
c©Copyright 2013

Mingyuan Zhong

Value Function Approximation Methods for Linearly-solvable Markov
Decision Process

Mingyuan Zhong

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2013

Reading Committee:

Emanual Todorov, Chair

Randy Leveque

Eric Shea-Brown

Program Authorized to Offer Degree:
Applied Mathematics

University of Washington

Abstract

Value Function Approximation Methods for Linearly-solvable Markov Decision Process

Mingyuan Zhong

Chair of the Supervisory Committee:

Professor Emanual Todorov

Department of Applied Mathematics

Optimal control provides an appealing machinery to complete complicated control tasks with

limited prior knowledge. Both global methods and online trajectory optimization methods

are powerful techniques for solving optimal control problems; however, each has limitations.

The global methods are directly or indirectly based on the Bellman equation, which orig-

inates from dynamical programming. Finding the solution of Bellman equation, the value

function, or cost-to-go function, suffers from multiple difficulties, including the curse of

dimensionality. In the linearly-solvable Markov Decision Process (LMDP) framework, the

Bellman equation can be linearized despite nonlinearity in the stochastic dynamical mod-

els. This fact permits efficient algorithms and motivates specialized function approximation

schemes.

In the average-cost setting, the Bellman equation in LMDP can be reduced to computing

the principal eigenfunction of a linear operator. To solve for the value function of the Bell-

man equation in this cases, we designed two methods, moving least squares approximation

and aggregation methods, to avoid matrix factorization and take advantage of sparsity by

using efficient iterative solvers. In the moving least square approximation methods, value

function is approximated by linear basis constructed from moving least squares fitting. In

the aggregation methods, LMDP is approximated by using soft state aggregation over a

continuous space. Adaptive schemes for basis placement are developed to provide higher

resolution at the regions of state space that are visited most often. Numerical results are

provided.

Approximating value function is not sufficient to apply LMDP in more realistic tasks.

We demonstrated that value function methods may require an unrealistic number of base

functions to control certain dynamical systems. In order to mitigate the undesirable prop-

erties of local and global methods, we explore the possibility of combining value function

approximation methods in LMDP with model predictive control (MPC). Exploiting both

the value function and the policy generated by solving the LMDP, MPC is able to perform

at a level similar to that of MPC alone with long time horizon, but now we may drastically

shorten the time horizon of MPC. This also allows LMDP value function approximation

methods to be applied to more problems. The results of the implementation of these meth-

ods show that global and local methods can and should be combined in real applications to

benefit both.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

1.1 Prologue: optimality . 1

1.2 Optimal control and robotics . 2

1.3 Numerical methods for optimal control . 4

1.4 Contributions . 5

1.5 Outline . 5

Chapter 2: Background . 6

2.1 Classical control theory and methods . 6

2.2 Optimal control theory . 8

2.3 Numerical methods for optimal control . 13

2.4 Markov decision process . 16

Chapter 3: Linearly Solvable Markov Decision Process 21

3.1 Linearly-solvable MDPs . 21

3.2 Linearly-solvable controlled diffusion . 23

3.3 Numerical methods for value function approximation in LMDP 24

3.4 Other works in LMDP framework . 25

Chapter 4: Moving Least Squares approximation for Linearly-solvable MDP . . . 27

4.1 Introduction . 27

4.2 Moving least squares and base function construction 28

4.3 Solution method . 34

4.4 Numerical results . 45

4.5 Conclusion . 55

Chapter 5: Aggregation Methods for Linearly-solvable MDP 57

5.1 Introduction . 57

i

5.2 Soft state aggregation scheme . 58

5.3 Numerical results . 63

5.4 Summary . 67

5.5 Future works . 68

Chapter 6: Limitations of LMDP global methods 69

6.1 Alternative function approximation schemes 69

6.2 Limitations of value function scheme . 73

6.3 Possible ways to apply LMDP in more applications 81

Chapter 7: Model Predictive Control and LMDP-based Value Function Approxi-
mation . 83

7.1 Background . 83

7.2 Model Predictive Control and LMDP . 85

7.3 Numerical results . 88

7.4 Conclusions and future work . 91

Chapter 8: Summary and discussions . 94

8.1 Summary . 94

8.2 Applications for value function methods in Linearly solvable framework . . . 95

8.3 Base function in value function approximation 96

8.4 Combining MPC with value function approximation 96

8.5 Future direction . 97

Appendix A: Details of test problems . 104

A.1 Car-on-the-hill . 104

A.2 Coupling independent masses . 105

A.3 2-link arm and acrobot . 106

A.4 Cart-pole . 108

ii

LIST OF FIGURES

Figure Number Page

4.1 Illustration of MLS basis functions . 32

4.2 Results for the car-on-the-hill model with average-cost setting. 47

4.3 Results for the car-on-a-hill probelm, discounted cost setting. 48

4.4 Results for the car-on-the-hill model with first-exit setting. 48

4.5 Results for the car-on-the-hill model with finite-horizon setting. 49

4.6 Results for N spring-mass model with different dimensionalities 51

4.7 Demonstration of the adaptive scheme. 52

5.1 Shape of base functions in aggregation method 60

5.2 Results for car-on-a-hill . 64

5.3 Results for N spring-mass model with different dimensionalities 66

6.1 Combined impact of insufficient base functions and instability of passive dy-
namics . 78

6.2 Misuse of basis functions contribute to unexpected outcomes in problems
with unstable passive dynamics . 80

7.1 Results for swing up and stabilization on acrobot 91

7.2 Demonstration of the actual movement of acrobot under different approaches. 92

A.1 Two Link Arm . 107

A.2 Cart-Pole . 108

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Emanuel Todorov. I can hardly find

words to describe how grateful I am to him. In a nutshell, I learned the specifics of control,

optimization, research and development, and many aspects of life from him. His guidance

and support made my work possible, his enthusiasm always inspires my research and me

through the worst of times.

I would like to thank all other members of the committee, Professor Randall LeVeque,

Professor Eric Shea-Brown and Professor Brian Fabien. I am honored to have been advised

by such great individuals. I really enjoyed courses I took from Professor LeVeque, and I

appreciate his efforts on all students in the department including me.

I would like to thank the entire movement control lab. Everyone in the lab are really

helpful and insightful. I especially want to thank Dvijotham Krishnamurthy, Dr. Evan-

gelos Theodorou, Dr. Yuval Tassa, Dr. Tom Erez, and Mikala Johnson for their helpful

discussions and cooperation. I would also sincerely thank Zhe Xu, Vikash Kumar, Paul

Kulchenko, and many others for supports in other aspects. I am really grateful to be part

of the lab, and I love everyone in the lab.

I would like to thank my family who continue to support me. Their support and en-

couragement have driven me forward through the worst of times.

I would like to thank the entire department of Applied Mathematics. I appreciate the

courses I took from Professor Bernard Deconinck, Professor Robert O’Malley, Professor

Loyce Adams and many other professors in the Applied Mathematics department, and I

am grateful for all supports from them. I would like to thank Shari Jacobs, Keshanie

Dissanayake, and many others for supporting.

I also would like to thank many other people in the University of Washington. I especially

want to thank Professor Paul Tseng for optimization courses I took under his guid and I

iv

am so sadden that I cannot say thank you to him personally any more.

I would also like to thank the National Science Foundation for its support.

v

DEDICATION

To my parents and my late grandmother

vi

1

Chapter 1

INTRODUCTION

1.1 Prologue: optimality

Optimality is perhaps one of the most widespread concepts in our daily life. For example, in

general, both rational businesspersons and customers tend to maximize profit and minimize

cost. People are likely to believe events that most likely happened. The intent to maximize

“benefits” also exists in most biological systems, and it is one of the key elements of “decision

making”.

Scientists have discovered that many processes can be described in the language of opti-

mality (i.e., maximizing or minimizing a certain quantity). One of the earliest attempts at

optimality is Fermat’s Principle in optics. This principle states that the path taken between

two points by a ray of light is the path that can be traversed in the least amount of time.

Fermat’s Principle is not the cause of the reflection and refraction behaviors it describes,

yet it provides a simple mathematical description and calculation. Later, the principle of

least action was proposed and serves as the basis for the Lagrangian and Hamiltonian me-

chanics, which expand the application of traditional mechanic to more complicated systems

and provides the mathematical basis for modern physics.

Optimality helps to explain complicated decisions behaviors. In microeconomics and

finance, decisions are based on how to maximizing “utilities”. Optimality may at least help

to explain behaviors qualitatively. However, “utilities” are not well-defined quantities and

are hard to obtain quantitatively and may differ from individuals, making the optimality

less strict.

Specifically, optimality principles are found in sensorimotor control in biological systems[53],

and they may work as an analog of those “first principles” in physics. The optimality prin-

ciples in sensorimotor control may help us generate a telescopic view of biological processes

within complicated mechanisms and may shed light on the movement control of robotics.

2

When we drive a car, we do our best to ensure a safe, comfortable, and efficient journey,

rather than following instructions about how to manipulate steering wheels and pedals.

When we are instructing a robot to drive, should we micromanage the robot by telling it

every detail, or should we invent intelligent control tools and allow robots to decide those

details automatically? Optimality is the answer for how to achieve complicated control

tasks.

Many mathematical tools have been invented to enable works based on optimality. Cal-

culus of variations, a field of mathematical analysis that deals with maximizing or minimiz-

ing functions, serves as the basis of the Lagrangian and Hamiltonian mechanics. Mathemat-

ical optimization provides numerous numerical methods to find the optimal value. Ideally,

when a real problem is expressed in optimization, mathematical optimization can automat-

ically find the optimal value and solve the problem.

In this thesis, we propose to study the value function approximation method in the

theoretical framework of optimal control, where control design and optimality are brought

together.

1.2 Optimal control and robotics

Optimal control[38] deals with the problem of finding a control law for a given system such

that a certain optimality criterion is achieved. An optimal control problem is formulated as

a control problem with a cost function that is a function of state and control variables. The

optimal control for a system describes the paths of the control variables or the function of

control variables depending on the states and time that minimize the cost function. The

optimal control can be obtained by using Pontryagin’s maximum principle or by solving the

Bellman equation (including the Hamitonian-Jacobi-Bellman equation).

Research in optimal control started in the 1950s and includes applications in multiple

fields other than control systems or robotics. For example, as proposed by Nobel laureate

in Economics Robert C. Merton, Merton’s portfolio problem [31] is a stochastic optimal

control problem with an analytical solution describing the decision of an investor about

how much to consume and how much to allocate between stocks and a risk-free asset over

a time period.

3

In the field of computer graphics, motions of characters can be generated through op-

timal control directly or indirectly. Examples include human locomotion [27], locomotion

of artificial animals[58] and hand manipulation of objects[28]. These methods use optimal

control directly or indirectly to expedite the control design of characters in animation, and

will profoundly benefit the movie and video game industries. On the other hand, especially

in movie production, those methods usually do not really need to run algorithms as fast as

physical world, and they do not need to deal with noises and inaccuracies arising in reality,

so optimal control in computer graphics is easier than that of the physical world.

Optimal control originates from and is widely used in the control systems and robotics.

The result of a special class of optimal control problems, Linear Quadratic Regulator(LQR),

is widely used. Certain optimal control problems, such as minimum jerk[20], have analytical

solutions for the trajectory. More general optimal control results without such analytical

solutions include but are not limited to helicopter[1, 2] and pingpong[26].

Optimal control may have different goals in different circumstances. In problems with

sufficient actuators, control tasks may be easy and optimality is likely to explain behav-

iors under redundancy. In those cases, optimal control can be used to actually mini-

mize/maximize certain meaningful quantities such as fuel efficiency, time to reach target,

and so on. Alternatively, when the controller is difficult to design, optimal control is used to

find a feasible solution. In the second case, the exact form of the cost function of a “good”

controller is unknown.

Certain control tasks such as locomotion are still hard to design today, and optimal

control clearly can play a significant role in the design process. Real-time control requires

a method that computes faster than the physical world, which motivates more efficient

optimal control methods. The rapid development of computational infrastructures and

efficient physical simulators [56] gradually make these possible, yet efficient optimal control

methods are still demanding. A special class of optimal control problems can linearize

the equations. We would like to explore the numerical methods for the value function

approximation approach in such problems, and we hope research in this field will contribute

to our long-term goal: automate control design to intelligently achieve complicated control

tasks such as locomotion.

4

1.3 Numerical methods for optimal control

Due to the complexity and nonlinearity of control tasks, optimal control in applications is

frequently solved by numerical algorithms. Similar to the theoretical basis of optimal con-

trol, the Pontryagin’s maximum principle and the Bellman equation, the numerical methods

for optimal control can also be divided into two categories: local methods and global meth-

ods. Local methods solve for a trajectory, and global methods solve for a control policy

that is dependent on state variables.

Local methods are widely used in applications. They are mostly based on Pontryagin’s

maximum principle but some works include local methods based on Bellman equations such

as iLQG or DDP. It generally scales better in systems with high degrees of freedom, but

its efficiency is significantly affected by the length of the planned trajectory. The downside

of local methods are the following: (1) the solution may converge to a local minimum; (2)

local methods consider only the system around the trajectory, so the resulting controller

may not be sufficiently robust during perturbations.

On the other hand, global methods may avoid local minima, but they may suffer from

the curse of dimensionality. They are generally based on the Bellman equation or its variants

and solve for indirect quantities such as the value function, Q function, and so forth, or direct

quantities such as control policy. Accurately expressing those functions in a control problem

is generally prohibitive due to high dimensionality. Successful global methods generally

require carefully approximating the value function or other globally defined functions, the

skills of which are not transferable between dynamical systems. Among them, value function

approximation, which is based on value iteration, is the fastest of global methods.

Value function approximations suffer from the curse of dimensionality, while the Linearly-

solvable Markov Decision Process(LMDP)[25, 47, 48] avoids discretization in control space,

thus making the problem more tangible. This fact makes designing methods for value

function approximation in LMDP promising.

5

1.4 Contributions

In this thesis, we aim to contribute to answering the big question: how to automate control

design in complicated control problems such as locomotion. We focus on the value function

approximation method in the global method of optimal control in the Linearly-solvable

Markov Decision Process(LMDP). We would like to design numerical methods tailored to

solve LMDP problems efficiently and reliably, and explore their applications as well as their

limitations.

First, this thesis explores function approximation methods, moving-least-square

approximations[61] and aggregation methods [60], which are tailored to solve for the leading

eigenpair of a linear approximator in order to solve for the value function of LMDP problems.

These methods exploit the benefits brought by LMDP framework and enrich both value

function approximation methods.

Second, this thesis demonstrates limitations in value function approaches of LMDP. It

also proposes methods to detour such limitations. Notably, one way to expand LMDP’s

application is to combine it with MPC[59]. This combination improves both MPC and

LMDP methods.

1.5 Outline

In this thesis, we will first introduce background materials in Chapter 2. Then we will

illustrate the basics of Linearly-solvable MDP in Chapter 3. After that, we will introduce

our major methods: moving least squares in Chapter 4 and aggregation methods in Chapter

5. Then we will discuss limitations of LMDP based value function approximation methods

in Chapter 6. Finally, in Chapter 7 we will combine MPC with the aggregation method in

applications such as acrobot.

