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Abstract

We derive the connections of Path Integral(PI) and Kulback-Liebler(KL) con-
trol as presented in machine learning and robotics communities [1–4] with ear-
lier work in controls on the fundamental dualities between relative entropy and
free energy and the logarithmic transformations of diffusions processes [5–10].
Our analysis offers an information theoretic view of PI stochastic optimal control
based on the duality between Free Energy and Relative Entropy as expressed by
the Legendre-Fenchel transformation in Statistical Mechanics [11]. Finally we
overview the cases of partial observability and min-max control.

1 Introduction

Recent developments in nonlinear stochastic optimal control and machine learning suggest new
ways to solve optimization problems for dynamical systems in continuous state action spaces. The
mathematical analysis is based on the quantum-mechanical concept of Path Integral. The path inte-
gral formalism provides an unified view of Newtonian and Quantum mechanics since it generalizes
the action principle from Newtonian to Quantum mechanics. In stochastic optimal control theory,
path integrals are used to represent value functions and solutions of partial differential equations.
Here we provide an information theoretic view of path integral control and show its connections to
earlier findings in controls. To do so, in section 2 we derive the dualities between free energy and
relative entropy. In section 3 we derive PI control based on these dualities and discuss the cases of
min-max control and partial observability. In section 4 we derive PI based on the Bellman principle
for continuous and discrete time. In the last section 5 we compare the different approaches to PI
control and conclude.

2 Free Energy and Relative Entropy Dualities

In this section we derive the fundamental duality relationships between free energy and relative
entropy [9]. This relationship is important for the derivation of stochastic optimal control. Let
(Z,Z) denote a measurable space and P(Z) the corresponding probability measure defined on the
measurable space. For our analysis we consider the following definitions.

Definition 1: Let P ∈ P(Z) and the function J (x) : Z → < be a measurable function. Then the

term: E
(
J (x)

)
= log

∫
exp (ρJ (x))dP is called free energy of J (x) with respect to P.

Definition 2: Let P ∈ P(Z) and Q ∈ P(Z), the relative entropy of P with respect to Q is defined
as:

H (Q||P) =

{ ∫
log dQ

dP dQ if Q << P and log dQ
dP ∈ L

1

+∞ otherwise

We will also consider the objective function: ξ(x) = 1
ρE
(
J (x)

)
= 1

ρ log E(0)
τ i

[
exp (ρJ (x))

]
with J (x) = φ(xtN ) +

∫ tN
ti

q(x)dt is the state dependent cost. The objective function above takes
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the form ξ(x) = E(0)
τ i

(J ) + ρ
2V ar (J ) as ρ→ 0. This form allows us to get the basic intuition for

constructing such objective functions. Essentially for small ρ the cost is a function of the mean the
variance. When ρ > 0 the cost function is risk sensitive while for ρ < 0 is risk seeking. To derive
the basic relationship between free energy and relative entropy we express the expectation E(0)

τ i
taken

under the measure P as a function of the expectation E(1) taken under the probability measure dQ.
More precisely will have:

E(0)

[
exp (ρJ (x))

]
=

∫
exp (ρJ (x))dP =

∫
exp (ρJ (x))

dP
dQ

dQ

By taking the logarithm of both sides of the equations above and making use of the

Jensen’s inequality we will have: log E(0)
τ i

[
exp (ρJ (x))

]
= log

∫
exp (ρJ (x)) dPdQdQ ≥∫

log

(
exp (ρJ (x)) dPdQ

)
dQ. We multiply the inequality above with 1

ρ for case of ρ < 0 or

ρ = −|ρ| and thus we have:

ξ(x) = − 1

|ρ|
E (J (x)) ≤ E(1) (J (x)) +

1

|ρ|
H (Q||P) (1)

where E(1) (J (x)) =
∫
J (x)dQ. The inequality above gives us the duality relationship between

relative entropy and free energy. Essentially one could define the following two minimization prob-
lems:

−E (J (x))
|ρ| = inf

Q

[
E(1) (J (x)) + 1

|ρ|H (Q||P)
]

and −H (Q||P)
|ρ| = inf

Q

[
E(1) (J (x)) + 1

ρ
E (J (x))

]
(2)

The infimum in (2) is attained at Q∗ given by:

dQ∗ =
exp (−|ρ|J (x))dP∫
exp (−|ρ|J (x))dP

(3)

When ρ > 0 the inequality in (1) becomes from ≤ to ≥ and the inf in (2) and becomes sup.
Therefore we will have that:

E (J (x))
|ρ| = sup

Q

[
E(1) (J (x))− 1

|ρ|H (Q||P)
]

and
H (Q||P)
|ρ| = sup

Q

[
E(1) (J (x))− 1

ρ
E (J (x))

]
(4)

In the next section we show how inequality (2) is transformed to a stochastic optimal control problem
for the case of markov diffusion processes.

