
 1 of 4

 Abstract�Optimal control theory plays a key role in the study 
of biological movement. Further progress requires optimal 
control methods for realistic biomechanical systems, that have 
a number of distinguishing characteristics. Here we consider 
available control methods in light of those characteristics, 
compare them empirically on a 2-link arm model, and propose 
appropriate extensions. 
 

Keywords�Optimal control, maximum principle 
 

I.  INTRODUCTION 
 
Many theories in the physical sciences are expressed in 
terms of optimality principles, which often provide the most 
parsimonious description of the laws governing a system�s 
behavior. Optimality has also played a key role in the field 
of motor control. This is partly motivated by the parsimony 
and empirical success of optimal control models of 
biological movement. Perhaps more importantly, such 
models are appealing because all the processes that give rise 
to a specific motor system under investigation (evolution, 
development, learning, adaptation, recovery) are in a sense 
optimization processes, that over time cause the system to 
perform better and better. It is therefore natural to use the 
limit of optimal performance as the starting point for 
theoretical investigations of motor control. 
 Such investigations can only be productive, however, if 
we have efficient optimal control methods that are suitable 
for biomechanical systems. Biomechanical systems have a 
number of characteristics that distinguish them from the 
synthetic systems commonly studied in control theory. 
Thus the purpose of this paper is to: 
1. Consider these distinguishing characteristics and their 

consequences. 
2. Summarize the existing optimal control methods that 

appear most suitable for such systems. 
3. Illustrate the performance of such methods on a 

standard 2-link arm model. 
4. Propose appropriate extensions. 
 
A.  Distinguishing features of biomechanical systems 
 
 1. The state spaces of biomechanical systems have 
unusually high dimensionality. Consider for example the 
simple 2-link, 6-muscle arm model often studied in motor 
control. The state space includes 2 joint angles and 2 joint 
velocities � since we are dealing with a second-order 
system. A realistic state description should also include 6 
muscle activations � because muscles act as low-pass filters 
of neural activity, with non-negligible time constant. A 

similar count for a complete model of the arm (excluding 
the hand) yields ~20 dynamic states, and ~50 muscle states. 
Such state spaces cannot be discretized, which rules out all 
methods relying on discretization. Consequently, the focus 
of this paper is on continuous trajectory-based methods.  
 2. The substantial variability of biological movements 
indicates that the sensory-motor system operates in the 
presence of large (mostly internal) disturbances. 
Specifically, motor noise is well-known to be control-
dependent, with standard deviation increasing linearly with 
the magnitude of the control signal. Optimal control of such 
systems should obviously take this phenomenon into 
account, because an appropriately chosen control signal can 
actually decrease the noise. In this paper we develop an 
extension of trajectory-based optimal control methods, 
which makes them applicable to control-dependent noise. 
 

II.  APPROACHES TO OPTIMAL CONTROL 
 
We begin with the deterministic case, and include 
stochasticity later. Consider a continuous dynamical system 
( ), , mt ∈f x u !  with state ( ) mt ∈x ! , control signal 

( ) nt ∈u ! , specified final time T , initial state 0
m∈x ! , 

final cost ( )h ∈x ! , and instantaneous cost rate 

( ), ,l t ∈x u ! . The system dynamics is 

( ) ( ) ( )( ) ( ) 0, , ; 0t t t t= =x f x u x x"  
and the performance criterion to be minimized is 

( )( ) ( ) ( )( )
0

, ,
T

J h T l t t t dt= + ∫x x u . 

 The development of optimal control theory has followed 
two different approaches, which, interestingly, correspond to 
the distinction between the Lagrangian and Hamiltonian 
formulations of physics. Both approaches are based on the 
value function 

( )( ) ( )( ) ( ) ( )( ), , ,
T

V h T l t t t dt
τ

τ τ = + ∫x x x u  

which tells us how much cost will accumulate if the system 
is initialized in state ( )τx  at time τ , and controlled 
according to a certain control law until the end of the 
movement. We distinguish the value function V π  for a 
specific control law ( ),t=u π x , and the optimal value 
function V  (often labeled as *V ) which corresponds to an 
 optimal control law. The presentation of both approaches is 
simplified by introducing the (extended) Hamiltonian 

