. Future work
should include evaluations of the proposed PGs on learning
control application for systems with many dimensions and
degrees of freedom and comparisons with other PG methods.

Another research direction is the use of the proposed
PGs for training of nonlinear functions approximators such
as Stochastic Neural Networks (SNN). PGs derived in this
work could be applied to this setting for as long as the
mathematical form of SNN could be represented by the
stochastic differential equation in (1).
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Fig. 1. Reaching target state, with the blue is the average trajectory, and
with red is the desired state trajectory. In subfigure (a) p∗ = 10 In (b)
p(t)∗ = 2 .
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Fig. 2. Tracking a sinusoidal trajectory.

VII. APPENDIX

We will consider the nonlinear diffusions: dx(t) = F0δt+
C(x, t)dwθ(t) and dx(t) = F1δt+ C(x, t)dwθ+δθ(t), with
the terms defined as F0 = F(x,u(x,θ(t)), t) and F1 =
F(x,u(x,θ + δθejδ(t− ti)), t). The term ej is a vector of
zeros besides the jth element that is equal to 1. We also
define δF = F2 − F1 and we expressed the corresponding

probability measures as P0 = P
(

xN , tN |x0, t0; ~Θ

)
and

P1 = P
(

xN , tN |x0, t0; ~Θ + δ ~Θ
(j)

(ti)

)
. We consider the

changes in the probability measure from P0 to P1 via the
Girsanov transformation. These changes of probability mea-



sure correspond to the changes in the drift of the diffusion
processes from F0 to F1. Using Girsanov’s theorem [12] we
have that:

dP0

dP1
= exp

[ ∫ tN

t0

(
− δFTC(x, t)−T dwθ(t)

)]
× exp

[ ∫ tN

t0

(
+

1

2
δFTΣ−1C δFδt

)]
Since F1 = F

(
x,u(x,θ + δθejδ(t − ti)), t

)
we have

that:

δF(t) =

(
F

(
x,u(x,θ + δθej), t

)
− F

(
x,u(x,θ), t

))
× δ(t− ti)
= δF(t)δ(t− ti)

The Girsanov transformation will take the form:

dP0

dP1
= exp

[ ∫ tN

t0

(
− δFTC(x, t)−T δ(t− ti)dwθ(t)

)]
× exp

[ ∫ tN

t0

(
+

1

2
δ(t− ti)δFTΣ−1C δFδ(t− ti)δt

)]
Thus the final results is:

dP0

dP1
= exp

(
− δF(ti)

TC(x, ti)
−T dwθ(ti)

)
× exp

(
+

1

2
δF(ti)

TΣ−1C δF(ti)δt

)
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