6

Chapter 2

BACKGROUND

In this chapter, we will first briefly review traditional results in control theory. Then we

will provide a big picture of optimal control and numerical methods. Finally we will focus

on the Markov Decision Process and derive the Bellman equations for stochastic optimal

control.

2.1 Classical control theory and methods

2.1.1 Overview

Control theory [33] is an interdisciplinary branch of engineering and mathematics that deals

with the behavior of dynamical systems with inputs. The inputs and outputs of a continuous

control system are generally related by differential equations. If those dynamical systems are

linear with constant coefficients, based on Laplace transformation, the differential equations

can be converted to algebraic equations with polynomials and the solution can be computed

analytically. This provides the basis for classical control theory, yet it is in theory limited

to linear systems.

In contrast to the frequency domain analysis of the classical control theory described

above, modern control theory utilizes the time-domain state space representation, a math-

ematical model of a physical system as a set of input, output, and state variables related

by first-order differential equations. The time-domain approach (also known as the “state

space representation”) provides a convenient and compact way to model and analyze sys-

tems with multiple inputs and outputs. Unlike the frequency domain approach, the use of

the state space representation is not limited to systems with linear components and zero

initial conditions.

7

2.1.2 PID control

PID control is one of the most widely used controllers in industry. A PID controller considers

an “error” value, which is the difference between a measured variable and a desired value.

The controller attempts to minimize the error by adjusting the inputs. The input/control

signal u(t) is determined by

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t), (2.1)

where e(t) represents the error term. The tuning parameters are (1) Kp proportional gain,

(2) Ki integral gain (3) Kd Derivative gain. If Kd = 0, this controller becomes a PI con-

troller. Similarly, if Ki = 0, this controller becomes a PD controller. PID controller design

requires carefully tuning those parameters, which can be done manually or automatically.

A PID controller can only control a system that is fully actuated, and it requires a

“desired value”. In some realistic tasks, desired value or reference trajectory may be either

absent or unknown. So although PID controllers are widely used, it is still helpful to improve

other methods to control more complicated systems.

2.1.3 Stability

Stability is the most important feature of a desired controller. In a linear dynamical sys-

tem, stability can be judged easily. There are extensive results in judging the stability of

complicated linear systems, and commercial softwares are available to adjust parameters to

achieve stability.

In a nonlinear system, stability can be judged by the Lyapunov function Λ(x), which

is 0 at equilibrium (Λ(x) = 0) and decreases over time d
dtΛ(x) ≤ 0. In practice, finding a

Lyapunov function is very hard and it is even hard to find a controlled-Lyapunov function.

For a control system, a Lyapunov function may be found with SOS (sums of squares)

programming[13, 24, 30, 34, 35]. The Lyapunov function is different from the value function

we are going to describe later, (To avoid confusion, we used Λ to represent Lyapunov

function, which is more often expressed in V in other literature).

8

2.1.4 Controllability and Under-actuation

The concept of controllability denotes the ability to move a system around in its entire

configuration space using only certain admissible manipulations.

If an external input can move the internal state of a system from any initial state to any

other final state in a finite time interval, the system is controllable.

Different systems’ controllability can be judged by different criteria, and they are related

to system’s behavior over a time horizon. For example, in a linear-time-invariant system,

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rr, the controllability matrix is given by

R =
[
BAB ... An−1B

]
, (2.2)

and the system is controllable if R has full rank.

Any system in engineering should be controllable in the desired state space, but the

controllability of a system does not describe the difficulty of the control task in that system.

For example, when learning to drive, the skill of parallel parking is a difficult skill to learn

because a car cannot move left or right without moving forward or backward. On the other

hand, parallel parking is possible; in the formal language, the dynamical system of a car is

controllable.

Underactuation[46] is an extreme of such case. It describes a mechanical device that

has a lower number of actuators than degrees of freedom. That makes the control design

harder (PID controller cannot be directly applied here). On the other hand, it may make

the control design more efficient. Underactuation is a key feature of a walking robot, which

cannot fully control the contact force between the ground and itself.

2.2 Optimal control theory

2.2.1 Overview

Optimal control[38, 54] is a mathematical branch with applications in science engineering

and even finance. In theory it is an extension of the calculus of variations, and it yields

control policies based on mathematical optimization methods. The development of this

field dates back to 1950s by Lev Pontryagin and his collaborators in the Soviet Union and

9

Richard Bellman and his collaborators in the United States.

Let x denote the state of a dynamical system and u denotes the action that the controller

chooses. Let f(x,u) represents the state results from applying action u at state x, and

l(x,u) represents the cost of applying action u in state x. The problem can be formulated

by: finding a control sequence u0, ...,un−1 and a state sequence x0, ...,xn to minimize the

total cost J(x,u)

J(x0,u0) = Σn−1
i=0 l(xi,ui). (2.3)

In continuous time setting, the problem can be formulated similarly by replacing summa-

tion with an integral: finding a control sequence u(t) and a state sequence x(t) to minimize

the total cost J(x,u)

J(x(0),u(0)) =

∫ t

0
l(x(τ),u(τ))dτ, (2.4)

where l(x(τ),u(τ)) is cost rate describing the rate of accumulating cost.

The optimization conditions of total cost J functions leads to either the Bellman equation

or the maximum principle. We will briefly introduce them in this section and provide a more

formal explanation of the Bellman equation in our next section about the Markov Decision

Process.

2.2.2 Bellman equation

If a given state-action sequence xi, ...,xn,ui, ...,un−1 is optimal, then the remaining sequence

removing the first state and action xi+1, ...,xn,ui+1, ...,un−1 is also optimal. This is known

as the Bellman optimality principle, and this principle enables us to solve this question via

dynamic programming (DP).

This principle relies rely on a function summarizing the cumulative cost of subsequence,

the optimal value function (or optimal cost-to-go function) V (x), which denotes the min-

imal total cost for completing the task starting from state x. Then value function can be

calculated backwards as follows: considering every action available at the current state,

10

adding its immediate cost to the optimal value of the resulting next state, and choosing an

action for which the sum is minimal. This can be summarized in the following equation

v(x) = min
u

[l(x,u) + v(f(x,u))] , (2.5)

u(x) = arg min
u

[l(x,u) + v(f(x,u))] . (2.6)

(2.5) and (2.6) are called Bellman equations. Bellman equation differs in formulation, and

we will discuss in greater details in the MDP section.

In continuous-time formulation, the Bellman equation will become the Hamiltonian-

Jacobi-Bellman equation, which is a partial differential equation.

−vt(x) = min
u

[
l(x,u) + f(x, u)T vx(f(x,u))

]
, (2.7)

u(x) = arg min
u

[
l(x,u) + f(x, u)T vx(f(x,u))

]
. (2.8)

We will provide more details about variations of Bellman equations according to different

ways to define total cost J in later sections. Bellman equation or HJB equation is easy to

derive, and the hard part is finding the value function.

2.2.3 Maximum principle

Alternatively, we can find a necessary condition for the optimality of trajectory.

In continuous-time formulation, define a co-state p(t) corresponding to vx in the HJB

equation. The Hamiltonian function is defined as H(x,u,p, t) = l(x,u, t) + f(x,u)Tp and

the Maximum principle is expressed as

ẋ(t) =
∂

∂p
H(x,u,p, t) (2.9)

−ṗ(t) =
∂

∂x
H(x,u,p, t)

u(t) = arg min
u
H(x,u,p, t)

Similar results exist in discrete cases. Compared to the HJB equation, the maximum

principle leaves an ordinary differential equation and avoids solving for a function defined

on the entire state space. The computational complexity for ODE solutions based on the

11

maximum principle grows linearly with the state dimensionality in ideal cases, so the curse

of dimensionality is avoided. One drawback is that maximum principle may have multiple

solutions (one of which is the optimal solution). Here is an example. When using maximum

principle to control a robot to reach arbitrary choice of multiple targets, plans to reach

each of those targets may be locally optimal. Another drawback is that the solution to the

maximum principle is valid for a single initial state, and if the initial state were to change

we would have to solve the problem again.

2.2.4 LQR- a special case

In a very special case, where dynamics is linear and cost function l is quadratic to both

state and control variables, the Bellman equation can be solved analytically using the Linear

Riccati equation. Imagine the following continuous-time linear deterministic optimal control

problem

dynamics : ẋ = Ax +Bu (2.10)

cost rate : l(x,u) =
1

2
uTRu +

1

2
xTQx (2.11)

(2.12)

The value function is

v(x, t) = xTV (t)x/2, (2.13)

and the control policy is

u(x, t) = −R−1BTV (t)x = −R−1BT vx(x, t). (2.14)

The matrix V (t) is symmetric and it is determined by the continuous-time linear Riccati

equation

−V̇ (t) = Q+ATV (t) + V (t)A− V (t)BR−1BTV (t). (2.15)

In discrete-time, it can also be formulated into the Riccati equation for matrix V . These

results give us the analytical results of the Bellman equation and can be used directly

without mathematical optimization algorithms. Because of this, LQR is widely used in

12

applications where linearization will not bring significant error. (In Matlab, continuous-

time and discrete-time linear Riccati equations can be solved by command “care” or “dare”

respectively.)

2.2.5 Stochastic optimal control

We discussed optimal control in deterministic dynamical systems above. In optimal control

problems in the stochastic dynamical system, the results above will be further adjusted.

The Bellman equation approaches will not be very different from those of the deterministic

case. The Bellman equation will contain expectation terms, and the HJB equation becomes

a second-order PDE. If the noise is gaussian, LQR will becomes LQG(Linear quadratic

gaussian control), yields exactly the same Riccati equation as in deterministic cases. On

the other hand, maximum principle will cease to remain an ODE, which means we will

normally need a global value function in stochastic cases.

There are benefits considering a control problem in stochastic optimal control rather

than the deterministic counterparts. First, stochastic dynamical models directly arise from

dynamical models with uncertainty, and stochastic optimal control helps to control the

system when noise is present. In contrast to applications in space(such as controlling satel-

lites), where optimal control was first used, in applications involving real robots, noise in

both control and estimation can dramatically affect control policy. Moreover, stochastic

dynamical models bring computational convenience. For example, stochastic optimal con-

trol smoothes the value function[44] and handles collision better[45] than the deterministic

optimal control. Linearly-solvable MDP, which is based on stochastic models, linearizes the

Bellman equation despite dynamics being nonlinear (see Chapter 3).

2.2.6 Discrete time vs. continuous time formulation

Traditionally, optimal control is based on continuous time formulation because physical

models are defined in continuous time. On the other hand, discrete time formulation can

handle cases with discontinuous dynamics. Discontinuous dynamics naturally arises in tasks

such as object manipulation and walking. Moreover, when relying on a computer to control

13

a system, the signal is discrete in time. In the later chapters we will mostly focus on discrete

time formulation.

2.2.7 Cost function

The cost functions of optimal controls are defined to achieve desired tasks. There are two

ways to look at cost function and the goal of optimal control. If the model is accurate and

the controller is easy to design, optimal control can be used to actually minimize/maximize

certain meaningful quantities such as fuel efficiency, time to reach target and so on. In these

cases, cost functions are defined carefully to represent such goals. Alternatively, when the

controller is difficult to design, cost functions are designed to help the optimal controller

to discover a feasible solution. In this case, the cost function is complicated. For example,

when controlling a robot, the least desired behavior is falling off, yet we may still want it to

go to certain target, so the cost function includes information about both safety and target-

reaching strategies. Designing cost function in these cases is difficult and requires carefully

tuning the parameters. Alternatively, inverse optimal control learns and constructs cost

function automatically. In the later chapters, we will use arbitrarily designed and carefully

tuned cost functions.

2.3 Numerical methods for optimal control

2.3.1 Overview

Similar to the two pillars in optimal control theory, methods in the optimal control can be

classified into local methods and global methods. Here we briefly introduce major methods

classified into two categories.

2.3.2 Local methods

Local methods, or trajectory-based methods, solve for a series of states and control signal

over a time horizon. The solution of these algorithms is state control sequence u0, ...,un−1,

x0, ...,xn

Naturally the maximum principle leads to these methods. It can be formulated as a

14

numerical solution of a boundary value problem with a final state fixed, or an initial value

problem with final cost fixed.

In certain contexts, this approach is directly derived from state-control representation. It

minimizes total cost J directly, subject to constraints on the dynamical model. The solution

may not be feasible due to violations of the physical model, although minor violations of

the physical model may be OK in certain applications.

Alternatively, certain methods, such as iLQG[52] or DDP[23], are based on local quadratic

approximation of the Bellman equation instead. They apply a series of Bellman equation

over the future trajectory and use tricks to update policy without violating local approxi-

mation.

Local methods avoid the curse of dimensionality caused by approximating a function

over the entire state space; they are very powerful and have proven performance in both

simulation and real robots. On the other hand, local methods have several drawbacks.

(1) Local methods need good initialization. Local methods applied on practical problems

normally form a non-convex optimization problem, so good initial solutions are crucial to

performance. This is especially difficult in certain problems such as underactuated problems,

where meaningful initial control and state sequences are very hard to find. (2) Local methods

lack feedback. A local method solves only for a trajectory from an initial state, but in

reality, both estimator and actuators bring errors to the system and the future steps can

hardly remain exactly as planned. To recover from diverging from the planned trajectory, a

special class of local methods, called receding horizon control, or model predictive control,

is proposed. It uses only the first control signal at each time and solves the problem again

with the local method in a new time horizon. This provides feedback towards errors, but

the resolve step also makes MPC slower than local methods without resolving the planned

trajectory.

15

2.3.3 Global methods

Overview

Global methods generally are based on the Bellman equation or its variants[10, 11, 41]. They

approximate certain functions defined on the entire state, and/or control space and in most

cases it eventually solves for a control signal dependent on state u(x). The time-invariant

feature brings convenience and requires less storage, but the history of previous steps is also

absent in u(x). Global methods attempting to express the time-dependent control signal

u(x, t) may carry time-dependent control policy back, but it requires much more storage or

a parameterized form.

Model-based vs model-free

One way to classify global methods is by the existence of a dynamical model. Assuming

we have an accurate dynamical model, we use methods such as value iteration or policy

iteration, which are directly derived from the Bellman equation. In value iteration, the

value function v(x) is expressed globally with a function approximator. The algorithm

iteratively updates v(x) until it converges. The control policy u(x) is therefore obtained by

the arg min operator. In policy iteration, both v(x) and u(x) are expressed globally with

function approximators. The algorithms iteratively update both v(x) and u(x) until u(x)

converges.

The dynamical model for an actual robot may be very complicated with unknown param-

eters. Such complexity may be overcome by assuming that we do not have any dynamical

model and constructing global methods with actual data. These methods are called rein-

forcement learning, and some such methods in reinforcement learning rely on the quantity Q

function Q(x, u), which is related to the value function as v(x) = minuQ(x, u). Model-free

methods are normally slower but can deal with errors in dynamical models. Since dynamical

models and corresponding software for complicated systems such as humanoid are normally

available yet inaccurate; there is no reason to always start from scratch. Model-based

methods can be used as a warm start to model-free methods.