Optimal Control Methods Suitable for Biomechanical Systems 
 

E. Todorov1, W. Li2 
1Department of Cognitive Science, University of California San Diego, CA, USA 

2Department of Mechanical and Aerospace Engineering, University of California San Diego, CA, USA 



 2 of 4

( , , , ) ( , , ) ( , , )TH t l t t+x u p x u f x u p#  
which differs from its physics counterpart by the control u . 
With these definitions1, the two approaches to optimal 
control can be stated as: 

Bellman�s Optimality Principle   (Eq 1) 

( ) ( ) ( )( )
( ) ( )
( ) ( )( )

, , , * , , ,

,

* , arg min , , , ,

tV t H t t V t

V T h

t H t V t

= −

=

=

x

x
ν

x x u x x

x x

u x x ν x

 

Pontryagin�s Maximum Principle   (Eq 2) 
( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )

, , * ,

* arg min , , ,

V t H t t t V t

V T h T

t H t t V t

= −

=

=

x x x

x x

x
ν

x u

x

u x ν

"

 

 Both principles involve optimization of the Hamiltonian 
w.r.t. u , initialization of a V -related quantity using the 
final cost h , and a differential equation that can be used in a 
backward pass through time. Despite the apparent 
similarities, however, the two are fundamentally different. 

Bellman�s Optimality Principle refers to ( ),V t x  and  

( )* ,tu x  at all possible states x , and therefore leads to 
global methods that compute an optimal control law 
everywhere. Such methods typically represent the value 
function on a discrete grid, and use difference equations that 
relate the spatial and temporal derivatives of V  to compute 

( ),V t t∆− x  from ( ),V t x  in a backward pass. This is 
known as dynamic programming or value iteration. One can 
also guess a control law ( ),t=u π x , compute its value 

function V π , and use it in the minimization in Eq 1 (instead 
of the optimal value function) in order to obtain an 
improved control law. This latter method is know as policy 
iteration. On a finite grid, both methods are guaranteed to 
converge to the globally optimal solution in finite time. But 
the problem is that one cannot discretize a high dimensional 
state space due to the exponential growth of the number of 
grid points with dimensionality (i.e. �the curse of 
dimensionality�). One way to avoid the curse of 
dimensionality is to use function approximation, but such 
methods are not guaranteed to converge, and even when 
they do it is not yet clear what they converge to. 

Pontryagin�s Maximum Principle, on the other hand, 
refers only to quantities along a specific trajectory. Suppose 
the controls ( )* tu  are chosen optimally. The Maximum 

                                                           
1 The notation tV  stands for /V t∂ ∂ . 

principle states that if we were to compute the state 
trajectory ( )tx  resulting from ( )* tu , then compute the 

corresponding �costate� trajectory ( )V tx  from Eq 2, and 

perform the minimization in Eq 2, ( )* tu  will not change. 
In other words, Eq 2 is a necessary condition that an optimal 
sequence of controls (and the corresponding state and 
costate trajectories) have to satisfy. It becomes a sufficient 
condition when the Hamiltonian is convex in both x  and u  
for all values of t  and p . When convexity does not hold, 
the solutions to Eq 2 (called �extremal� trajectories) are 
canditate trajectories one of which is the optimal. 

Thus computational methods based on Pontryagin�s 
Maximum Principle avoid the curse of dimensionality. 
Given the very large dimensionality of biomechanical state 
spaces, we believe that such methods are more promising 
than the global methods based on dynamic programming. 

 
III.  TRAJECTORY-BASED ALGORITHMS 

 
Below we consider three classes of algorithms that find 
extremal trajectories satisfying Eq 2. 
 
A.  Solving a boundary-value problem (ODE) 
 
In this approach the trajectory is represented as functions 
( )tx  and ( )V tx , and it is assumed that ( )tu  can be 

computed explicitly via the minimization in Eq 2, so that we 
have ( ) ( ) ( )( ), ,t t t V t= xu π x . This reduces the problem 
to the following system of ordinary differential equations: 

( ) ( )( ) [ ]
( ) ( ) ( ) ( )( )

, , , , , 0;

, , , , ,

t t t V t T

V t H t t t V V t

= ∈

= −

x

x x x x

x f x π x

x π x

"
"  

with boundary conditions from Eq 2 and ( ) 00 =x x . The 
explicit minimization is possible, for example, when the 
system dynamics is linear in u  and the cost rate is quadratic 
in u . Then we have ( ) 1, , / 2Tt V l l V−= −x uu u xπ x . 
 The initial conditions are specified at different times, so 
this is a boundary value problem. MATLAB 6 provides the 
function BVP4C, which implements a state-of-the-art 
relaxation method for solving such problems, using an 
adaptive grid (in time) and polynomial co-location. The 
ODE method we refer to below uses BVP4C. 
 
