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Optimal feedback control as a theory of motor coordination: 

Supplementary Notes 

 

Emanuel Todorov, Michael I. Jordan 

 

1. Optimal control of modified Linear-Quadratic-Gaussian (LQG) systems 

All simulations described in the main text are instances of the following general model: 
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where the ,i tε  terms are independent standard normal random variables, and iC  are constant matrices. The sensory 

noise terms tω  are independent multivariate normal random variables with mean 0 and covariance matrix Ωω . The 

initial state 1x  has multivariate normal distribution with mean 1x̂  and covariance 1Σ . The optimal control problem 

is the following: given 1 1 1, , ,... , , , , , ,...k TA B C C H R Q QΣ Ωω , find the control law 

( )1 1 1 1 1ˆ , ,... , ,... ,t t t t− −=u π x u u y y  which minimizes the expected cumulative cost 

( ), 1

T T T
t t t t tt

E Q R
=

+∑ε ω x x u u  over the time interval [1; T]. Time is expressed in units of 10msec, which is the 

discrete time step we use. 

When the system noise in Eq 1 is additive rather than multiplicative, the LQG problem has a well-known 

solution1, which involves recursive linear state estimation (Kalman filtering) and linear mapping from estimated 

states ˆ tx  to optimal control signals tu . In the case of multiplicative noise, we have derived2 the following iterative 

algorithm for solving this problem. The state estimate is updated using a modified Kalman filter which takes into 

account the multiplicative noise. For a given control law tL , the corresponding Kalman filter is: 
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The matrices ˆ, ,t t tK Σ Σe x  correspond to the Kalman gain, the expected estimation error covariance, and the non-

centered covariance of the state estimate. Note that computing the unknown matrices in Eq 2 requires a single 

forward pass through time. 

For a given Kalman filter tK , the optimal control law is: 
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The matrix tL  is the time-varying feedback gain, and ,t tS Se x  are the parameters specifying the optimal cost-to-go 

function (see2 for details). Computing the unknown matrices in Eq 2 requires a single backward pass through time. 

To obtain the Kalman filter and control law optimal with respect to each other, we iterate Eq 2 and 3 until 

convergence. We have found numerically2 that the iteration always converges exponentially, and to the same answer 

(regardless of initialization). If the multiplicative noise in Eq 1 is removed, the algorithm converges after one 

iteration and becomes identical to the classic LQG solution1. 

Note that the above formulation implies a sensory-motor delay of one time step, because the sensory 

feedback is received after control signal has been generated. It is straightforward to modify the problem 

specification so as to include an additional delay of d time steps. This was done by using an augmented state 

[ ]1; ;t t t d tH H− −x x x x  and transforming all matrices accordingly. In particular, the new observation matrix 

H  extracts the component t dH −x  of tx , and new dynamics matrix A  removes t dH −x , shifts the remaining 

sensory readings, and includes tHx  in the next state 1t+x . 
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2. Application to a 2D via-point task 

We now illustrate how the above general framework can be specialized for a via-point task, and explain the 

parameters settings used in the simulations. Consider a 2D point mass 1kgm =  with position ( ) ( ),x yp t p t , 

driven by a pair of actuators that produce forces ( ) ( ),x yf t f t  along the x and y axes respectively (each actuator 

can both pull and push). The force output ( )/x yf t  of each actuator is obtained by applying a first-order linear filter  

( 40msecτ = ) to the corresponding neural control signal ( )/x yu t , polluted with multiplicative noise. In Sim 1-6 

we actually used second-order linear muscle filters3, with time constants 1 2 40msecτ τ= = .  

The task is to pass through a specified via-point ( ) ( )* */ 2 , / 2x yp T p T  in the middle of the movement, 

and then end the movement at a specified end-point ( ) ( )* *,x yp T p T . Therefore the task error will be defined as: 

( ) ( )( ) ( )( ) ( )( )
2 22

, / 2, , ,

1 *
4 i i v i f i

i x y t T T i x y i x y
p t p t w p T w f T

= = = =

 
− + + 

 
∑ ∑ ∑ ∑  

The first term enforces passing through the targets, while the last two terms enforce stopping (i.e. zero velocity and 

force) at time T. The scale factor 1/4 corresponds to the fact that we have 4 task constraints (two positional, one 

velocity, and one force). In simulations with P positional constraints, this scale factor becomes 1/(P+2). The weights 

0.1, 0.01v fw w= =  define the relative importance of stopping; their magnitudes are constant in all simulations, 

and based on the fact that for the tasks of interest, velocities are an order of magnitude larger than displacements, 

and forces are an order of magnitude larger than velocities (expressed in compatible units of m, m/s, N). 