16

Direct vs indirect

Certain methods attempt to approximate control policy directly to avoid errors caused by

retrieving policy from either hte value function v(x) or the Q function Q(x, u). Examples

are policy search methods[32] and policy gradient methods[40]. Direct methods may require

more storage and are slower than their indirect counterparts focusing on the value function

or Q function.

Curse of dimensionality

The biggest challenge for global methods is the curse of dimensionality. In robotics, the

dimensionality of state space is usually high. Therefore it is prohibitive to represent a

real-valued or vector-valued function over the entire state space (or combined state and

control space) with grids (storage requirement growing exponentially with the increase of

dimensionality). The difficulty can be lessened by dimensionality reduction or solved using

the Bellman equation analytically when possible (e.g. LQR).

2.4 Markov decision process

2.4.1 Markov decision process and Bellman equation

The Markov Decision Process is a stochastic optimal control in discrete state space with

discrete time steps. It provides the mathematical foundation for a decision making process

where outcomes are partially random and partially controlled. It is used in a wide area of

disciplines, including robotics, economics, and manufacturing.

Definition

The Markov Decision Process is a framework describing a discrete time stochastic control

process. MDP can be expressed as a 4-tuple (S, A, P, R), which is described below. (Some

contexts use 5-tuple, but the meanings are similar.)

1. S is a set of states.

2. A is a set of available actions.

17

3. P(s’, a, s) represents the transition probability.

4. R(s’, a, s) represents the rewards at each time step.

At each time step, the process is in some state s ∈ S, and the agent (decision maker) may

choose any action a that is available in state s. At the next step, the process randomly moves

into a new state s′ ∈ S, and gives the agent a corresponding reward R(s, a, s′) (rewards can

be understood as negative cost).

The transition probability between current state s and the next step state s′, P (s′|s, a)

is influenced by both current state s and action a, but it is irrelevant to all previous states

and actions. Thus the state transition of MDP processes the Markov property. In other

words, Markov Decision Process (MDP) is memoryless.

MDP is an extension to Markov chain; if there is only one action available, MDP will

reduce itself to a Markov chain. The difference is the addition of actions and rewards, which

represent the decision maker’s available actions and their outcomes.

Problem

MDP seek to find a policy π : S → A maximizing the accumulated rewards (minimizing

accumulated costs) over time in some way. π specifies the action the agent will make at each

state s. Different ways to accumulate rewards create different formulations of the Bellman

equation, which we will explain in greater details later. The accumulated cost is called value

function or cost-to-go function.

Let’s take the discounted cost infinite horizon formulation as an example. In this case,

the value function is accumulated as Σ∞t=0γ
tR(st, π(st), st+1),

γ is the discount factor that satisfies 0 < γ < 1. γ represents to what extent we want to

discount the outcomes of future actions.

Bellman equation

Solving for optimal policy π is possible through either dynamical programming or linear

programming. This yields the Bellman equation.

18

In the discounted cost infinite horizon formulation, the policy specific value func-

tion is

V π(s0) = E{Σ∞t=0γ
tR(st, π(st), st+1}. (2.16)

the Bellman equation and optimal policy are formulated as,

π∗(s) = arg max
a

Es′∼P (·|s,a){R(s, a, s′) + γV ∗(s′)}, (2.17)

V ∗(s) = Es′∼P (·|s,a){R(s, π∗(s), s′) + γV ∗(s′)}. (2.18)

In the finite horizon formulation, value function only summate rewards R over a

finite time horizon in the future, ignoring future consequences. We need to define final cost

Vf : S → R describes the future rewards. So the policy-dependent value function is

V π
t (st) = E{Σtf−1

τ=t R(sτ , πτ (sτ), sτ+1 + V (stf)}. (2.19)

This yields the Bellman equation in the following form;

V ∗t (s) = Es′∼P (·|s,π∗t (s))(R(s, π∗t (s), s
′) + Vt+1(s

′)), (2.20)

with the time dependent policy as

π∗t (s) = arg max
a

Es′∼P (·|s,a)(R(s, a, s′) + Vt+1(s
′)), (2.21)

In the first exit formulation, the value function will keep accumulating until it reach

certain “exit states”, such as target or bad states. We call the set of those exit states A,

and the corresponding cost is V (s) = g(s), s ∈ E.

V π(s0) = E{Σtf−1
τ=0 R(sτ , πτ (sτ), sτ+1) + g(stf)}. (2.22)

Thus the Bellman equation for this formulation is

V ∗(s) = Es′∼P (·|s,π∗(s))(R(s, π∗(s), s′) + V (s′)), V ∗(s) = g(s), s ∈ E, (2.23)

π∗(s) = arg max
a

Es′∼P (·|s,a)(R(s, a, s′) + V (s′)). (2.24)

19

In the infinite horizon average-cost formulation, we consider the limiting average

value function when the time horizon goes to infinity. Thus the policy specific value function

is

Ṽ π(s0) = lim
tf→∞

1

tf
V π(s0) = lim

tf→∞

1

tf
E{Σtf−1

τ=0 R (sτ , π(sτ), sτ+1)}. (2.25)

The resulting Bellman equation is

π∗(s) = arg max
a

Es′∼P (·|s,a)(R(s, a, s′) + Ṽ ∗(s′)), (2.26)

Ṽ ∗(s) + c = Es′∼P (·|s,π∗(s))(R(s, π∗(s), s′) + Ṽ ∗(s′)). (2.27)

2.4.2 Algorithms for MDP

Value iteration

In the value iteration method, value function v(s) in the Bellman equation is updated

iteratively, and the policy π(s) is not stored; it is only calculated when necessary. For

example, in the discounted-cost formulation,

V (n+1)(s) = max
a

Es′∼P (·|s,a)(R(s, a, s′) + γV (n)(s′)). (2.28)

Policy iteration

In the policy iteration method, policy π(s) and value function given policy V π(s) are updated

iteratively. For example, in the discounted-cost formulation,

π(n+1)(s) = max
a

Es′∼P (·|s,a)(R(s, a, s′) + γV π(n)
(s′)). (2.29)

Policy iteration always converges in a finite number of iterations. This is because (1)

the algorithm cannot cycle because each iteration is an improvement and (2) the number of

different policies is finite (the state and control spaces are finite).

Q learning

Reinforcement learning, [41], attempts to deal with cases where transition probability or

rewards are unknown. Q learning is an important branch of methods in reinforcement

20

learning and it is closely related to the value function approaches discussed here.

Instead of considering value function V (s), the Q learning considers Q function Q(s, a),

which describes the quality of state-action combination. The Q function can be related

to a value function as V (s) = minaQ(s, a). Q learning relies on sampling based on the

actual dynamical model rather than fixed probability transition. In theory, Q learning may

converge to the results of value iteration given certain assumptions.

An example of Q learning is

Q(n+1)(s, a) = (1− α)Q(n)(s, a) + α(R(s, a, s′) + γmax
a

Q(n)(s′, a)), (2.30)

where α is the learning rate describing to what extent the newly acquired information will

override the old information. α = 0 would make the Q function not learn anything, while

α = 1 would make the agent consider only the most recent information.

2.4.3 Motivation of this thesis

Although MDP is a promising framework with applications, none of the methods discussed

above scale easily to certain problems with high dimensionalities: (1) they normally express

a function in a very large space, which make them too slow, with huge storage demand;

(2) they requires computation of max or min operators over all available actions in each

iteration. Manually tuning parameters and restricting the number of available actions can

make MDP applicable to certain hard problems; yet such practice is neither automatic

nor scalable. LMDP framework avoids discretization in the control space and replaces the

minimize operator with a linear operator, so this framework is more promising in developing

scalable numerical methods than MDP in general.

‘

21

Chapter 3

LINEARLY SOLVABLE MARKOV DECISION PROCESS

3.1 Linearly-solvable MDPs

3.1.1 Overview

Consider an MDP with state x ∈ X ⊆ Rn . Let p(x′|x, u) ≡ u(x′|x) denote the transition

probability given a certain control signal u, and p(x′|x) denote the transition probability

without any control, also known as passive dynamics. u(x′|x) and p(x′|x) have to lie in the

same subspace, i.e. u(x′|x) = 0 where p(x′|x) = 0.

The optimal cost-to-go function is given by the Bellman equation

v(x) = min
u
{l(x, u) + Ex′∼u(·|x)[v(x′)]}. (3.1)

Note that u under min is the transition probability distribution u(x′|x) rather than a control

vector.

For this problem class, the immediate cost function is defined as

l̃(x, u) = q̃(x) +KL(u(·|x)||p(·|x)), (3.2)

where KL denotes the Kullback-Leibler divergence between two probability distributions.

Define the desirability function z(x) = exp(−v(x)), where v(x) is the optimal cost-to-go

function. Then (3.1) and (3.2) become (shown in [48])

− log(z(x)) = q̃(x) min
u
{Ex′∼u(·|x)[

u(x′|x)

p(x′|x)z(x′)
]}.

The minimizing expression resembles KL divergence between u(x′|x) and p(x′|x)z(x′)

except p(x′|x)z(x′) is not normalized to 1. Because KL divergence gets its global minimum

0 when two distributions are equal, the optimal control law can be expressed as follows

22

without minimization

u∗(x′|x) =
p(x′|x)z(x′)

G[z](x)
, (3.3)

where the operator G is defined as

G[z](x) =

∫
x′∈X

p(x′|x)z(x′)dx′. (3.4)

The Bellman equation for infinite-horizon average-cost problems can be written as

exp (q̃(x)− c̃) z(x) = G[z](x). (3.5)

The desirability function is the principal eigenfunction of exp (−q̃(x))G[z](x) and is

guaranteed to be positive. The corresponding eigenvalue is λ = exp(−c̃), where c̃ is the

average cost per step.

In summary, LMDP consider the transition probability p(x′|x, u) ≡ u(x′|x) as a control

variable. Two conditions have to be met:(1)u(x′|x) = 0 where p(x′|x) = 0;(2)cost is in

KL divergence (3.2). Then the Bellman equation is linear for desirability function z(x) =

exp(−v(x)).

3.1.2 Other formulations

For the first-exit formulation we have

exp (q̃(x)) z(x) = G[z](x), z(x) = exp(−qT (x)), x ∈ A, (3.6)

where A are terminal states. This formulation makes LMDP a linear equation rather

than an eigenfunction problem.

For the finite horizon formulation, we have

exp (q̃(x)) z(x, t) = G[z](x, t+ 1) (3.7)

For the discounted cost formulation, we have

exp (q̃(x)) z(x) = G[zα](x). (3.8)

This is no longer a linear equation, yet it still avoids the minimization operator

23

3.2 Linearly-solvable controlled diffusion

Here we consider a class of continuous-time optimal control problems with the following

stochastic dynamics:

dx = a(x)dt+B(x)(udt+ σdω), (3.9)

where ω(t) represents Brownian motion, and σ is the noise magnitude. The cost function

of state and control is in the form

l(x,u) = q(x) +
1

2σ2
‖u‖2, (3.10)

where q(x) is a state cost function. Note that here l(x,u) is defined on control vector u

rather than u(x′|x) defined in 3.1. The noise is assumed to lie in the same subspace as

the control. The fact that the noise amplitude also appears in the cost function is unusual;

however, l(x,u) can be scaled by σ2 without changing the optimal control law, and this

scaling factor can be absorbed in the state cost q(x), so this is not a restriction. Now we

can discretize this dynamical system. The one-step transition probability under the passive

dynamics is approximated as a Gaussian distribution

p(x′|x) = N (x + ha(x), hΣ(x)), (3.11)

where h is the time duration of this step, hΣ(x) = hσ2B(x)B(x)T is the noise covariance.

The transition probability with control u is

p(x′|x,u) = N (x + ha(x) + hB(x)u, hΣ(x)), (3.12)

while the formula for KL divergence between Gaussians gives

KL(p(x′|x,u)||p(x′|x)) =
h

2σ2
‖u‖2. (3.13)

Thus, the familiar quadratic energy cost is a special case of the KL divergence cost defined

earlier. It can be shown that in the limit h → 0, the solution to the above discrete-time

problem converges to the solution of the underlying continuous-time problem. Therefore, if

we define

q̃(x) = hq(x), c̃ = hc, (3.14)

24

the continuous problem is approximated as a continuous-space discrete-time LMDP. In the

infinite-horizon average-cost setting, (3.5) becomes

exp (hq(x)− hc) z(x) = G[z](x). (3.15)

In linearly-solvable controlled diffusions, Bellman equations can also be linearized in

a continuous-time formulation and represented with derivatives. That yields another set

of Bellman equations, yet the continuous-time formulation generally yield worse numerical

performance and are not directly related to this thesis.

3.3 Numerical methods for value function approximation in LMDP

[49] attempts to numerically solve for the value function in Bellman equations in LMDP

setting. The first method directly discretizes the solution on dense grids(MDP) and uses

the eigen solver to solve for the leading eigenpair. On the downside, discretizing on grids is

unscalable to problems even with a few degrees of freedom.

Another attempt use a linear combination of gaussian base functions to express the

desirability function.

z(x) = Σiφi(x), φi(x) = exp(−(x−mi)
TSi(x−mi)/2), wi ≥ 0. (3.16)

Then Bellman equations can be approximated accordingly. We can solve for the weights

to minimize differences on both sides of the linear equation

λFw = Gw, (3.17)

with both weights w = (w1, ..., wN)T and eigenvalue λ unknown.

Weights can be solved iteratively by quadratic programming in both weights and eigen-

value. This approach approximates the desirability function and has shown effectiveness on

simple problems such as car-on-the-hill. However, because we have an unknown eigenvalue

λ, this approach has often failed to converge to the leading eigenpair, and the results are

confusing.

Moreover, parameters in gaussian base functions are hard to tune without prior insights

into both dynamical system and function approximators. A gradient descend method is

25

proposed to adjust such parameters, yet this may also lead to higher tendency to converge

to the wrong value function.

3.4 Other works in LMDP framework

3.4.1 Stochastic maximum principle

Pontryagin’s Maximum Principle characterizes locally-optimal trajectories as solutions to

an ODE in deterministic problems. In stochastic problems, noise makes every trajectory

dependent on its neighbors; thus, isolated trajectories are meaningless. Stochastic maximum

principles are PDEs that depends on global solutions, and in numerical methods’ view they

are closer to the Bellman equation.

The LMDP framework provided a trajectory-based maximum principle for stochastic

control[50]. The most likely trajectory of a LMDP problem in finite-horizon formulation is

equivalent to finding the locally-optimal trajectory in a corresponding deterministic optimal

control problem.

For linealy solvable controlled diffusions (3.9), the corresponding deterministic optimal

control problem is

ẋ = a(x) +B(x)u (3.18)

l(x,u) = q(x) +
1

2σ2
‖u‖2 +

1

2
div a(x) (3.19)

The extra term in cost function pushes the trajectory away when the system is unstable.