B.  Minimizing the performance criterion (CG) 
 
The alternative is to represent the trajectory with the 
function ( )tu , and use the system dynamics and Eq 2 to 

compute ( )tx  and ( )V tx  given ( )tu . The performance 



 3 of 4

criterion J  is a function of ( )u i , and so it can be 
optimized directly. What does that have to do with the 
Maximum Principle? It turns out that the gradient of J  w.r.t 
u  is exactly ( ), , , /H t V∂ ∂xx u u , with the functions 

( )tx  and ( )V tx  as given by Eq 2. Given the gradient we 
can apply steepest descent: find the gradient and peform a 
line search in that directon. It is better however to use a 
conjugate gradient method (CG). CG is known to exhibit 
quadratic convergence near a local minimum, which is also 
a property of second-order methods that compute the 
Hessian. Efficient methods for computing the Hessian of J  
have been derived. But they are very similar to the next 
method we consider, and so we do not address them here. 
 
C.  Differential dynamic programming (DDP) 
 
This method uses dynamic programming locally, around the 
current estimate of the extremal trajectory, to generate a 
locally optimal feedback control law. Then the estimate of 
the exremal trajectory is improved. As in (B), the current 
 estimate of the trajectrory is represented as ( )tu , and the 

system dynamics is integrated forward to obtain ( )tx . The 
following backwards recursion yields a quadratic 
approximation of V  in the vicinity if ( )tx , by computing 

the gradient ( )V tx  and Hessian ( )V txx . Discretizing time 
by t∆ , the update equations are the following. 

• Initialization: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
0 0

0 0

new

new

V T h T

V T h T

= =

= =
x x

xx xx

x x x

u u x
 

• Backward recursion2 at time t : 
1T

T T

T T T

T T

T T

H l V L C B
H l V V H L H

A l V V V A L B

B l V V

C l V V

+ −

+

+ +

+ +

+ +

= + =

= + = −

= + + = −

= + +

= + +

x x x x

u u u x x x u

xx x xx x xx x xx

ux u xx x ux x

uu u xx u uu x

f
f
f f f

f f f

f f f

 

• Forward recursion: 

( )
( ) ( ) ( )( )

1

,

new new

new new new

C H L

t t x t t

−

∆

= − − −

+ =

uu u x x

x f u
 

                                                           
2 The + superscipt denotes quantities at time t t+ ∆ . The 
tensor product T Vxx xf  stands for ( )i i

i
V∑ xxx

f . 

Note that in this section the dynamics has been redefined, 
and encodes the new state after time t∆ , as opposed to the 
change-in-state notation used above. 
  
IV.   APPLICATIONS TO BIOMECHANICAL CONTROL 
 
A.  Simplified arm model 
 
We implelented a 2-link arm model moving in the horizontal 
plane, with shoulder angle 1θ  and elbow angle 2θ . For now 

the control signals are the joint torques 1 2,τ τ : 

( ) ( )( )

( )

1

2
1 2 2 2 1 2 2

2 2 2

2 2 1 2

2
1 2

2 1 2

,

2 cos cos
cos

sin 2

sin

I

i i a m l i a
I

i a i

a
B

a
a m l s

θ θ
θ

θ θ θ θ

θ θ

−= −

 + + + +
=  + 
 − +

= + 
  

=

θ θ τ c θ θ

c θ

"" "

" " "
"

"

 

We used estimated parameters for the human arm, with joint 
viscosity matrix B = [0.1 0.05; 0.05 0.1] kg m2/ s. 
 

 length l center s mass m inertia i 
upper arm 0.3 m 0.11 m 1.4 kg 0.025 kg m2 
forearm 0.33 m 0.16 m 1.1 kg 0.045 kg m2 

 
The arm was initialized in one of 3 possible initial postures, 
and the task was to move in 0.5 sec to one of 3 possible final 

 postures (see Fig 1). The final cost was ( ) 2
*h T= −θ θ   

and the cost rate was ( ) 2
0.0001l t= u .  