The effort penalty is: 

( ) ( )2 2

1
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x y
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∑  

The scalar r  sets the tradeoff between task error and effort. When r  is made too large, the optimal strategy is not to 

move at all. Therefore we set r  to a value that is not large enough to cause unrealistic negative biases, but still has 

some effect on the simulations. In Sim 1-6 we used 0.002r = ; in the telescopic arm model (Sim 7-10) we had to 
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decrease that parameter to 0.00002r =  because the large mass, gravity, and actuator visco-elasticity required 

much larger control signals. 

We discretize time at 10msect∆ = , and represent the system state with the 10-dimensional column 

vector: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *; ; ; ; ; ; / 2 ; / 2 ; ;t x y x y x y x y x yp t p t p t p t f t f t p T p T p T p T =   
x  

Since we are dealing with an inertial system, the state has to include position and velocity; force is included because 

the linear filters describing the force actuators have their own state (for a second-order filter we need two state 

variables per actuator); the target positions are included (and propagated through time) so that the task error can be 

defined as a function of the state. As explained above, the initial state 1x  is distributed as ( )1 1ˆ ;N Σx . The mean  

1x̂  contains the average initial position, velocity, and force, as well as the target positions. The covariance 1Σ  

encodes the uncertainty of the initial state. In all our simulations the target positions are known exactly (and 

therefore not included in the sensory feedback); however, one could model them as being uncertain, and include 

(noisy) sensory feedback that allows the controller to improve the initial estimate of target positions. The initial state 

was variable (and therefore uncertain) in Sim 5 and 6; everywhere else we used a constant initial state ( 1 0Σ = ). 

The noisy sensory feedback carries information about position, velocity, and force: 

( ) ( ) ( ) ( ) ( ) ( ); ; ; ; ;t x y x y x y tp t p t p t p t f t f t = + y ω  

In Sim 1-6, the feedback was delayed by 4 time steps (in addition to the one-step implicit delay – see Section 1) 

resulting in 50msec delay. In Sim 7-10 no extra delay was introduced. 

The sensory noise terms in the vector ω  are independent 0-mean Gaussians, with standard deviations  

[ ]0.01m; 0.01m; 0.1m/s; 0.1m/s;1N;1Nsσ  

The relative magnitudes of the standard deviations are determined using the above order-of-magnitude reasoning. 

The overall sensory noise magnitude is 0.4sσ =  in Sim 1-6, and 0.5sσ =  in Sim 7-10. 

The control signal is: 

( ) ( );t x yu t u t =  u  

and the multiplicative noise added to the control signal is: 
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Multiplying tu  by the above stochastic matrix produces 2D Gaussian noise with circular covariance, whose 

standard deviation is equal to the length of the vector tu . In Sim 1-6 the scale factor was set to 0.4uσ = , while in 

Sim 7-10 its value was 0.5uσ = . As explained in the main text, the two parameters sσ  and uσ  were adjusted so 

that the overall variability generated by the optimal control law roughly matched all experimental observations we 

model. The noise magnitudes in Sim 1-6 were smaller, because in those simulations we included a sensory-motor 

delay which effectively increases the noise. 

 The discrete-time dynamics of the above system is given by: 
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which is transformed in the form of Eq 1 by the matrices: 
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The sensory feedback matrix is [ ]6 6 6 4I 0x xH = . 

The effort penalty matrix is 2 2I x
rR
T

= . 
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The matrices tQ  specifying the task constraints are 0 for all  / 2,t T T≠ . The task error at the via-point is encoded 

by: 

/ 2

1 . . . . . 1 . . .1 ;
. 1 . . . . . 1 . .4

T
T via via viaQ D D D

− 
= =  − 

 

The task error at the end-point is encoded by: 
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To encode a trajectory-tracking task we would specify targets at many points in time (e.g. P points). In that case, 

keeping all target positions in the state vector is inefficient. Instead, we append the constant 1 to the state vector, and 

enforce the spatial constraints using matrices of the form: 

( )
( )

*1 .1 ;
*2 . 1

xT
t t t t

y

p t
Q D D D

P p t

 − = =
 + − 

 

Note that this approach makes it impossible to model target uncertainty (which we do not model here). 