This work means there is almost no reason to develop a stand-alone local method for LMDP

framework.

3.4.2 Compositionality of optimal control laws

In the first-exit formulations or finite-horizon formulations of LMDP, there exist a theory

of compositionality showing how task-optimal controllers can be constructed from certain

primitives[55]. Considering K primitive LMDP problems that share the same state cost,

their final costs are fk(x) respectively. If the new problem has a final cost as

f(x) = − log
(
ΣK
k=1wk exp(−fk(x))

)
, (3.20)

26

the optimal control policy can be constructed based on a composite of optimal control

policies of LMDP primitive problems without solving for a new policy. This result led to

interesting applications in animation [17]

27

Chapter 4

MOVING LEAST SQUARES APPROXIMATION FOR
LINEARLY-SOLVABLE MDP

(Most of the contents in this chapter appeared in [61])

4.1 Introduction

4.1.1 Motivation

As mentioned before, some numerical methods applicable to LMDP problems have previ-

ously been developed, in particular direct MDP discretization [48] and function approxima-

tion using Gaussian bases [49]. Discretization is useful in terms of obtaining “ground-truth”

solutions in low-dimensional problems and comparing to the results of more advanced algo-

rithms that need fine-tuning, but it is not applicable to higher-dimensional problems. Gaus-

sian bases are promising, but they have some disadvantages. First, the resulting problem

is weighted (in the average-cost setting, it is in the form λFw = Gw instead of λw = Gw)

which slows down the solver and may converge to suspicious solution. Second, when λ

is also unknown, this method might converge to the wrong eigenvector. Third, positivity

of the solution (which is required because we are solving for the exponent of a function)

is hard to enforce without introducing inequality constraints. Fourth, Gaussians have too

many shapes of parameters that need to be adjusted: it takes O
(
n2
)

scalars to specify a

covariance matrix in an n-dimensional space.

4.1.2 Contribution and limitations

Our method avoids the above limitations. It is motivated by the moving least-squares (MLS)

methods [6, 7, 9], also known as local regression or locally weighted scatter plot smoothing

(LOWESS). The new approximation scheme developed here leads to simple eigen-problems

in the form λw = Gw (here G = QP in (4.26)) and guarantees the positivity of the

28

solution by enforcing the positivity of G. It also adapts the shape of the basis functions

automatically, given the set of collocation states.

On the downside, the bases are defined implicitly, as the solution to a linear system

with O (n) equations, thus evaluating all bases at one state involves an O
(
n3
)

operation

(Cholesky decomposition). This by itself is not a major disadvantage because finding the

inverse of a covariance matrix (which is needed when working with Gaussian bases) is also

an O
(
n3
)

operation. However, the bases developed here need to be evaluated at more

points, because the lack of an analytical expression leads to the use of cubature formulas to

compute integrals.

Finally, although this methods works on many simpler problems, we frequently observed

that it fails to provide good solutions for some practical problems, including with acrobot.

4.2 Moving least squares and base function construction

4.2.1 Moving least squares

Overview

Moving least squares, also called local regression (LOESS), locally weighted scatterplot

smoothing (LOWESS), is developed by Cleveland and colleagues [14, 15]. MLS approxi-

mation or locally-weighted regression is a way to approximate a continuous function when

data are assigned to discrete points. It builds on “classical” regression methods such as least

squares and combines the linear regression with polynomials with the flexibility of nonlinear

regression. It is achieved by fitting simple regressions on localized subsets of data.

The advantage of local regression is that users are not required to fit a global model to the

data. Instead, users fit models to segments of data. The disadvantages of local regression

are (1) additional computational cost, and (2) inefficient use of data. In addition, local

regression or moving least squares cannot easily provide an analytical solution to the fitted

function. This is both advantages and disadvantages, depending on details of applications.

Moving least squares have applications beyond the field of statistics. In the meshless

methods for ordinary differential equations[9], moving least square’s ability to construct

linear base functions is exploited and used to solve certain differential equations. These

29

works motivate the work in this chapter.

Moving least squares

MLS is a variation of weighted least squares fitting. Compared to ordinary least squares,

both the weight function and coefficients here are no longer constant but are functions of the

space variable x. In MLS, the weight function ω(x) is no longer a constant and is designed

to reconstruct z(x) based mainly on the neighboring nodes. In other words, weights would

be higher at nearby nodes.

The reconstructed function can be expressed as

zMLS(x) = h(x)Tα(x). (4.1)

Here, the elements of the vector h(x) are given bases. For example, in one dimensional

space, h(x) can be expressed as h(x) = [1, x]T in linear fitting. h(x) should not be confused

with the basis functions φi(x) in Section 4.3.1,4.2.2. h(x) is a by-product of MLS approxi-

mation process, while we finally use φi(x) in our solving-procedure, which will be outlined

in later sections.

Elements of α(x) are the unknown coefficients of those bases h(x). Unlike ordinary

least squares, here they are functions of x rather than constants. They are obtained by

minimizing the Euclidean norm between the approximation and the given function values

zI at nodes XI .

α(x) = arg min
α

ΣIω(xI − x)(h(xI)
Tα− zI)2. (4.2)

Here ω(x) is a given weight function. It is used to make the function approximator local,

in other words, fit the value at each state using only the (given) values at nearby states xI .

The minimization process treats the vector α as a free variable at each x.

It is not intuitive but can be easily shown that the resulting α(x) and zMLS(x) are

linear in the vector z, whose elements are the given function values zI . The reason is

simple. Because the Euclidean norm is used in (4.2), α(x) can be calculated using linear

algebra operations and is linear to vector z. This is a property shared among least squares

methods minimizing errors in Euclidean norms, rather than a property specific to moving

30

least squares. This property holds no matter how many orders of polynomials are used in

h(x).

As a result, the reconstructed function be represented as zMLS(x) = ΣI φ̃I(x)zI , making

the MLS process a natural candidate for the construction of basis functions.

4.2.2 Construction of basis functions

Now we begin to construct basis functions tailored for solving our problem. In order to

solve the leading eigenpair easier, we seek basis functions φi(x) that satisfy the following

conditions:

(a) φj(xi) =

 1, when i = j,

0, when i 6= j.

(b) φi(x) ≥ 0 everywhere.

(c) Σiφi(x) = 1.

(a) will make the resulting discretized eigen problem easier to solve. (b) will ensure the

non-negativity of our approximated desirability function z(x). (c) guarantees consistency,

meaning that if all data indicate that we have a constant function, the approximator will

recover a constant function. These properties come for free when using the least-squares

bases and h(x) contains a constant.

To achieve this goal, we first use MLS to generate potential functions φ̃i(x). Then, we

truncate and renormalize them to construct basis functions φi(x).

In order to achieve sparseness and computational efficiency, z(x) will only depend on

the values at the K-nearest neighbor nodes (also collocation states). Here K is a manually

tuned parameter that determines the trade-off between computer time and smoothness of the

approximator. Note that very large values of K are undesirable even if we ignore computer

time, because they induce too much coupling and effectively decrease the approximating

power of the method. Thus φi(x) = 0 if xi is not among the K nearest nodes to x. In

the following parts, we will use x(1),x(2) · · · ,x(K) to represent the K nearest neighboring

31

nodes of x. x(1),x(2) · · · ,x(K), are sorted in increasing order by distance from x , so we

have ‖x− x(1)‖ ≤ ‖x− x(2)‖ ≤ · · · ≤ ‖x− x(K)‖.

Constraint (a) can be easily obtained by enforcing a linear constraint h(x1)Tα = z(1).

This will not significantly affect the computational efficiency, because it can be done by

introducing a Lagrange multiplier.

To maintain scalability to higher dimensional systems, we use linear basis

h(x) = [1, x1, · · · , xn]T . (4.3)

Here xi, i = 1, · · · , n are elements of x ∈ <n. Even when the number n of dimensions

increases, the time complexity of the algorithm in this step will not increase significantly.

We would like to use a weight function that can automatically adjust to areas with

different densities. We currently use ωi (x) = µi(x)2, with

µi = Cµ(
1

‖x− x(i)‖ − ‖x− x(1)‖+ εµ

− 1

‖x− x(K)‖ − ‖x− x(1)‖+ εµ
). (4.4)

Here, i = 2, · · · ,K. Cµ is a normalization constant adjusted to yield Σiµi = 1, and εµ is a

small constant used to avoid numerical difficulties.

It is possible to enforce the non-negativity constraints in (4.5) using quadratic program-

ming; however, this is slower than solving a linear system. Instead we simply set any

negative values to 0 and renormalize to ensure Σiφi(x) = 1.

To recapitulate, we define α(x) as the solution to the optimization problem

α(x) = arg min
α

ΣK
I=2ω(xI − x)(h(xI)

Tα− z(I))2

s.t. h(x1)Tα = z(1) (4.5)

to obtain φ̃i(x) in

zMLS(x) = h(x)Tα(x) = Σiφ̃i(x)zi (4.6)

This process is done without knowing zi or explicitly solving for α(x). Instead, (4.5)

is converted into linear equations, and by comparison with (4.6), an algorithm for finding

φ̃i(x) is obtained. Details of this process are shown below.

32

Figure 4.1: (a,b) show example basis functions, (c) shows a Gaussian function and (d) shows
the fit to the Gaussian function. Dots represent nodes.

After setting any negative values to 0 and renormalizing, the solution is given by

φi(x) =

 Cφ(x)φ̃i(x), if φ̃i(x) > 0,

0, if φ̃i(x) < 0.
(4.7)

Note that Cφ(x) is adjusted to ensure Σiφi(x) = 1

Fig.4.1 gives an example of what these basis functions look like. There are 16 nodes on

the plane. We can see that the basis functions have an irregular shape, but nevertheless

their support is concentrated around the node. In Fig.4.1(a) we see a basis that stretches

to the right, because the right side is “empty”. In Fig.1(b) we see a base stretching out to

infinity. Suppose the true z(x) is the Gaussian shown in Fig.1(c). The function zMLS(x)

fitted by our approximator is shown in Fig.1(d). The reconstructed result is not entirely

smooth but captures the shape of the original function.

In summary, we used an MLS method with truncation to construct basis functions whose

shape is automatically adapted to the set of collocation states. This method can be viewed

as an interpolation scheme, but is modified to ensure a fast yet reliable algorithm to solve

the eigenfunction problem.

Computational details of step (4.5) (4.6)

In the main text, we omitted the details about how to obtain the basis functions before

truncation and renormalization, i.e., φ̃i(x) in (4.5) and (4.6). The optimization problem

(4.5) is solved via a linear equation, the same way as in the ordinary least square methods.

33

Let us start from the optimization problem (4.5)

α(x) = arg min
α

ΣK
I=2ω(xI − x)(h(xI)

Tα− z(I))2

s.t. h(x1)Tα = z(1).

Using a Lagrange multiplier λ̃, we can rewrite the optimization problem as

α(x) = arg min
α

ΣK
I=2ω(xI − x)(h(xI)

Tα− z(I))2

+λ̃(h(x1)Tα− z(1)). (4.8)

This is equivalent to solving for α, λ̃ in the linear equation

M1(x)[α(x)T , λ̃]T −M2(x)z = 0, (4.9)

where

z = [z(1), · · · , z(K)]
T (4.10)

M1 =

 HT
2 WH2 HT

1

H1 0

 , (4.11)

M2 =

 0 HT
2 W

1 0

 , (4.12)

H1 = h(x1)T =
(

1 xT1

)
, (4.13)

H2 =

h(x2)T

...

h(xK)T

 =

1 xT2
...

...

1 xTK

 , (4.14)

and W is a diagonal matrix representing weights,

W =

ω(x− x2) 0 · · · 0

0 ω(x− x3) · · · 0
...

...
. . .

...

0 0 · · · ω(x− xK)

 . (4.15)

34

Therefore, from (4.9), we have

[α(x)T , λ̃]T = M−11 (x)M2(x)z (4.16)

Comparing with (4.6)

zMLS(x) = h(x)Tα(x) = Σiφ̃i(x)zi,

we have [
φ̃(1)(x), · · · , φ̃(K)(x)

]
= h(x)T

(
M1(x)−1M2(x)

)
n+1

, (4.17)

where(·)n+1 denotes the operation that takes the first n + 1 rows of a matrix (because we

ignore the Lagrange multiplier), and n is the number of dimensions in the dynamical system.

(4.17) gives the method for how to construct basis functions from the optimization

problem (4.5). Since M1 matrix is a (n + 2) × (n + 2) matrix, when we perform M−11 M2

with Cholesky decomposition, the computational complexity of (4.17) is O(n3).

4.3 Solution method

In this section we describe how we solve for the desirability function using the above MLS

function approximator. First, we show how to discretize the LMDP problem with MLS

basis functions. Then, we show how to obtain the discretized linear operator. After that,

we describe how to determine the weights of the basis functions. Next, we describe how the

(approximately) optimal control law is found from the approximate desirability function.

Finally, we describe a procedure for adding collocations states to improve the solution in

critical regions (i.e., regions that are visited often under the resulting control law but do

not yet contain enough collocation states). Finally, we discuss the cases of settings other

than average-cost setting.

4.3.1 Discretizing LMDPs with basis functions

Let φj denote (defined in Section 4.2.2) basis functions with weights wj , j = 1, · · · , N . Then

the desirability function z(x) can be approximated by

z(x) = ΣN
j=1wjφj(x). (4.18)

35

From (3.15), for the average-cost setting, we aim to solve the following eigenfunction

problem with λ = exp(−hc)

λz(x) = exp(−hq(x))G[z](x). (4.19)

Since G[z] is a linear operator, we have

G[z](x) = ΣN
j=1wjG[φj](x). (4.20)

Therefore if (4.18) holds, (4.19) becomes

λΣN
j=1wjφj(x) = exp(−hq(x))ΣN

j=1wjG[φj]. (4.21)

We will solve this equation approximately by introducing collocation points xi, i =

1, · · · ,M , enforcing the equation at those points. This yields the generalized eigenvalue

problem

λFw = QPw (4.22)

Here F and P are M ×N matrices with entries

Fij = φj(xi), Pij = G[φj](xi), (4.23)

i = 1, · · · ,M, j = 1, · · · , N,

Q is a M ×M diagonal matrix with diagonal entries Qii = exp(−hq(xi)), w is a vector of

all wj .

The above outline applies generally to many basis function approximators that are linear

in the unknown parameters wj . For example, in [49], the functions φj are Gaussians.

Here we will design bases and select collocation states that satisfy the following condi-

tions.

1. Equal number of collocation points and basis functions, i.e., N = M .

2. F in (4.22) is the identity matrix, or equivalently

φj(xi) =

 1, when i = j,

0, when i 6= j.
(4.24)

36

3. The basis functions are everywhere non-negative, so

φj(xi) ≥ 0 (4.25)

There are two reasons for these restrictions. First, when N is large and F is the identity

matrix, we can avoid matrix factorization and take advantage of sparsity. Second, z(x) =

exp(−v(x)) > 0 is difficult to enforce if the bases can be negative.