3 Information theoretic view of stochastic optimal control.

We consider the uncontrolled and controlled stochastic dynamics of the form: dx = f(x)dt +

1√
|ρ|

B(x)dw(0)(t) and dx = f(x)dt + B(x)

(
udt+ 1√

|ρ|
dw(1)(t)

)
with xt ∈ <n×1 denoting

the state of the system, B(x, t) : <n × < → <n×n is the control and diffusions matrix, f(x, t) :
<n × < → <n×1 the passive dynamics, ut ∈ <n×1 the control vector and dw ∈ <p×1 brownian
noise. Notice that the difference between the two diffusions above is on the controls. These controls
together with the passive dynamics define a new drift term. For our analysis here we assume B−1

exists. Expectations evaluated on trajectories generated by the controlled dynamics and uncontrolled
dynamics are represented as E(0) and E(1) respectively. The corresponding probability measures of
the aforementioned expectations are P and Q. We continue our analysis with the main result in (1)
and the definition of the Radon-Nikodým derivative: dQ

dP = exp (ζ(u)) and dP
dQ = exp (−ζ(u))

where according to Girsanov’s theorem [12] adapted to the diffusion processes considered here, the
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term ζ(u) is expressed as: ζ(u) = 1
2 |ρ|

∫ tN
ti

uTudt +
√
|ρ|
∫ tN
ti

uT dw(1)(t). Substitution of the
Radon-Nikodým derivative into (2) gives the following result:

ξ(x) = − 1

|ρ|
log E(0)

[
exp (−|ρ|J (x))

]
≤ E(1)

[
J (x) +

1

|ρ|
ζ(u)

]
= E(1)

[
J (x) +

1

2

∫ tN

ti

uTudt

]
(5)

The right term of the inequality above corresponds to the cost function of a stochastic optimal control
problem that is bounded from below by the free energy. Besides providing a lower bound on the
objective function of the stochastic optimal control problem inequality (5) expresses also how this
lower bound should be computed. This computation involves forward sampling of the uncontrolled
dynamics, evaluation of the expectation of the exponentiated state depended part φ(xtN ) and q(xt)
and the logarithmic transformation of this expectation. Surprisingly, inequality (5) was derived
without relying on any principle of optimality. It only takes the application of Girsanov theorem
between controlled and uncontrolled stochastic dynamics and the use of dual relationship between
free energy and relative entropy to find the lower bound in (5). Essentially inequality (5) defines
a minimization problem in which the right part of the inequality is minimized with respect ζ(u)
and therefore with respect to control u. At the minimum, when u = u∗ then the right part of the
inequality in (5) reaches its optimal ξ(x).

An important question to is the link between (5) and the dynamic programming principle. To
find this link the next step is to show that ξ(x) satisfies the HJB equations and therefore it is the
corresponding value function. More precisely, we introduce a new variable Φ(x, t) defined as
Φ(x, t) = E(0)(exp (ρJ (x))). The Feynman-Kac lemma [13] tells us that this function satisfies
the backward Chapman Kolmogorov PDE. Therefore the following equation holds:

−∂tΦ = ρq0Φ + fT (∇xΦ) +
1

2|ρ|
tr
(

(∇xxΦ)BBT
)

(6)

For ρ = −|ρ| < 0 and since ξ(x) = 1
ρ log Φ(x, t) = − 1

|ρ| log Φ(x, t) we will have that ∂tΦ =

−|ρ|Φ∂tξ, ∇xΦ = −|ρ|Φ∇xξ and ∇xxΦ = −|ρ|Φ∇xxξ + |ρ|2Φ∇xξ∇xξ
T it can be shown that

ξ(x) satisfies the nonlinear PDE:

−∂tξ = q0 + (∇xξ)
T f − 1

2
(∇xξ)

TBBT (∇xξ) +
1

2|ρ|
tr
(

(∇xxξ)BBT
)

(7)

The nonlinear PDEs above corresponds to the HJB equation [14] for the case of the minimizing
optimal control problem with control weight R = I and therefore, ξ(x) is the corresponding mini-
mizing value function. Note that in order to derive the PDEs above we did not use any principle of
optimality. Similar results can be derived for ρ = |ρ| > 0 as shown in [6]. The analysis so far is
summarized by the following corollary in which we use the function sign(x) = −1 ∀x < 0 and
sign(x) = 1 ∀x > 0. More precisely we will have:

Corollary 1 Consider the expectation operators E(0), E(1) evaluated on state trajectories sam-
pled according to uncontrolled and controlled dynamics respectively. The function ξ(x, t) speci-
fied as: ξ(x, t) = sign(ρ)

|ρ| log E(0)(exp (sign(ρ)|ρ|J (x))) is the value function of the stochastic

optimal control problems: ξ(x, ti) = minu E(1)
∫ tN
ti

(
q(x)− 1

2uTu
)
dt, ∀ρ > 0 and ξ(x, ti) =

maxu E(1)
∫ tN
ti

(
q(x) + 1

2uTu
)
dt, ∀ρ < 0.

3.1 Information theoretic view of stochastic optimal control: The case of partial
observability.

In the partial observable case [9], besides the stochastic dynamics there are also the observation
diffusions:
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dy = h(x)dt+
1√
|ρ|

C(x)dv(0)(t) and dy = h(x)dt+ C(x)

(
bdt+

1√
|ρ|

C(x)dv(1)(t)

)
(8)

The term y denotes the observations, b plays the role of control that act on observations, and
dv0 and dv0 is the observation noise under the uncontrolled and controlled measurement dy-
namics. In this case the Radon-Nikodým derivative is expressed as dP

dQ = exp (−ζ(u)) with

ζ(u) = 1
2 |ρ|

∫ tN
ti

(
uTu + bTb

)
dt +

√
|ρ|
∫ tN
ti

(
uT dw(1)(t) + bT dv(1)(t)

)
. Under the observa-

tion dynamics above the free energy is the lower bound of the following expression:

ξ(x) = − 1

|ρ|
log E(0)

[
exp (−|ρ|J (x))

]
≤ E(1)

[
J (x) +

1

2

∫ tN

ti

(
uTu + bTb

)
dt

]
(9)

The expectation E(0) is with respect to the process and observations noise dw(0)(t), dv(0)(t) while
the expectation E(1) is with respect to dw(1)(t), dv(1)(t). Again the free energy is the lower bound
on a cost that is typically found in stochastic optimal control. The partial observable case includes
controls in the observations.

3.2 Information theoretic view of stochastic optimal control: The case of min-max optimal
control.

We consider stochastic dynamics : dx = f(x)dt+ B(x)

(
udt+ 1√

|ρ|
dw(0)(t)

)
and cost function

S(x) = E(0) (exp (|ρ|L(x,u)dt)) = E(0)
(

exp
(
|ρ|
∫ tN
ti

L(x,u)dt
))

. Next we define free en-

ergy as follows E
(
L(x,u)

)
= log

∫
exp (ρL(x,u))dP and use the Legendre transformation that

leads to maximization problem:
E(L(x,u))
|ρ| = sup

[
E(1) (L(x,u))− 1

|ρ|H (Q||P)

]
. By taking into

account then stochastic dynamics and the Radon-Nikodým derivative we will have:

inf
u

[
1

|ρ|
log

∫
exp (ρL(x,u))dP

]
= inf

u
sup
Q

[
E(1) (L(x,u))− 1

|ρ|
H (Q||P)

]
inf
u

[
1

|ρ|
log

∫
exp (ρL(x,u))dP

]
= inf

u
sup
π

[
E(1)

(
L(x,u)− 1

2

∫ tN

ti

πTπdt

)]
(10)

where E(1) is the expectation on trajectories generated based on the diffusion dx = f(x)dt +

B(x)

(
udt+ πdt+ 1√

|ρ|
dw(1)(t)

)
. The term π can be thought as a destabilizing controller.

Equation (10) is a short but elegant way to show the equivalence of min-max control and differ-
ential game theory with risk sensitivity. Essentially all that it takes is an appropriate definition of
free energy and the use of the Legendre transformation. Notice that no dynamic programming argu-
ments were used in this analysis.