3. Simulations 

We now describe each of the 10 simulations illustrated in the main text. The matrix notation will no longer be 

shown, but it is straightforward to adapt the above example to each specific model. Note that the parameters 

common to all models were already described; here we only list the task-specific parameters. 

Sim 1. A 2D point mass (1kg) was initialized at position (0.2m; 0.2m), and required to make a movement 

that ends in 50 time steps (stopping as described above). The point mass was driven with two force actuators 

modelled as second-order linear filters. The task error term specified that the movement has to end on the line 

passing through the origin and oriented at -20º: ( ) ( ) ( )( )2
tan 20 50 50x yp p− − . 
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Sim 2. Two 1D points masses (1kg each) were simulated, each driven with one second-order force actuator. 

Initial positions were ( ) ( )1 21 0.1m; 1 0.1mp p= − = . The movement had to stop after 50 time steps (stopping 

enforced as before). The task error term specified that the two points have to end the movement at identical 

locations: ( ) ( )( )2
1 250 50p p− . 

Sim 3. This simulation was identical to the via-point task described in detail above, except that the number 

of via points was varied. Target locations are given in Fig 3A in the main text. In the 5 target condition A we set the 

movement duration to 1520msec as observed experimentally. Then we found numerically the intermediate-target 

passage times that minimized the total expected cost. The optimal passage times (460msec, 750msec, 1050msec) 

were close to the experimental measurements (400msec, 720msec, 1040msec). The passage times for the 21 target 

condition B were set to the times when the average trajectory from condition A passed nearest to each target (i.e. we 

modeled conditions A and B with identical timing).  

Note that the time-window allowed in the experiment (1.2sec - 1.5sec) was measured from the time when 

the hand left a 2 cm diameter start region – at which point hand velocity was already substantial. In the data analysis, 

we defined movement onset as the point in time when hand velocity first exceeded 1cm/sec – and so the measured 

durations appear longer than allowed. 

Sim 4. This simulation was also identical to the above via-point task, except that the spatial error at the 

smaller target was scaled by a factor of 2 – corresponding to the fact that the smaller target diameter was 50% of the 

diameter of the remaining targets. Target locations are given in Fig 3B in the main text. The predefined target 

passage times (550msec, 950msec, 1400msec) were in the observed range. 

Sim 5. A 1kg 2D point mass (the “hand”) started moving from average position (1m, 0.3m), sampled from 

a circular 2D Gaussian with standard deviation 0.04m. The task error term specified a positional constraint (release 

region) at time 750msec and location (0.7m; 0m). The movement had to stop (stopping enforced as before) at time 

900msec and unspecified location. Throwing was modelled by initializing the “ball” with the position and velocity 

of the hand observed at time 750msec. The task error term specified that the ball has to be at the target (2.2m, 0m) 

after flying with constant velocity for 500msec. The locations, times, and initial position variability roughly matched 

those observed experimentally. 
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Sim 6. The average trajectory of the task-optimal feedback controller from Sim 5 was used as a desired 

trajectory for an optimal trajectory-tracking controller. This was done by computing the average positions at 10 

points equally spaced in time, and using them as spatial targets to form the task error term. Stopping was not 

enforced explicitly. The optimal feedback controller for the new task error was then computed using the above 

method. 

Sim 7. The telescopic arm model used in Sim 7-10 is described in Figure 1. The 4-targets task required the 

end-effector to pass through targets (P+0.3m; P+0.3m; P-0.3m; Pm) at times (250msec; 500msec; 750msec; 

1000msec), where P is the initial position of the end-effector (P = M x 0.3m as explained in the figure). Stopping at 

the final target was not required. This task was simulated for mechanical systems with different number (M) of point 

masses. 

Sim 8. The task-optimal controller described in Sim 7 was constructed, and its average trajectory computed 

on several levels of description: end-effector, individual joint “angles”, individual actuator forces, and individual 

control signals. These average trajectories were then used to form optimal trajectory-tracking controllers. The 

control-signal tracking controller was simply an open-loop controller producing the average time-varying control 

signals of the task-optimal controller. For the remaining tracking controllers, the task error specified a target at each 

time step. 