Thus in the average-cost setting, the resulting discretized problem becomes

λw = QPw (4.26)

4.3.2 Computing the discretized integral operator

Starting from our discretized problem, as mentioned before, we choose basis functions as

(4.7) in Section 4.2.2, and we use the nodes themselves as collocation points. Then we have

Pij = G[φj](xi)

=

∫
p(x′|x)φj(x

′)dx′. (4.27)

Because p(x′|x) is a Gaussian, this integral can be approximated using cubature formu-

las. Cubature formulas can be thought of as deterministic sampling, designed to match as

many moments of the Gaussian distribution as possible.

Calculating the expectation of an arbitrary function under a normal distribution using the

cubature method

We want to evaluate the expectation of a function under a normal distribution. This is

equivalent to calculating the integral of the product of an arbitrary function and a normal

distribution numerically. Here we used the cubature scheme [29].

The goal is to calculate

E[g(x)] =

∫
g(y)p(y|x)dy. (4.28)

As in (3.11),

p(y|x) = N (x + ha(x), hΣ(x)), hΣ(x) = CCT , (4.29)

37

where C = σB(x) for continuous formulation.

We need a variable transformation

y = C
√

2ξ + x + ha(x) (4.30)

to convert the integral into the standard form of cubature formulas.

E[g(x)] = C0

∫
f(ξ)exp(−ξT ξ)dξ,

C0 =
1

(π)N/2
, f(ξ) = g(C

√
2ξ + x + ha(x)). (4.31)

Now we can apply the cubature scheme in [29], which uses the following formula to

approximate the integral. ∫
f(ξ)dξ ≈ Q[f] = ΣN

j=1wjf(ξj), (4.32)

where wj are weights and ξj are points.

Several choices of weights and points exist, and it is not clear which cubature formula is

optimal for our problems. We observed that formula (4.33) in [29] works better in some test

problems. This is a degree 5 formula with 2n2C + 1 points, nC is the number of columns of

the C(x) matrix in (4.29), which is the number of dimensions in control space (for under-

actuated systems this number may be significantly smaller than the number of dimensions

in the system). Here, “full sym.” means all possible index permutations and reflections.

Q[f] =
n2 − 7n+ 18

18
πn/2f(0)

+
4− n

18
πn/2Σfull sym.f(

√
3/2, 0, .., 0)

+
1

36
πn/2Σfull sym.f(

√
3/2,

√
3/2, .., 0). (4.33)

In summary, to calculate the integral (4.28) approximately, we used (4.31) and (4.29);

therefore, the following formula represents this process.

E[g(x)] =

∫
g(y)p(y|x)dy = C0Σ

N
j=1wjf(ξj). (4.34)

38

4.3.3 Solving for the desirability function

Recall that in the average-cost setting, we need to solve for the leading eigenvalue and

eigenvector of a matrix. Many numerical methods are available for solving this kind of

problem [57]. Our current implementation uses the classic power iteration method. The

reasons for choosing this algorithm are: (1) it does not require matrix factorization, which

would be very slow when we have a large amount of nodes; (2) the result is always positive

as long as the initialization is positive and all elements of P are nonnegative (which property

P satisfies by design). Thus the algorithm is:

(0) Let w0 be an initial guess

(1) wn = QPwn−1

‖QPwn−1‖

(2) Repeat step (1) until ‖wn −wn−1‖ < ε

After this step, we obtain an approximate cost-to-go function for the optimal control

problem. We know that the eigenfunction corresponding to the leading eigenvalue of the

linear operator G is unique. Thus, the discretization QP is also likely to have a unique lead-

ing eigenvector, unless the placement of nodes is pathological (which we have not observed

in practice). The speed of convergence is governed by the difference between the top two

eigenvalues of QP . Alternatively, because an iteration can be viewed as running backwards

with step h in an finite horizon formulation, the speed of convergence corresponds to the

mixing rate of the Markov chain. In practice we have found this algorithm to converge very

quickly (in a few iterations) in our test problems. The time needed to run power iteration

is a small fraction of the overall CPU time; most of the CPU time is spent in constructing

the discretized operator.

In other settings, the discretized problem is no longer an eigenvector problem. However,

iterative algorithms without matrix factorization are still available.

39

4.3.4 Finding the optimal control u∗

Recall that the optimal control law (in terms of probability densities) is given by (3.3)

u∗(x′|x) =
p(x′|x)z(x′)

G[z](x)
.

The above probability distribution function is known, and its mean can be calculated. In

a linearly-solvable diffusion process, u∗(x′|x) should be a gaussian distribution whose mean

moved hB(x)u∗ from the mean of passive dynamics, thus, to calculate a control vector u∗,

we can solve the following equation:

x + ha(x) + hB(x)u∗ = Ex′∼u∗(·|x)[x
′] (4.35)

From (3.3), we have

Ex′∼u∗(·|x)[x
′] =

∫
u∗(x′|x)x′dx′

=

∫
p(x′|x)x′z(x′)dx′∫
p(x′|x)z(x′)dx′

. (4.36)

Both the numerator and the denominator of the right-hand side of (4.36) are the integral

of a function multiplied by a normal distribution. Again, we can use the cubature formula

to calculate them approximately. By this method, both the numerator and denominator

can be expressed as a weighted sum of z(ξi), which are the z values at the cubature points.

Numerical errors introduced by (3.3)(4.36) may be problematic when the denominator

is very small. However, that happens when z(x) is very small, i.e. the cost-to-go function

v(x) is very large, or x is far away from the region of interest. In such a case we cannot

trust the above u∗; instead we replace it with a default linear feedback control law. Another

issue is that the cubature formula restricts the left-hand side of (4.36), so that the mean of

u∗(x′|x)) lies in the convex hull of the cubature sampling points. This effectively restricts

the magnitude of the control signal – which can be good or bad in practice.

4.3.5 Adapting the nodes

Overview

In previous sections, we described how our method works once the nodes/collocation states

are chosen. This choice affects performance significantly and needs to be done in a way

40

suitable for the problem at hand. We have developed an automated procedure for generating

problem-specific node placements that optimize performance. Note that the state space is

usually very large, so our nodes can only cover a small fraction of it. Ideally the part that

is covered will correspond to the region where the optimally controlled system spends most

of its time (i.e., where the good states are found). Thus we use an adaptive procedure,

placing new nodes in regions that are visited most often under the control law obtained on

the previous iteration of the algorithm. The details are as follows.

The method only adds nodes, with the restriction that every new node must be suffi-

ciently removed from any existing node. If nodes are further restricted within a predefined

volume, then this method is guaranteed to terminate in a finite number of iterations. Af-

ter solving for the optimal control law with the current selection of nodes, we generate

prospective nodes based on a stochastic simulation starting from the current nodes (or from

given initial states). Meanwhile we also introduce random perturbations to the current

nodes. Note that regions with lower z(x), or equivalently higher cost-to-go, will end up

with smaller node density under this scheme. We also impose a heuristic restriction to

avoid generating prospective nodes in regions where it is impossible to add new nodes (be-

cause the density is already too high). The distance between nodes should approximately

match the characteristic distance of the system determined by ha(x) and
√
hσB(x), which

are the magnitude of passive dynamics and transition probabilities. This feature means the

time step should be big enough to solve the problem with a small number of nodes.

In summary, we used a heuristic strategy to place nodes in regions that are visited more

often under the optimal control law.

Details

Several general rules apply. (1) All nodes are classified into normal nodes and “pioneer”

nodes. New nodes can only be generated from “pioneer“ nodes. (2) All new nodes should

lie sufficiently far away from old nodes. This lower bound of distance is basically a constant,

but when an old node has a very small z(x) value, it would “occupy“ a larger space to avoid

creating new nodes.

41

(iii) The user has to specify a range for states and assume that the range is large enough

to cover the region of interest. (iv) Initially, all nodes are pioneer nodes.

(1)If any “pioneer” nodes lie outside of the specified
range, they would turn to normal nodes.
(2)If any “pioneer” nodes satisfy z(x) < θn for several
iterations, where θn is a manually defined parameter,
then they would turn to normal nodes.
(3)If any normal nodes satisfy z(x) < θc for several times,
where θc is a manually defined parameter, then they would
occupy a larger region to avoid new nodes to be created.
(4)If any “pioneer” nodes fail to generate new nodes
for several iterations, they would turn to normal nodes.
(5)Generate new nodes from “pioneer” nodes. They may
come from both dynamics and random perturbation.
(optional) Run dynamical simulation from known initial
points, and use the resulting trajectory to generate nodes

Here, (1) is used to avoid exploring less interesting region. (2)and (3) are used to avoid

exploring the region where the cost-to-go function is high. (4) is used to avoid exploring

where the nodes is dense enough. In (5), we generate new nodes both from calculated

optimal control and random perturbation, because the calculated optimal control law might

not be accurate. If some information about the system is provided, nodes may be generated

from dynamical simulation.

This method would terminate in finite iterations. That is because only those nodes in the

specific region can be “pioneer“ nodes, and the space in this region is limited, then finally

all of those “pioneer“ nodes would turn to normal, thus stopping iterations. In practice,

our method rarely terminates in this way, because filling a high dimensional requires a

tremendous number of nodes. On the other hand, we lack theoretical results about whether

the resulting optimal control law will converge to the true solution.

4.3.6 Discretizing and solve for LMDP in other settings

This chapter mainly addresses the LMDP problem in the average-cost setting. Nevertheless,

the proposed method is applicable to other settings as well. Below we describe the Bellman

equation for other settings, their discretized versions, and the corresponding algorithms.

Table 4.1 is provided to summarize the results.

42

Finite horizon

In the finite horizon setting, costs are accumulated from time 0 to time T. qF (x) represents

the final cost evaluated at time T.

The Bellman equation for the finite-horizon setting[48] is

zt(x) = exp(−hq(x))G[zt+h(x)], (4.37)

zT (x) = exp(−qF (x)). (4.38)

If we represent the desirability function with the same set of basis functions at each time

step,

zt(x) = ΣN
i=1wt,iφi(x). (4.39)

Defining a column vector wt with elements wt,i, (4.37) becomes

wt = QPwt+h. (4.40)

Due to the nature of our basis functions, we can use the following approximation. (≈

would become = if x = xi.)

z(x) ≈ ΣN
i=1z(xi)φi(x). (4.41)

Applying (4.41) to (4.38), we will have

wT = exp(−qF (xi)). (4.42)

Using (4.40) iteratively for T/h times from (4.42), we would obtain the approximated

desirability function at time 0

z0(x) ≈ ΣN
i=1w0,i φi(x). (4.43)

Infinite horizon, discounted cost

In the discounted-cost setting, costs are accumulated from time 0 to infinity; however future

costs decay exponentially as exp(−t/τ). Let α = exp(−h/τ) < 1 represent the correspond-

ing discretized discount factor, where h is the time step.

43

The Bellman equation for the discounted-cost setting[48] is

z(x) = exp(−hq(x))G[zα(x)]. (4.44)

We will use our basis functions to approximate the desirability function

z(x) = ΣN
i=1wiφi(x). (4.45)

Due to the nature of our basis functions, we can use the following approximation. (≈ would

become = if x = xi.)

zα(x) ≈ ΣN
i=1w

α
i φi(x). (4.46)

Thus the problem is discretized as

w = QPwα. (4.47)

Here w is a column vector with elements wi.

There exist alternative ways to solve the equation (4.47), but here, we will focus on the

iterative methods to avoid matrix factorization.

One may naturally try to use the following iterative formula (4.48) to solve this problem.

wk+1 = QP (wk)α. (4.48)

However, this may not work well when α is close to 1. There are two possibilities: (1) the

decay of cost is slow; (2) the time step h is too small. In these cases, elements of w would

become undistinguishable from 0, and the rate of convergence would become very slow.

This situation is not so important because the results are close to what the average-cost

setting may yield. However, if one wants to overcome the numerical difficulty, the following

algorithm would work.

w̃k+1 = λ̃kQP (w̃k)α, λ̃k = ‖QP (w̃k)α‖−1

wk = (λ̃k)1/(α−1)w̃k. (4.49)

This is similar to the power iteration method in the an average-cost case. In our simula-

tion, (4.48) performs no worse than the simple power iteration in average-cost setting. On

the other hand, if we need only the optimal control law, because it is invariant when the

desirability function is multiplied by a constant, there is no need to evaluate wk explicitly.

44

First exit

In the first-exit setting, costs are accumulated from time 0 to infinity; however, accumulation

would stop when the system reaches a terminal state. Here T ∈ Rn represents the subset of

terminal states, and N ∈ Rn represents the subset of non-terminal states. qT (x) represents

the cost at terminal states.

The Bellman equation would become a boundary value problem[48]

z(x) = exp(−hq(x))G[z(x)], (4.50)

z(x) = exp(−qT (x)), x ∈ T . (4.51)

(4.50) can be further rewritten as

exp(hq(x))z(x) = GN [z(x)] + GT [exp(−qT (x))] (4.52)

x ∈ N

Where operators are defined as integrals on finite regions

GN [z(x)] =

∫
x∈N

z(x′)p(x′|x)dx′, (4.53)

GT [z(x)] =

∫
x∈T

z(x′)p(x′|x)dx′. (4.54)

We can construct a matrix PN with integrals only at non-terminal states

PN ,ij = GN [φj](xi), i = 1, · · · , N, j = 1, · · · , N. (4.55)

and a vector r with elements as ri = GT [exp(−qT (xi))].
∫
x∈N is usually not different than

the integral on the entire space, because the bases are localized, and terminal states are

normally limited in a small region. Therefore, most PN ,ij can be evaluated with the cubature

formula. Otherwise, if the collocations state is close to the terminal states, discretization in

grids is needed to evaluate PN ,ij .

If we use basis functions to approximate the desirability function (4.45), we will obtain

the discretized formula, which is a linear equation.

w = Q(PNw + r) (4.56)

45

Many algorithms are available for solving this kind of problem (backslash in MATLAB,

for example). One iterative method will take the form

wk+1 = QPNwk +Qr (4.57)

This algorithm would terminate when the modulus of the leading eigenvalue of QPN is

smaller than 1, which is true when q(x) > 0 everywhere, meaning that the first exit problem

is well-defined.

Summary

Table 4.1 summarizes the Bellman equations, their discretized correspondences and algo-

rithms. Some details are omitted.

In summary, it is possible to use the MLS approximation to solve the LMDP problems

posed in all four settings[48]. Iterative algorithms are available, so no matrix factorization

is needed when matrix P (PN for first-exit) is constructed. This feature provides efficiency

when dealing with a large number of base functions.

4.4 Numerical results

In this section, we present numerical results. First we show that the results given by MLS

approximation are meaningful on simple test problems. Then we show that the method

scales to high-dimensional systems. After that, we will compare them with other methods.

Finally we will discuss limitations of this method.