4 Derivation based on Bellman Principle: The continuous case.

We consider stochastic optimal control in the classical sense, as a constrained optimization problem,
with the cost function under minimization given by the mathematical expression:

V (x) = min
u
E

[
J(x,u)

]
= min

u
E

[∫ tN

to

L(x,u, t)dt

]
subject to the nonlinear stochastic dynamics: dx = F(x,u)dt + B(x)dw with x ∈ <n×1 de-
noting the state of the system, u ∈ <p×1 the control vector and dw ∈ <p×1 brownian noise.
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The function F(x,u) is a nonlinear function of the state x and affine in controls u and there-
fore is defined as F(x,u) = f(x) + G(x)u . The matrix G(x) ∈ <n×p is the control matrix,
B(x) ∈ <n×p is the diffusion matrix and f(x) ∈ <n×1 are the passive dynamics. The cost func-
tion J(x,u) is a function of states and controls. Under the optimal controls u∗ the cost function
is equal to the value function V (x). The term L(x,u,t) is the running cost and it is expressed
as: L(x,u, t) = q0(x, t) + q1(x, t)u + 1

2uTRu. Essentially, the running cost has three terms,
the first q0(xt, t) is a state-dependent cost, the second term depends on states and controls and
the third is the control cost with the term R > 0 the corresponding weight. The stochastic HJB
equation [5, 14] associated with this stochastic optimal control problem is expressed as follows:
−∂tV = minu

(
L + (∇xV )TF + 1

2 tr
(
(∇xxV )BBT

))
. The corresponding optimal control is

given by the equation: u(xt) = −R−1
(
q1(x, t) + G(x)T∇xV (x, t)

)
. These optimal controls

will push the system dynamics in the direction opposite that of the gradient of the value function
∇xV (x, t). The value function satisfies nonlinear, second-order PDE:

−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV ) +

1

2
tr
(
(∇xxV )BBT

)
(11)

with q̃(x, t) and f̃(x, t) defined as q̃(x, t) = q0(x, t) − 1
2q1(x, t)TR−1q1(x, t) and f̃(x, t) =

f(x, t)−G(x, t)R−1q1(x, t) and the boundary condition V (xtN ) = φ(xtN ). Given the exponential
transformation V (x, t) = −λ log Ψ(x, t) and the assumption λG(x)R−1G(x)T = B(x)B(x)T =
Σ(xt) = Σ the resulting PDE is formulated as follows:

−∂tΨ = − 1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (12)

with boundary condition: Ψ(x(tN )) = exp
(
− 1
λφ(x(tN ))

)
. By applying the Feynman-Kac lemma

to the Chapman-Kolmogorov PDE (12) yields its solution in form of an expectation over system
trajectories. This solution is mathematically expressed as:

Ψ (xti) = E(0)

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
(13)

The expectation E(0) is taken on sample paths generated with the forward sampling of the un-
controlled diffusion equation dx = f̃(xt)δt + B(x)dw. The optimal controls are specified as:
uPI(x) = −R−1

(
q1(x, t)− λG(x)T ∇xΨ(x,t)

Ψ(x,t)

)
. Since, the initial value the function V (x, t) is

the minimum of the expectation of the objective function J(x,u), it can be trivially shown that:

V (x, ti) = −λ logE(0)

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
≤ E(1)

(
J(x,u)

)
(14)

Note that the inequality above in similar to (5) when the following equations hold:
q1(x) = 0, R = I, λ = 1

|ρ| ,G = B,B = 1√
|ρ|

B. The first three equalities guarantee that J(x,u) =

J (x)− |ρ|ρ
∫ tN
ti

uTudt are identical, and the last two equalities make sure that the expectations are
evaluated under the same diffusions and therefore E(0) ≡ E(0) and E(1) ≡ E(1). Under the condi-
tions above the Kolmogorov PDEs (6) and (12) and the HJB equations (11) and (7) are identical.

4.1 Derivation based on Bellman Principle: The discrete case.

In the KL control framework [3,4,15] the analysis starts with the application of the Bellman principle
of optimality on Markov Decision Processes (MDP) and under the running cost specified as a sum
of a state depended term and the Kullback Leibler Divergence between the transition densities of
the controlled and uncontrolled dynamics. In particular, the running cost is specified as L (x,u) =

q(x) +H (Q||P) = q(x) + E(1)

(
log p(x

′
|x,u)

p(x′|x)

)
. The transition probabilities under the controlled

and uncontrolled dynamics are represented as p(x′|x,u) and p(x′|x). Application of the Bellman
principle of optimality results in the minimization of the quantity:
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Vt(x) = min
u∈U

(
q(x) + E(1)

(
log

p(x
′ |x,u)

p(x|x)
+ Vt+1(x′)

))
Depending on the stochastic optimal control problem w(x′) is equal to V (x′), αV (x′), Vt+1(x′).
For our presentation here we choose w(x′) = Vt+1(x′) that corresponds to finite horizon case. The
u dependent terms in the functional above are minimized and thus we will have that:

E(1)

(
log

p(x′|x,u)

p(x′|x)
+ Vt+1(x′)