Sim 9. The end-effector of the M=2 system was required to track a specified sinusoid, with modulation +/- 

0.1m, centered at the initial 0.6m position. An end-effector positional target was specified at each time step, for a 

total of 500 time steps. Stopping was not required. A different optimal controller was constructed for each 

oscillation frequency in the range 1.5Hz – 4Hz, at 0.1Hz increments. In the perturbation experiment, an independent 

random number sampled from N(0; 302) was added to each signal, for 1 time step. 

Sim 10. The postural task required the end-effector of the M=2 system to remain at the initial 0.6m position 

indefinitely. The stationary feedback control law was initialized to an open-loop control law, and gradually 

improved using the nonlinear simplex method in Matlab. The cost of each control law was evaluated using a Monte 

Carlo method (100 trials, 2 sec each, first 1 sec discarded). To speed up learning, the seed of the random number 

generator was reset before each evaluation4. Learning was interrupted after 5000 evaluations. Average results from 5 

runs with different seeds are shown in the main text. 

4. Additional analysis of Experiment 1 
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As stated in the main text, the average behavior in Experiment 1 was different between the 5-target condition A and 

the 21-target condition B. Here we test the possibility that the desired trajectory hypothesis can explain the observed 

difference in variability, given the difference in average behavior. For each condition, we built an optimal trajectory-

tracking controller that reproduced the experimentally observed average path, speed profile, and duration. This was 

done by extracting from the average trajectory the locations and passage times of 21 equally spaced (in time) points, 

and building the optimal feedback controller for the resulting tracking task. Then we iteratively adjusted the 

specified target locations, until the average trajectory of the optimal controller matched the observed average 

trajectory. The latter was done iteratively, by adding to each (adjustable) target the vector connecting the data-

extracted target with the nearest point on the average trajectory. The procedure converged in a couple of iterations; 

the resulting average trajectory of the optimal tracking controller was indistinguishable from the average 

experimental trajectory. The paths and speed profiles for each subject, the tracking controllers, and the 5-target 

optimal controller from the main text, are compared in Figure 2A,B. 

 In Figure 2C we plot the positional variance predicted by the two tracking controllers, and the variance 

predicted by the model in the main text. The variability predicted by the tracking controller for condition A is larger 

than the variability of the condition B controller – because the movement in condition A was faster, and therefore 

the multiplicative noise was larger. The difference, however, is a uniform offset rather than a change in modulation. 

In the main text we showed that the variability observed in conditions A and B differs in modulation, i.e. it increases 

at the intermediate targets and decreases at the midpoints between them. Thus the desired trajectory hypothesis 

cannot explain our results. 

5. Analysis of Experiment 2 

The change-in-modulation effect predicted by our model and observed in Experiment 1 was also confirmed by 

reanalazing data from the previously published5 Experiment 2. In that experiment, 8 subjects were asked to move 

through sequences of 6 targets (condition A) or trace smooth curves projected on the table (condition B). Since our 

earlier experimental design pursued different goals, the stimuli were not adjusted so that the average trajectories in 

conditions A and B would match. Therefore the test here is less direct than in Experiment 1. The advantage of 

Experiment 2 is that we presented 6 different target configurations and 8 different smooth curves (in blocks of 10 
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consequtive trials each) – and so any effects due to the specific geometric shape of the movement trajectory should 

average out. 

For each subject and block of trials, we computed the positional variance along the path as described in the 

main text. Then we defined a modulation index, which was the difference between the maximum and minimum 

variance, divided by the mean variance (all computed over the middle 60% of the path). This index of variance 

modulation was larger (p<0.01) in the multiple target condition (2.10 ± 0.11) compared to the curve-tracing 

condition (1.43 ± 0.08). Thus, again, we see that moving through a small number of targets is accomplished by 

allowing increased variability between those targets. 

6. Motor Adaptation 

Optimal feedback control requires optimal state estimation, which in turn reposes on the ability to calibrate the 

internal models underlying the state estimation process.  To account for motor adaptation we therefore consider the 

following natural extension of our theory: suppose that the internal model of the sensory-motor apparatus is 

continuously calibrated, and the feedback control law changes accordingly so as to remain optimal with respect to 

the current set of calibration parameters. What kinds of predictions does this extension make regarding adaptation? 

Unfortunately, in our framework it is difficult to answer such questions in the abstract – we need to specify a 

detailed quantitative model of both the dynamic and kinematic effects of perturbations, including the adaptive 

response of the nervous system to such perturbations. Indeed, in our approach: 1) the relationship between plant 

dynamics and optimal behavior is nonlinear and generally quite complex, such that changes to the dynamics can 

yield non-intuitive changes to optimal behavior; 2) the adapted behavior is optimal with respect to the peripheral 

changes that the nervous system believes to have taken place – which can be quite different from the experimental 

perturbations as conceived of by the experimenter, especially when the latter are ecologically implausible and 

experienced only briefly. 