4.4.1 Test problems, solution, and dynamical simulation

Here we use MLS approximation to solve our test problems. We focus on the desirabil-

ity function z(x), cost-to-go function v(x), optimal control law u∗(x), and dynamical

simulations based on u∗(x). When possible, we compare these results with dense MDP

discretization[49]. Test problems are formulated as linearly-solvable controlled diffusions as

in Section 3.2.

46

Table 4.1:

Bellman Equation

Setting Bellman Equation

average z(x) = exp(hc− hq(x))G[z(x)]

finite zt(x) = exp(−hq(x))G[zt+h(x)]

discount z(x) = exp(−hq(x))G[zα(x)]

first exit z(x) = exp(−hq(x))G[z(x)]

Discretized problem and algorithms

Setting Discretized Algorithm

average w = λQPw wk+1 = QPwk/(‖QPwk‖)

finite wt = QPwt+h wt = QPwt+h

discount w = QPwα wk+1 = QP (wk)α

first exit w = Q(PNw + r) wk+1 = QPNwk +Qr

Example 1: Car-on-the-hill

This test problem is adapted from [48]. (More details in the appendix.) It has a 2D state

space (position and velocity) and 1D control space. This dynamical system simulates a

point mass (a car) moving along a curve (inverted Gaussian) in the presence of gravity. The

control signal is the force acting in a tangential direction. One interesting property of this

model is that the continuous dynamics are augmented with the following rule. When the

car hits the “walls” at xmin or xmax , its speed becomes 0. Such a discontinuity cannot be

captured by the diffusion model (3.9), yet it can easily be captured by our LMDP [49]. The

reason for constructing a model with collisions is that we hope our methods will work for

more complex tasks such as locomotion and hand manipulation, where contact phenomena

and discontinuity are essential.

For the average-cost setting, we design a cost function q(x) (Fig.4.2(b)) which encourages

the car to pass repeatedly via two targets with non-zero desired velocity – resulting in a

47

Figure 4.2: (a) illustrates the model and (b) shows the state cost function q(x). (c)-(e) (the
second row) show the cost-to-go function v(x) = − log(z(x)), while (f)-(h) (the third row)
show the optimal control law obtained. In (f-h), dynamical simulations are shown by black
curves, while their initial states are shown by red dots. (c),(f) show the results from the
MDP method with a 151×151 grid. (d),(g) shows the results from the MLS approximation
with 21× 21 nodes on a regular grid. (e,h) shows the results from the MLS approximation
with 189 nodes generated using our adaptive scheme. Black dots in (d,e) represent nodes.
In (b)-(h), the horizontal axis represents position xp and the vertial axis represents velocity
xv.

limit cycle behavior. As shown in Fig.4.2(c-h), the cost-go function and optimal control law

are consistent with the results of dense MDP discretization.

We can also use this dynamical system to define other optimal control problems: dis-

counted, first exit, and finite horizon. For the discounted setting, the cost function is the

same as before. For the first exit and finite horizon settings, the goal (encoded as a final

cost) is to park the car at horizontal position 2.4; in that case the running state cost q(x)

is constant. As shown in Fig.4.3, Fig.4.4 and Fig.4.5, the results are again similar to those

obtained by dense MDP discretization.

48

Figure 4.3: (a) illustrates the model and (b) shows the state cost function q(x). (b-c) show
the cost-to-go function v(x) = − log(z(x)). (e-f) show the optimal control law obtained. In
(e-f), dynamical simulations are shown by black curves, while their initial states are shown
by red dots. (b),(e) show the results from the MDP method with a 151× 151 grid. (c),(f)
show the results from the MLS approximation with 251 nodes generated by our adaptive
scheme. Black dots in (c) represent nodes. Compared with the average-cost setting, here
the optimal control law seems to take advantage of walls (hit the wall, then keep going).
MLS with the adaptive scheme is able to capture this property. In (b)-(f), the horizontal
axis represents position xp and the vertial axis represents velocity xv.

P

Figure 4.4: (a) illustrates the model and (d) shows the terminal states vs. nonterminal
states. Write shows terminal states. (b-c) show the cost-to-go function v(x) = − log(z(x)).
(e-f) show the optimal control law obtained. In (e-f), dynamical simulations are shown by
black curves, while their initial states are shown by red dots. (b),(e) show the results from
the MDP method with 151×151 grid. (c),(f) show the results from the MLS approximation
with 161 nodes generated by our adaptive scheme. Black dots in (c) represent nodes. The
MLS solution is not identical to the MDP solution, yet the resulting control laws are similar.
In (b)-(f), the horizontal axis represents position xp and the vertial axis represents velocity
xv.

49

P

Figure 4.5: (a) illustrates the model and (d) shows the final cost function qF (x). (b-c) show
the cost-to-go function v(x) = − log(z(x)) at time 0. In (e-f), dynamical simulations are
shown by black curves, while their initial states are shown by red dots. (b),(e) show the
results from the MDP method with a 151× 151 grid. (c),(f) show the results from the MLS
approximation with 334 nodes generated by our adaptive scheme. Black dots in (c) represent
nodes. Different from previous settings, here both desirability functions and optimal control
law are functions of time, so we focus on showing the dynamical simulation. MLS tends to
smooth out the desirability functions and gives a slightly different optimal control law. In
(b)-(f), the horizontal axis represents position xp and the vertial axis represents velocity xv.

50

Example 2: Coupling a series of masses on ideal springs

This model simulates several identical masses attached to frictionless springs, which are

dynamically independent. More details are described in the Appendix. Each mass can

oscillate with any amplitude. The control objective is to generate movements such that: (1)

the energy of each mass-spring equals a constant; (2) mass number (i) moves with phase

π/2 ahead of mass number (i+1). We use the average-cost setting to solve the problem,

with state cost function designed to enforce the above goals. This model is rather simple,

but it has advantages when tuning the algorithm – namely it can be defined for any number

of dimensions (masses), and the optimal behavior can be computed analytically: cosine

functions cos(Ct+ φ) with appropriate phase changes.

Here, we applied a modification that includes a decay factor when the state is too far

away from existing nodes. (This effectively applies an additional control to move the system

back to nodes, or a hybrid method with the Gaussian approximator in [49]) . The formula

is shown below. r is the distance to nearest node,

z̃MLS(x) =

 zMLS(x), r < R,

zMLS(x) exp(−λ(r −R)2), r > R.
(4.58)

We found that with some prior information (i.e., initializing some nodes near the optimal

trajectory), our approximation scheme generates good results even in a 14-dimensional state

space (7 masses) and only requires a few thousand nodes, which is less than a regular grid

with 2 nodes per dimension! This is because most of the nodes end up being places around

the limit cycle. Fig. 4.6 shows the emergence of an attractive trajectory for systems

composed of 2 masses and 7 masses respectively.

4.4.2 Numerical issues

Convergence

First we consider convergence for fixed bases. The power iteration method converges geo-

metrically when the leading eigenvalue is real and its corresponding eigenvector is unique.

This holds for the original problem (before the approximation), and in practice we have

51

−2 0 2
−2

−1

0

1

2

(a) 2, x
1
 vs. v

2

−2 0 2
−2

−1

0

1

2

(b) 2, x
2
 vs. v

2

−2 0 2
−2

−1

0

1

2

(c) 2, x
1
 vs. x

2

−2 0 2
−2

−1

0

1

2

(d) 7, x
1
 vs. v

2

−2 0 2
−2

−1

0

1

2

(e) 7, x
2
 vs. v

2

−2 0 2
−2

−1

0

1

2

(f) 7, x
1
 vs. x

2

Figure 4.6: The trajectories are shown by projecting to different dimensions. The first
row(a-c) shows the results for 2 masses (4-dimensional state space) with 166 nodes. The
second row(d-f) shows the results for 7 masses (14-dimensional state space) with 2912 nodes.
The first column(a, d) shows the trajectories of the first mass. The second column(b, e)
shows the trajectories of the second mass. The last column(c, f) shows the positions of the
first and second masses. Note that the analytical solution in each case is a circle with radius
1.

observed that it holds for the approximation as well. The rate of convergence corresponds

to the mixing time of the MDP and is problem specific, but normally it is fast enough.

We are guaranteed to get a positive solution. In our numerical tests, the CPU time spent

on power iteration is always a small fraction of the total CPU time. Another issue is how

accurate the solution is. Due to the nature of cubature formula, we cannot make our nodes

distributed too densely; however, as shown in the previous part, the solution is good in the

region covered by the nodes.

We then consider convergence of the adaptive scheme. The method is trivially guaran-

teed to terminate in a finite number of iterations, because the approximation volume and

node density are limited. In our numerical tests, we observed that the solution improves

when the number of nodes increases. The adaptive scheme usually terminates in tens of

iterations.

52

Figure 4.7: Here, we demonstrate the process of the adaptive scheme by showing the interme-
diate cost-to-go function and desirability functions for the average-cost setting of Example
1. The final result is shown in Fig. 4.2 (e,h), which is obtained with 17 iterations of our
adaptive scheme. Here, the first column (a,d) shows results with initial nodes. The second
column (b,e) shows the 4th iteration, while the third column(c,f) shows the 9th iteration.
The first row (a-c) shows the cost-to-go function, where black dots represent the nodes. The
second row (d-f) shows the optimal control law obtained.

Scalability to high-dimensional systems

Scalability to high-dimensional systems is the primary challenge in solving Bellman equa-

tions numerically. A successful method has to satisfy several conditions. First, the method

should give a controller not far from the true solution. Second, the computational complex-

ity of the method should scale well with the number of parameters (weights, grid points,

etc). Third, the number of parameters needed to achieve good accuracy should scale well

with dimensionality. The first and second conditions hold for most methods, including MDP

discretization. The real challenge, however, is the third condition – which is rarely met in

practice. Our numerical results illustrated that the new method has a lot of potential in

terms of scaling. This is because the function approximator is automatically adapted to the

problem at hand, and because for a fixed set of bases the problem becomes linear and is

solved very efficiently. We now discuss these two points in more detail.

First we discuss the case of fixed bases/nodes. Our empirical results show that most of

the CPU time is spend in constructing the discretized operator (Section 4.3.2) using the

MLS method. The time complexity of this construction is O(n3), where n is the number of

53

state space dimensions. The cubature formula has time complexity O(n2c) where nc is the

number of control space dimensions. Thus, when the number of nodes is N and the number

of nearest neighbors being considered is K, the overall time complexity is O(NKn3n2c).

The CPU time for constructing the discretized operator in Example 2, with the final set of

nodes, was as follows. For 2 masses, with 100-200 nodes, it takes around 0.02 seconds. For

7 masses, with 2000-4000 nodes, it takes 40-160 seconds. These results are consistent with

our theoretical analysis.

Second we discuss the time complexity of the adaptive scheme. We do not yet have

theoretical results; with our current settings, the number of iterations did not increase

significantly with state space dimensionality (this is possible because multiple nodes are

added in each iteration, and the number of new nodes per iteration typically increases with

dimensionality). In Example 2, the algorithm converges in 10-30 iterations, regardless of

the number of masses. Each iteration involves (1) constructing the discretized operator, (2)

finding the principal eigen-pair and corresponding control law, and (3) running a dynamical

simulation starting from each current node. Part (2) takes negligible time, while parts (1)

and (3) are comparable. The total CPU time for solving Example 2 with the adaptive scheme

is as follows; for 2 masses it takes 1-3 seconds. For 7 masses it takes 400-4000 seconds. Our

code is a mixture of MATLAB and C MEX files. The speed can be improved significantly

by utilizing parallel processing; indeed, both the construction of the discretized operator

and the stochastic simulation (starting from many different states) are easily parallelized.

4.4.3 Comparison with other methods

Comparison with MDP method

Previous results have demonstrated the similarity of results given by both methods. The-

oretically, the MDP method can naturally give a “ground-truth” solution, while the MLS

method tends to yield a bigger error.

However, MLS would outperform MDP in practice. First of all, normally the MLS costs

much less CPU time than the MDP. For example, in the example shown in Fig.4.2, the MDP

method (Fig. 4.2(c,f)) takes a hour in MATLAB, while the MLS method (Fig. 4.2(d,g))

54

takes 0.1 seconds without adaption 0.09 seconds with adaption (Fig. 4.2(e,h)).(Programming

details and complexity of model may affect those estimates, but normally MDP would run

much slower than MLS.) In both cases, most CPU time is spent in constructing a matrix

(probability transition matrix for MDP, discretized operator for MLS). In high dimensional

practical control problems, the MDP method is not numerically possible, since it needs

dense grids on every dimension on state space. Second, since the MDP method is to ap-

proximate a problem within a finite box in state space, it may yield suspicious results near

boundaries (thus, in Section 4.4.1, we perform the MDP method in a bigger region than

shown). The MLS method tends to have less suspicious results near boundaries due to its

exploration power.

Comparison with the gaussian method

The method presented here differs significantly from the method using gaussians presented

in [49] except for different choices of bases functions. First, the method here uses power

iteration rather than quadratic optimization or nonlinear optimization. Second, the method

here uses nonparametric ways to adapt the bases. Our comparison need to take these factors

into account.

First, we test the gaussian method on Example 2 with a similar nonparametric adaptive

scheme as described here in Section 4.3.5. The covariances of gaussians are allocated based

on distance between each other, thus providing a fair comparison with the MLS method.

MATLAB built-in optimizer “quadprog” is used to perform quadratic programming. The

results are similar to that in Secion 4.4.1 with 2, 3, and 4 masses, but fail for more masses.

We can conclude that, MLS bases have the following advantages over gaussian bases. First,

solving the resulting eigen problem cost less CPU time than gaussian bases. Second, the

MLS method is less prone to converge to the wrong eigenvector. The disadvantage of

MLS bases is that constructing MLS bases tends to consume more time than constructing

gaussian bases. The total CPU time consumed with both methods is similar. In conclusion,

when scaling to high dimensionality, if the number of bases grows, or if the results cannot

easily be verified, MLS tends to outperform gausian bases.

55

Then, we test the adaptive scheme in Secion 4.3.5 by comparing above results with results

from gaussian bases with gradient descent. MATLAB built-in optimizer “fmincon” is used

to perform nonlinear optimization. When gaussian bases are initially placed properly (near

trajectories), the gradient descent method may normally converge to acceptable results.

The results are similar to that in Section 4.4.1 with 2, 3, 4, and 5 masses, but fail for

more masses. The time consumed with gradient descent methods is much higher than

non-parametric adaptation if they converge to acceptable results. For example, with 4

masses, gradient descent bases adaptation needs 46 seconds with 50 bases, and adaptive

scheme in Section 4.3.5 with 161 gaussian bases needs 0.17 seconds, adaptive scheme in

Section 4.3.5 with 191 MLS bases needs 0.06 seconds. This is likely due to the need to

repeated construct gaussian bases. Moreover, the gradient descent method is very likely to

converge to wrong eigenvector (λ very small) when initially bases are not placed properly.

To conclude, the method presented here outperforms the gaussian approximation method

with gradient descent presented in [49].