 
B. Optimal trajectories 
 
Fig 1 shows the optimal paths of the hand (the inset shows 
the same paths in joint space). Note that the cartesian paths 
are less curved than the joint paths, although the 
minimization problem and dynamics are defined in joint 
space. Fig 2 shows how the cost of the current trajectory 
decreases with the number of gradient descent iterations; 
costs for 50 randmly initialized individual runs are also 
shown (thin lines). The conjugate gradient descent and 
steepest descent used exactly the same line search method, 
the only difference was that in conjugate gradient descent 
the direction of the gradient was corrected according to the 
Polack-Ribiere formula. Fig 3 shows that, although the 
trajectory-based methods are not guaranteed to find the 
global minimum, the conjugate gradient algorithm is 
surprisingly robust and finds the same solution for a very 
wide range of (bad) initial guesses. The four plots show how 
the cloud of 50 randomly initialized trajectories gradually 
converges to a single trajectory. 



 4 of 4

shoulder angle 

el
bo

w
 a

ng
le

 

Fig 1
  

1 100 200

-2

-1

0

1

Iteration

Lo
g 1

0 
( C

os
t )

C
os

t 

Steepest 

Conjugate 

Fig 2 
 

iter 1 iter 10 iter 100 iter 200 

Fig 3 
 
The ODE and DDP methods were not as robust with respect 
to initialization, but exhibited much faster convergence on 
reasonable initial conditions. Initializing the control 
trajectory to ( ) 0t =u  and averaging over all combinations 
of start and end postures, we obtained the following times: 
 

Method CG ODE DDP 
CPU time 5.9 sec 1.25 sec 0.61 sec 

 
Thus all 3 methods are very efficient, although the code is 
currently in MATLAB. We also found that when ODE and 
DDP are initialized with a trajectory produced by a few 
iterations of CG, they always converged rapidly (much 
faster than CG). This suggests a mixed method, starting with 
a few iterations of CG and continuing with DDP. 
 

shoulder angle

el
bo

w
 a

ng
le

shoulder angle

el
bo

w
 a

ng
le

OPEN LOOP CLOSED LOOP 

   Fig 4 
 
 One complication with DDP is that the Newton step it 
uses ( )1C H−

u  only makes sense when the matrix C  is 

positive definite � which is not generally true. We therefore 
introduced a Levenberg-Marquardt modification: replace 

1C−  with ( ) 1C Iλ −+ , start with 0.01λ = , update 

10λ λ←  when the change prescribed by the algorithm 
increases the cost J , and update /10λ λ←  otherwise. 
The update 10λ λ←  was also used when C Iλ+  was 
near singular (RCOND<0.01). This modification made the 
DDP algorithm much more stable, without obviously 
slowing it down. 
 
C.  Closed loop control under control-dependent noise 
 
We now consider stochastic dynamics of the form: 

( ) ( ) ( ) ( ) 0, , , , ; 0d t t dt F t d= + =x f x u x u ω x x  
where ω  is standard Brownian motion. For such systems 
the optimal value function satisfies the modified Hamilton-
Jacobi-Bellman (HJB) equation: 

( ) / 2T T
tV l V tr FF V− = + +x xxf . 

Of special interest here is the case of multiplicative control 
noise, which is known to be a general property of biological 
systems. It can be modeled as ( ) i ii

F d S dω=∑u ω u . 

For this noise model, the extra term in the HJB equation is 

( ) ( )/ 2 / 2TT T
i ii

tr FF V S V S= ∑xx xxu u  

Because this is quadratic in u , it is possible to re-derive the 
DDP algorithm. The only change is in the update for C :  

T T T
i ii

C l V V S V S+ + += + + +∑uu u xx u uu x xxf f f  

We used S1 = fu [0.5 0; 0 0.5], S2 = fu [0 -0.25; 0.25 0], 
and found that the run time is almost the same (0.73 sec vs. 
0.61 sec). Fig 4 shows the behavior of the stochastic system 
using the open loop control trajectory found by DDP, as 
well as the behavior under closed loop control (given by L). 
It is interesting to note that the locally optimal feedback 
controller only forces the trajectories to converge near the 
target, but allows them to deviate earlier in the movement � 
in agreement with the minimal intervention principle we 
have derived recently. 


	Text1: In 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society