As an illustration of these issues, and the complexities that they introduce into the interpretation of 

experimental data, consider a nonlinear visual perturbation that makes straight reaching movements appear curved, 

but does not affect the perceived endpoint position6. In this setting subjects show partial (approximately 25%) 

adaptation of the trajectory.  One might think that our theory predicts no adaptation, because our cost function only 

specifies a desired final state and not a desired trajectory. But in fact there are a variety of equally plausible 
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assumptions about the response of the nervous system to this visual perturbation that yield quite different predictions 

in this case, and the proper interpretation of the experiment is far from clear. Let us carefully consider the events that 

take place – not from the experimenter's point of view, but from the point of view of the subject's visuo-motor 

system. A systematic discrepancy is detected between the expected and received visual feedback, and therefore an 

internal model needs to be calibrated in order to account for this oddity. But which model? Is it the generative model 

of how sensory data reflects the system state, or is it the dynamic model of how the system state evolves as a 

function of the control signals? From the point of view of the experimenter, the correct interpretation is to adapt the 

generative model alone, in which case the nervous system should believe that the physical movement proceeds as 

normal, predicting a lack of adaptation under any hypothesis of motor control. But the visual distortion introduced 

in6 is extremely unlikely to occur in the real world. Indeed, the fact that there is partial adaptation of the trajectory 

shows that the discrepancy is at least partially interpreted as a dynamic change. That is, the nervous system believes 

that the same control signals now cause different physical movements. 

Is the optimal control law for the inferred dynamics different from baseline? It probably is. Even if the 

inferred dynamical change does not cause endpoint bias under the baseline control law, it may lead to suboptimal 

endpoint variance as well as suboptimal energy consumption – both of which are penalized by our cost function. 

Indeed, in unpublished preliminary work we have designed two different force fields that (in conjunction with the 

baseline optimal feedback controller) can qualitatively explain the perceived curvature in6. Both of these force fields 

lead to changes in the optimal feedback controller, and both yield partial adaptation in accordance with the 

experimental results. Of course there may exist other force fields that are consistent with the visual perturbation and 

do not cause adaptation. Evaluating these possibilities will require the development of a detailed quantitative model, 

comparison to a range of experimental data, and great care in teasing apart the complex interactions between 

estimation, control and adaptation. 
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Figure 1. M point masses (1kg each) were sliding up and down a frictionless vertical pole in the presence of gravity 
(9.8 m/sec2). Points 0:1, 1:2, … M-1:M (0 being the immovable base) were connected with “single joint” linear 
actuators that could both pull and push. The lengths X1, X2, …XM  of the single-joint actuators correspond to joint 
“angles”. Points 0:2, … M-2:M are connected with “double-joint” actuators. The last point mass (heavy outline), at 
position X1 + X2 + … + XM, was defined as the end-effector. The 2 M - 1  actuators had built-in viscosity (10 
Nsec/m) and elasticity (50 N/m), with resting lengths of 0.3m for the single-joint actuators and 0.6m for the double-
joint actuators. The system was always initialized at the resting lengths of all actuators; note however that the 
presence of gravity required control signals in order to maintain that configuration. All actuators were modelled as 
first-order linear filters (40msec time constant), each polluted with independent multiplicative noise (50% of the 
control signal). The noisy feedback included the length, velocity, and force output of each actuator. The effort 
penalty term was 0.00002r =  as explained above. 
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Figure 2. 
A– The average trajectory for each subject in each condition (conditon A – top, condition B – bottom) is shown in 
grey. Circles mark the target locations that the subjects saw during the experiment. Red-dotted and green-dashed 
lines are the average trajectories of the two trajectory-tracking controllers designed to reproduce the average 
behavior of the subjects (see text). Black is the average trajectory for the optimal controller in condition A described 
in the main text.  B– Average speed profiles for each subject and each simulation. Average movement duration 
(determined using a 1cm/sec velocity threshold for start and stop) was 1520msec in condition A, and 1660msec in 
condition B; the movement duration for each subject was scaled to match the average duration in the corresponding 
condition. C– Positional variance along the path for each model (variance was computed as described in the main 
text). 
 
 