4.4.4 Limitations

On the other hand, we found that this method cannot scale well to some difficult benchmark

control problems, such as acrobot or humanoid. In those cases, the resulting control problem

may appear to move randomly, indicating that we cannot find an acceptable solution with

this method. This is due to inaccuracies in both value function and optimal control policy.

We found the value functions are not smooth enough, due to the truncation used. We

therefore explore other base functions in later sections.

4.5 Conclusion

Here we developed a function approximation method for linearly-solvable stochastic optimal

control problems. This is our first attempt to engineer base functions in order to solve

leading eigen-pair more easily. Numerical tests show MLS method’s effectiveness in simple

problems, yet we lack good results on difficult problems with applications. In addition, the

cost to compute base functions on high dimensionality is still high.

56

For these reasons, although we still believe that MLS may be a good candidate for

function approximators in other applications, in the field of solving for LMDP’s value func-

tion, we will examine other base functions and other ways to obtain control policy in later

sections.

57

Chapter 5

AGGREGATION METHODS FOR LINEARLY-SOLVABLE MDP

(Most of the contents in this chapter are shown in [60].)

5.1 Introduction

5.1.1 Motivation

The motivation of this section shares that of the last section moving least squares. We want

a method that improves or supplements the moving least squares method, yet avoid solving

a weighted eigen-problem λFw = Gw. We also want a framework that makes first-exit

formulation easier to solve and that is based on different theoretical background than MLS.

Furthermore, we want a function approximator that is smoother than MLS. That brings us

to a normalized gaussian approximator, which is the basis of the method described here.

5.1.2 Contribution

The new method proposed here is different from the other methods in concept. Previ-

ous methods are function-approximation schemes. They approximate the desirability func-

tion z(x) = exp(−v(x)) defined on the continuous state space and solve the corresponding

linear equation; v is the optimal cost-to-go function. Here, we are proposing a problem-

approximation scheme. Using aggregation methods, see [10, 36], we approximate the optimal

control problem as one defined on discrete states, which we call clusters, and then solve the

resulting linearly-solvable MDP (or LMDP). The new approximation scheme leads to simple

eigen-problems in the form λw = QGw, so it always converges to the principal eigenvalue

and guarantees positivity of the solution. This scheme also provides extra flexibility in terms

of constructing the approximation in first-exit problems (see below). On the other hand,

it requires more dynamics evaluations compared to function approximation with Gaussian

bases – by a factor of O(m), where m is the state dimensionality – because certain inte-

58

grals cannot be computed analytically and instead require numerical approximations via

Gaussian cubature.

5.2 Soft state aggregation scheme

In this section we first summarize the idea of soft state aggregation [10, 36]. Then we

introduce our choice of aggregation and deaggregation probabilities. After that, we show

how to recover the solution of the original problem using clusters obtained from aggregation.

Issues regarding setting parameters of those clusters are discussed at the end.

5.2.1 Soft state aggregation for LMDPs

To aggregate the entire space into a finite number of clusters, we need to construct the

clusters S and define two choices of probabilities relating the clusters to the original system

states.

Definition 1. (Aggregation and deaggregation probabilities)

1. Aggregation probability p(i|x) = φi(x), x ∈ X , i ∈ S is a probability-like quantity that

is interpreted as the “degree of membership of x in the aggregate state i”.

2. Deaggregation probability, p(x|i) = di(x) , x ∈ X , i ∈ S is a probability-like quantity

that is interpreted as the “degree to which i is represented by x”.

Aggregation and deaggregation probabilities naturally satisfy the following conditions

Fact 1. (Aggregation and deaggregation probabilities)

1. nonnegativity

φj(x) ≥ 0, di(x) ≥ 0. (5.1)

2. normalization conditions

∑
j∈S

φj(x) = 1,

∫
x∈X

di(x)dx = 1. (5.2)

59

3. Bayes rule

φi(x) = p(i|x) =
p(x|i)p(i)
p(x)

=
di(x)p(i)

p(x)
, i ∈ S, x ∈ X , (5.3)

where p(i) and p(x) are some probability densities over S and X .

When the aggregation probabilities φi(x) are not all 0 or 1, this method is called soft

aggregation, which implies that each state of the original system may belong to multiple

clusters.

Suppose we have a continuous-state LMDP with passive dynamics p(x′|x), x, x′ ∈ X . We

would like to approximate the desirability function z(x), x ∈ X . Based on the aggregation

framework, the transition probabilities among the clusters can be expressed as

p̂(j|i) =
∫∫
x,x′∈X p(j|x

′)p(x′|x)p(x|i)dxdx′

=
∫∫
x′,x∈X φj(x

′)di(x)p(x′|x)dxdx′.
(5.4)

The state cost function over clusters is

exp(−q̃i) =

∫
x∈X

exp(−hq(x))di(x)dx. (5.5)

This completes the construction of the approximating LMDP on clusters, which is defined

on a finite and discrete state space.

5.2.2 Choice of aggregation and deaggregation probabilities

In this paper we choose the deaggregation probabilities as multidimensional normal distri-

butions:

di(x) = c−1i exp(−(x−mi)
TSi(x−mi)/2), (5.6)

where c−1i denotes the normalization factor. Then p(x) and p(i) in (5.3) are chosen as the

following mixtures(5.7):

p(i) = ci, p(x) = Σi∈Sp(i)p(x|i), (5.7)

then based on (5.3), the aggregation functions are

φi(x) =
exp(−(x−mi)

TSi(x−mi)/2)∑
i∈S exp(−(x−mi)TSi(x−mi)/2)

. (5.8)

60

Figure 5.1: This figures demonstrate the shape of aggregation functions di(x) and deag-
gregation functionsφi(x) in the aggregation method. (a) Aggregation and deaggregation
functions in 1D. Blue lines show aggregation, while red lines show deaggregation functions.
Black lines show the means of the clusters. (b-d) shows several aggregation functions in 2D.
The ellipses correspond to the contours of the Gaussian deaggregation functions.

The shape of the aggregation and deaggregation functions is illustrated in Fig 5.1. To

improve computational efficiency and generate a sparse transition probability matrix, the

summation in (5.8) will be limited to nearby clusters, and φi(x) will be set to 0 if the

mi is not among the k nearest neighbors to x. Note that we only choose the shape of

the deaggregation functions (Gaussian). The aggregation functions are then constructed

automatically via normalization. The result of the normalization is to reshape the Gaussians

in a way that fills the gaps and covers the space more uniformly.

5.2.3 Finding the desirability function z(x)

Overview

The double integral (5.4) is not trivial to calculate numerically. Currently we are employing

a cubature formula [29, 39] that requires evaluating the aggregation function and the a(x)

function O(m) times, where m is the state space dimensionality. Once the discrete-space

LMDP is constructed, we can solve it by finding the principal eigen-pair for a problem in

the form

λz = QPz. (5.9)

61

Here, Pij = p̂(j|i), λ = exp(−hc), Q is a diagonal matrix with Qii = exp(−q̃i) in (5.5). One

way to solve this problem is the power iteration method (in [57]): λzk+1 = QPzk, with

‖z‖ fixed. The matrix QP is guaranteed to have a principal eigenvalue less than 1, and the

corresponding eigenvector is guaranteed to have positive elements, because all elements of

the matrix are nonnegative.

For the first-exit formulation [47], the corresponding linear equation is

diag(exp(qN))− PNN zN = PNT exp(−qT). (5.10)

Here, N stands for nonterminal states and T stands for terminal states, and PNN , PNT are

the corresponding blocks of P in (5.9). We can approximate the continuous-state problem

if we allocate several clusters as terminal states. Note that this is not equivalent to the

continuous function approximation approach, which requires a boundary condition on z(x).

Let T ⊂ Rm denote the set of terminal states in the continuous state space. The continuous

function-approximation scheme would involve integrals such as
∫
x′∈Rm\T p(x

′|x)f(x′)dx′,

which would be difficult to evaluate in high-dimensional problems.

With regard to computational complexity, estimating (5.4) tends to be the bottleneck.

Finding the K nearest neighbors can be done efficiently using tree decompositions, while

evaluating (5.4) requires O(NKm3) computations where N is the total number of clusters

(see below).

Numerical issues for estimating probability transition matrix of clusters

p̂(j|i) =

∫∫
x′,x∈X

φj(x
′)di(x)p(x′|x)dxdx′ (5.11)

is not trivial to be calculated numerically. We will use cubature formula again. With

x′ = x + ha(x) +
√
hσB(x)ξ, the integral becomes

p̂(j|i) =

∫∫
x∈X ,ξ∈Rmc

φj(x + ha(x) +
√
hσBξ)di(x)N (0, I)dξ. (5.12)

Here N (0, I) represents the probability density function of a unit Gaussian distribution.

di(x)N (0, I) is a Gaussian function. If the problem is defined in an entire space or the

clusters are small, the above integral can be approximately calculated by the cubature for-

mula. Those formulas approximate the integral with a weighted summation of the function

62

evaluated at carefully selected sampling points.

I[Φ] =

∫
Φ(y) exp(−yTy)dy ≈ Q[Φ] = Σ

nsample

j=1 wjΦ(yj) (5.13)

We currently are using one with nsample = 2(m + mc) + 1 points, a variation from [39],

where m is the dimensionality of the state space and mc is that of the control space.

Q[Φ] = w1π
n/2Φ(0) + w2Σfull sym.Φ(

√
λ, 0, .., 0),

w1 = 2λ−1
2λ , w2 = 4

nλ,
(5.14)

λ is an arbitrary parameter. Here, “full sym.” means all possible indexes, permutations and

reflections. Therefore, for a m dimensional system with N clusters, the time-complexity for

computing the entire matrix is O(NKm3), where K corresponds to how many neighboring

points you have chosen to evaluate. That is because :(1) calculating a Gaussian needs

O(m2) time and (2) calculating a row of the probability transition matrix require evaluating

Gaussians O(Km) times. In our trials, computing the transition matrix seems to be a

bottleneck.

5.2.4 Finding optimal control law u∗(x)

Once the discrete-space LMDP is solved, the continuous-space desirability function is

z(x) =
∑
j∈S

φj(x)zj , (5.15)

and then the optimal control law u∗(x) can be computed from (3.3). Numerically this can

also be calculated through cubature formulae.

However, since aggregation methods map the original continuous space problem to dis-

crete states, we can obtain optimal transition probabilities between clusters and get vector

optimal control policy as well.

5.2.5 Determining the position and covariances of clusters

The clusters (defined by the Gaussian deaggregation functions) are characterized by their

means and covariances. Obviously the choice of means and covariances will have a large

63

effect on the quality of the approximation. Here we present a method for choosing these

parameters in a suitable way.

The means of clusters are chosen in a similar fashion to that in Section 4.3.5

Once the means of the clusters are chosen, we need to choose the covariances. One

possibility is to use gradient descent; however, this is likely to be slow because the covariances

have a large number of parameters. Instead, we use a heuristic method to ensure that

the clusters have some overlap. Since the solution z(x) tends to be more spread out in

the directions where the noise acts, the covariances need to be more elongated in these

dimensions.

Our current results involve setting covariances in the following ways. (1) Manually set

them, but this involves some insight into the specific system. (2) Assume that they have

the same shape, in other words the inverse covariance matrix Si for all clusters is the same

up to multiplication by a scalar; this scalar is determined by the distance to other clusters

and how much overlap between clusters we need. Keeping Si diagonal tends to give good

enough results in most of our test problems.

5.3 Numerical results

In this section we present numerical results for simple problems. First we will illustrate that

the results given by the aggregation framework are meaningful in simple problems. Second

we will illustrate that the method scales to a high-dimensional systems.

5.3.1 Test problems, solutions and dynamical simulations

Here we will focus on the desirability function z(x), cost-to-go function v(x), optimal control

law u∗(x), and dynamical simulations based on u∗(x). When possible, we will compare these

results to the “ground truth” obtained from an MDP discretization [49] on a dense grid.

Example 1: Car-on-the-hill

This test problem has been discussed before in moving least squares. For the average-cost

setting, we design a cost-function q(x) (Fig.5.2(b)) that encourages the car to pass through

64

Figure 5.2: (a)demonstrates the problem. Curve represents the “hill” and arrows represents
via points in average-cost formulation. (b)demonstrates the state cost function q(x) of
the average cost formulation. (c-h) show results given by average-cost formulation. (i-p)
show results given by the first-exit problem. Except for (a,b,o,p), the top and third rows
show the cost-to-go function(x) = − log(z(x)), with blue representing low cost-to-go or high
desirability and dots representing where clusters are. The second and fourth rows show the
corresponding optimal control law. Solid lines show the trajectories given by a simulation
with several random initial states (indicated by yellow circles). (c-d,i-j) show the results
given by MDP with 151 x 151 states sampled on bigger region than shown. (e-f,k-l) show
the results given by putting clusters on a 21x21 grid. (g-h,m-n) shows the results given by
putting clusters with the adaptive scheme. The average-cost one (g-f) uses 94 clusters, (m-
n) the first-exit one uses 78 clusters. For those results by adaptive clusters, their covariances
are adaptive to match their distance from the nearest neighbor. (o) shows initial clusters,
and (p) shows clusters after 3 iterations. The result given by (m-n) is obtained after the
14th iteration. Except (a), the horizontal axis represents horizontal position and the vertical
axis represents velocity.

65

two targets that have non-zero desired velocities; thus the optimal behavior involves a

limit cycle. As shown in Fig.5.2(c-h), the cost-go function and control law given by our

approximations are consistent with the dense MDP solution, even though here we use a

small number of bases.

We can also use this dynamical model to create a first-exit problem. The goal of this

model is to park the car (i.e., achieve zero velocity) at horizontal position 2.35. The running

state cost is constant; thus, it effectively acts as a cost for time. Again, in Fig.5.2(i-p), the

results are consistent with the MDP method. Subplots (o-p) give the initial clusters and

the intermediate clusters during iterations. We can see that there are fewer clusters at the

right-bottom corner, where the car visits less frequently.

For the car-on-a-hill model, one interesting result is that our framework could capture

collisions properly by solving for control laws taking advantage of collisions. This behavior

is difficult to capture using trajectory-based methods.

Example 2: Coupling a series of masses on ideal springs

This simple model has also been used in the section of moving least squares. It is rather

simple, but it has advantages when tuning the algorithm. First, it has similar behavior

when scaling to higher dimensionality (simply changing the number of masses). Second, the

limiting behavior of this system can be easily computed theoretically: it is in the form of

cosine functions cos(Ct+φ) with appropriate phase changes. Note that the solver does not

“know” about this analytical form and instead is applying a generic numerical method.

Results in Fig 5.3 show that we can control systems with 2,3,5 and 7 masses using only

hundreds of clusters. Since this model is better used for fine-tuning this method, we will

discuss more details of this model in the following section about scalability.