)
= E(1)

(
log

p(x′|x,u)

p(x′|x) exp (−Vt+1(x′))

))
For the purposes the normalization term G[Φ](x) is introduced with Φ(x) = exp (−w(x′)) being

the desirability function defined as G[Φ](x) =
∑
p(x′|x)Φ(x′) = E(0)

(
Φ(x′)

)
, we will have that:

E(1)

(
log

u(x
′ |x)

p(x′|x)
+ Vt+1(x′)

)
= − log G[Φ](x) +H

(
p(x′|x,u)

∣∣∣∣∣∣∣∣p(x′|x)Φ(x′)

G[Φ](x)

)
Substitution of the expression above into the Bellman minimization equation results in:

minu∈U

(
q(x)− log G[Φ](x) +H

(
u(x|x)

∣∣∣∣∣∣∣∣p(x′|x)Φ(x′)
G[Φ](x)

))
. The minimum of the Bellman equa-

tion is attained by: p∗(x′|x,u) = p(x′|x)Φ(x)
G[Φ](x) . The last equation provides the transition proba-

bility under the optimal control law and in that sense it the optimal transition probability. Clearly
the optimal distribution above is identical to equations (3). Substitution of the optimal distribu-
tion above will result in the Bellman equation: Φ(x) = exp (−q(x))G[Φ](x′). The link with
the continuous case is established by writing the Bellman equation for an MDP with continu-
ous state space Φ(δt)(x) = exp (−q(x)δt)G[Φ(δt)](x

′). Rearrangement of the terms results in:
(exp (q(x)δt) − 1)Φ(δt)(x) = E(0)(Φ(δt)(x

′) − Φ(δt)(x)). Under the limit δ → 0 the equation
results the backward Chaplman Kolmogorov PDE in (12) for ρ = 1.

5 Discussion

We show the connection of path integral control framework as presented in the machine learning
and robotic communities [1–3, 16–18] with work in the control theoretic community on risk sen-
sitivity [5, 6, 8, 9]. Essentially there are two methodological approaches to derive the path integral
framework. In the first, stochastic optimal control is specified as minimization of the objective
E(1)(J(x,u)) subject to the controlled dynamics. The HJB PDE is derived based on the Bellman
principle of optimality. The exponential transformation of the value function V (x) and the connec-
tion between control cost and variance result in the transformation of the HJB in to the backward
Chapman Kolmogorov. The Feynman-Kac lemma is applied and the solution of the Chapman Kol-
mogorov PDE together with the lower bound on the objective function are provided. The second
methodological approach starts with the duality between free energy and relative entropy and the
resulting optimization problem as expressed in (2). For diffusion processes affine in control and
noise and under the use of Girsanov’s theorem, the aforementioned optimization results in formu-
lating the bound ξ(x) of the objective function E(1)(J(x,u)) which is typically found in stochastic
optimal control. The link to Bellman optimality is established by showing that, this bound ξ(x)
satisfies the HJB equation and therefore it is a value function. Inside the class of the stochas-
tic dynamics of markov diffusion processes affine in control and noise, Dynamic Programming is
more general since it incorporates general cost functions and stochastic dynamics. This general-
ization however, is reduced by the assumption regarding control cost and the variance of the noise
λG(x)R−1G(x)T = B(x)B(x)T .

In the second approach the lower bound ξ(x) of the accumulated trajectory cost E(1)(J(x,u)) is
derived without relying on the Bellman Principle. In fact, this lower bound defines a new form of
optimality which, as it is shown in [5,6] as well as in this work, for the case of diffusion processes is
equivalent to the Bellman principle of optimality. In the KL stochastic optimal control framework the
derivation relies on the Bellman Principle of Optimality in discrete time. The resulting distribution
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p∗k(x′|x,u) is optimal since it is the distribution that results when actions are optimal. In that sense
the KL framework, in its initial formulation [3] does not explicitly provide an optimal control law
but instead it provides the optimal distribution or optimal transition probability under the use of
optimal control law. For the case of control affine diffusions, KL control framework incorporates
control-only and state-only depended terms in contrast to PI derived based on the Bellman principle
in which cross terms between controls and states may be considered. The compositionally of optimal
controls includes control laws and thus it can incorporate any analytically derived optimal control
as well as PI control.

The information theoretic view and in particular the use of the Legendre transformation and the
duality between free energy and relative is an elegant way to derive many important results in control
theory and machine learning. Furthermore, it allows for generalizations in the sense that inequality
(5) holds for more general models of stochasticity such as the case of jump diffusions.
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