5.3.2 Scalability to high dimensional systems

Scalability to high dimensional systems is the primary challenge of solving Bellman equations

numerically. A successful method needs to satisfy several conditions. First, the method

should give a controller not far away from the true solution. Second, the computational

66

−2 0 2
−2

0

2

(a) 2 masses

−2 0 2
−2

0

2

(b) N=138

−2 0 2
−2

0

2

(c) 3 masses

−2 0 2
−2

0

2

(d) N=224

−2 0 2
−2

0

2

(e) 5 masses

−2 0 2
−2

0

2

(f) N=250

−2 0 2
−2

0

2

(g) 7 masses

−2 0 2
−2

0

2

(h) N=399

Figure 5.3: Results for N spring-mass model with different dimensionalities. The first
row represents simulated trajectories projected to x1 vs. v1 plane, while the second row
represents those projected to x1 vs. x2 plane. (a-b) are for 2 masses, (c-d) are for 3 masses,
(e-f) are for 5 masses, (g-h) are for 7 masses. N stands for number of clusters. Circles
represent initial states. All of them are calculated with hundreds of clusters. We can see
that most trajectories converge to the unit circle on planes, which are projections of the
theoretical attracting trajectories.

complexity of the method should scale well with the number of samples used. Third, the

number of samples needed to achieve good accuracy should scale well with dimensionality.

The first and second conditions normally hold (e.g., MDP), and the real challenge is the

third one.

At least in the Example 2 shown, our framework can control a high-dimensional system

semi-globally with a surprisingly small number of clusters given the dimensionality. In

general, the number of samples needed is likely to be problem specific, and might blow

up due to the complexity of a system. Nevertheless, our numerical results to date are

encouraging.

We also note that the CPU time scales well with dimensionality. Our code is written in C

and is multithreaded. It runs on a quad-core 3GHz Intel i7 processor. Going from 2 masses

to 7 masses (4 to 14 state dimensions), the total CPU time increases from 0.5 seconds

to 4 seconds. The CPU time for estimating the probability transition matrix increases

from around 15 milliseconds to 80 milliseconds. When using 7 masses and 20000 clusters,

computing the transition matrix takes 56.5 seconds with 6 threads, as opposed to 243.7

seconds with 1 thread. Thus, our algorithm successfully takes advantage of multithreading.

67

5.3.3 Comparison with other methods

Comparison with MDP method

The aggregation method can be viewed as a natural extension of the regular discretization

MDP method. Previous results have demonstrated the similarity of results given by both

methods. Like MLS, however, aggregation may also outperform MDP in practice with good

selection of aggregation and deaggregation probabilities.

Comparison with Gaussian method

The method presented here differs significantly from the method using gaussians presented

in [49]. First, the method here uses power iteration rather than quadratic optimization or

nonlinear optimization. Second, the method here uses nonparametric ways to adapt the

bases.

Since the aggregation method is based on LMDP defined in discrete state spaces, it also

provides more flexibility than the Gaussian method in first-exit formulation.

Comparison with moving least squares methods

In general, this method outperforms MLS. First, it avoids truncations and provides more

smooth value function, frequently give us smoother value function and better control policy.

Second, it is faster than MLS. Moreover, it provides more flexibility than MLS in first-exit

formulation.

5.3.4 Limitations

On the other hand, we found that this method also cannot scale well to some difficult

benchmark control problems, such as acrobot or humanoid. This implies problems with

value function approximation, which we will cover in later sections.

5.4 Summary

Here we presented a new problem-approximation scheme, which transforms a linearly solv-

able optimal control problem with continuous state space into a problem with discrete state

68

space. This provides extra flexibility in the problem formulation and also avoids numerical

issues with function approximation methods. Preliminary results show that it can generate

acceptable control laws and is scalable to higher dimensional systems. We also employed an

adaptive scheme for aggregation/deaggregation functions that increases the approximation

accuracy in the regions of state space that visited most often.

However, on certain problems that are harder, such as acrobot or humanoid, the basic

method presented here does not scale automatically. We therefore explore similar value

function approximations and other control policy retrieval methods. The source of such

limitations and possible ways to enhance the basic aggregation method are proposed in the

following chapters.

5.5 Future works

Certain works postdating the initial publication ([60]) of this chapter are discussed in later

chapters. In addition, there are still multiple directions that are appealing in improving

the basic method of aggregations. First, approximating value function with normalized

gaussians is not compulsory in the aggregation setting. Using other distributions rather

than normal distribution may be appealing in certain applications. Second, the transi-

tion between neighboring clusters can be local controllers such as LQR or Lyapunov-based

controllers, which may enhance local stability of the resulting controller. Third, certain

actor-critic approaches can be applied to aggregation to adapt clusters and improve the

quality of the solution.

69

Chapter 6

LIMITATIONS OF LMDP GLOBAL METHODS

In previous few chapters, we discussed numerical methods for LMDP and gave the results

for some simple test problems. One may naturally ask whether LMDP can help us solve

complicated problems arising in applications for robotics, such as walking. However we

found that there are obstacles that prevent us from automatically applying LMDP global

value function methods in certain applications.

In this chapter, we will first discuss alternative function approximation strategies for

value function in LMDP setting to further enrich our tools to solve complicated problems

(yet all methods in previous chapters and this section failed on problems such as acrobot).

Then we will discuss the limitations of LMDP value function methods. In the end, we will

outline how to detour such limitations.

6.1 Alternative function approximation schemes

In addition to the methods in previous chapters, we also have explored several numerical

methods to exploit the benefits brought by the linear-solvable framework. Although promis-

ing in some aspects, they perform at most on par with the aggregation method. None of

this methods discussed is helpful in solving certain harder problems such as cart-pole or

acrobot.

6.1.1 Alternative base functions

To obtain a discretized problem in the form of λw = QPw, alternative approaches exist

and may give similar results.

70

Normalized Gaussian

Similar to the aggregation methods, we can use normalized Gaussian functions (the deag-

gregation function in the previous chapter) as base functions. This choice of base function

avoids the double integral used in the previous chapter, simplifies calculation, yet we still

may end up a discretized problem λFw = QPw with a nondiagonal F matrix. However,

when the covariance matrices in gaussians are big enough, the F matrix may be very close

to a diagonal matrix, so we treat it as a diagonal matrix.

The numerical results are similar to those of aggregation methods. The resulting control

policy is slightly worse than the aggregation method, and this method consumes less CPU

time. However, the approximation of treating F as diagonal lacks sufficient theoretical basis,

so we tend not to extend this method.

Similarity weight function

[27] discusses a motion fields method for interactive character locomotion. It uses a function

approximator based on “similarity” between two states of characters in locomotion. It can

be written as follows,

φi(x) =
1

η

1

d(x,mi)2
, η = Σi

1

d(x,mi)2
, (6.1)

where d(x,mi) is the distance between states andis tailored to walking tasks. mi are nodes,

which are important motion states. It satisfies formulae similar to moving least squares and

yields discretized problem λw = QPw.

However, the disadvantage of this function approximator is clear. The solution away

from the nodes of approximators tends to average the results and may thus give an illusion

that the value function away from solved region is more desired. In [27], value functions

are likely to be used only very close to previous trajectories measuring with d(x,mi), and

it is not likely what we want. Hence, we do not explore more on this type of base functions

further.

71

6.1.2 Linear base functions in value function space

Since the Bellman equation is linear for z(x), we mainly discussed linear base functions in

desirability function z(x) = exp(−v(x)) space. On the other hand, we can approximate

v(x) with linear base functions and calculate z(x) based on it.

The value function can be approximated as

v(x) = Σiwiφi(x), (6.2)

where φi are base functions, such as normalized gaussians or moving least square base

functions.

Approximating in value function space would yields a method similar to power iteration;

however, each iterations involves computation with complexity O(N ×N × S), where N is

the number of collocation points and S is the number of samples in collocation methods.

Numerical results shows that the controller based on this method is very similar to

those in previous chapters. The benefits of approximating the function in v(x) are minor,

with much higher computational costs. Moreover, it cannot exempt us from truncating the

moving least square base functions.

6.1.3 Alternative method to find eigenfunction with Gaussian base functions

The major problem for the gaussian base functions [49] approach is converging to the wrong

eigenvector. For a given set of base functions, w in λFw = Gw may be likely to converge

to the wrong eigenvector in the quadratic programming approach.

Alternatively, this can be improved by solving the following nonlinear optimization prob-

lem (numerically by quasi-Newton methods such as L-BFGS);

min
w
f(w) = min

w
log(wTF TFw) + log(wTGTGw)− 2 log(wTF TGw), s.t. w ≥ 0. (6.3)

This is inspired by maximizing generalized cosine similarity between vector Fw and Gw

(the generalized cosine similarity is
√

exp(−f(w)) , and f(w) is chosen to improve numerical

performance and to simplify the calculation of gradient ∇f(w)).

72

Unfortunately, there is no guarantee for (6.3) to converge to the leading eigenvector. In

practice, we did found that (6.3) demonstrated a better chance of converging to the desired

solution than the object function in [49], and we will use this object function to find weights

for gaussian base functions.

This improvement still cannot help us to solve even harder problems such as acrobot, so

(6.3) is just a minor improvement on our existing method[49].

6.1.4 Improvements on solution methods

Power Iteration

Using power iteration to solve the leading eigenpair of the Bellman equations is one of the

key aspects to the quality of our solution. There are multiple algorithms for eigenvalue

problem [57].

Arnoldi iteration computes the eigenvalue problem in Krylov subspace; it will therefore

converge to the leading eigenpair faster. However, positivity of the solution is not guaranteed

in Arnoldi iteration, so we still need power iteration as the last steps to refine the results.

However, improvements brought by Arnoldi iteration provide little improvement in the

overall time complexity and no improvement in the accuracy of the value function solved.

Hence, this is still a minor improvement that cannot help us to expand value function

approaches in more applications.

Alternative methods for numerical integration

Numerical integration is the most important step in our algorithms and determines our time

complexity and accuracy. Cubature formulae are accurate if the object function is a low

order polynomial, which will never happen in our desirability functions. Other methods,

such as integrating on grids and random sampling, normally involve more sampling, and they

significantly improves the accuracy of integration. However, those alternative approaches

also slow down the process and limit the amount of base functions that we can use in a

reasonable time frame. Moreover, we have not found any evidence that improving accuracy

in numerical integration will improve control policies and help us apply LMDP to more

73

complicated problems.

When we are integrating with cubature formulae, we can center the distribution on

current control policy instead. This is similar to importance sampling, and the details are

shown as follows: When calculating the following integral

g(x) =

∫
p(x′|x)f(x′)dx, , (6.4)

supposing we have an approximated control policy uguess, we can instead rewrite (6.4) as

g(x) =

∫
p(x′|x)

p(x′|x,uguess)
f(x′)p(x′|x,uguess)dx, . (6.5)

Here, p(x′|x)
p(x′|x,uguess)

is the exponentiation of a linear function. Then we can treat p(x′|x,uguess)

as gaussian, and we treat p(x′|x)
p(x′|x,uguess)

f(x′) as the arbitrary function. In this way, numerical

integration is likely to be more accurate when the desired control policy is large. However,

updating (6.5) based on new results on control policy requires calculating linear operators

again and slowing down the process. So (6.5) is an improvement on par with our existing

methods.

6.1.5 Summary

In this section, we discussed multiple alternative improvements to our existing methods.

Our exploration shows that they may not outperform our existing methods and they are

not helpful in solving either cart-pole or acrobot. This implies that minor improvements in

accuracy of the function approximator may not be the real cause of the problem. We will

explore the cause in depth.

6.2 Limitations of value function scheme

6.2.1 LMDP value function approaches fails in acrobot

The acrobot is one of the most difficult benchmark low dimensional problems in the field

of optimal control problems. It has 4 dimensions in state space and 1 dimension in control

space, making dense grid representation of any global function difficult but not prohibitive.

The nonlinearity and instability make the problem even harder. The cart-pole is generally

74

easier than acrobot, yet it is still underactuated and hard to control, and it can be viewed

as an intermediate problem between easier problems and acrobot.

Value function based methods are mostly able to control acrobot yet fail to stabilize it.

The only successful result is based on neural network and showing the sharp ridge of value

function. On the other hand, several teams succeed in swinging up and stabilizing it based

on transformation and trajectory planning with extensive manual control design. MPC also

succeeds in swinging up and stabilizing it, which means optimal control schemes can match

the results of those more manual control policies.

In our results on LMDP based global methods, both cart-pole and acrobot seem to move

randomly in our derived control policy, yet the system may sometimes reach the upright

position. A natural control design is a two-step process: let LMDP control the system to

the upright position, and let LQR stabilize it locally. In cart-pole, it is possible to let the

aggregation method swing up and let the LQR controller stabilize it on the top. However,

due to the extreme nonlinearity of acrobot, this approach fails on acrobot.

These results further question how many realistic problems LMDP value function meth-

ods can actually solve. For example, humanoid shares all of acrobots’s difficulties;(1) in-

stability,(2)nonlinearity, and (3) underactuation. Moreover, humanoid has much more di-

mensionalities and has to deal with discontinuity in dynamics. Thus, it is important to

understand why LMDP based global methods tends to fail with acrobot and similar prob-

lems.

6.2.2 Value function approach is indirect

Value function approaches generally (1) approximate value function v(x); (2) use certain

rules to generate control u(x), which is a function of state variables ; and (3) generate

actual state and control time sequence by simulation. Since it is an indirect method, a

close-to-optimal value function cannot even guarantee a close to optimal u(x). Moreover,

the users may judge the performance of an optimal controller based on the actual state

and control sequence (trajectory). Users may judge optimal controllers with criteria such

as stability or response time, rather than cost functions, which are arbitrarily defined, thus

75

further complicate the problem. For example, when we are using the cruise control of a

vehicle and setting the speed as 60 mph, stabilizing the automobile at 58mph may be more

preferred by users than keeping it fluctuating between 50mph and 70mph (with mean speed

60mph), even though the latter may yields lower cost and correct expected speed.

The indirectness not only complicates any potential error analysis, but also lessens the

impact of value function approaches. To succeed in practice with value function approxima-

tion, one may need manual tweaking parameters. We will show the difficulty of parameter

tweaking and demonstrate methods to detour such difficulty in later sections and the next

chapter.

6.2.3 Certain problems may require prohibitive accuracy in value function approximation

to avoid disastrous outcomes

Here we will show that for certain optimal control problems involving instability, underac-

tuation and nonlinearity may require too high density of base functions, proper placement

of base functions, or carefully designed form of function approximators.

Method

Here we will isolate the following factors to concentrate on the limitations of value function

schemes. First, we will focus on linear systems and their variants to provide “ground

truth” solutions of cost-to-go functions by linear Riccati equations. Second, we will only

consider continuous and deterministic dynamical systems to avoid extra analysis. (A Linear

Riccati equation in continuous LQR system can be solved by build-in command “care” in

MATLAB’s control toolbox).

Thus the dynamical system would be written as

dx

dt
= Ax +Bu. (6.6)

The cost function is

l(x,u) = xTQx/2 + uTRu/2 (6.7)

The corresponding linear Riccati equation is

76

ATV + V A− V BR−1BTV +Q = 0. (6.8)

The optimal value function is

v∗(x) = xTV x/2. (6.9)

The optimal control policy is

u∗(x) = −R−1BTV x = −R−1BT∇v∗(x). (6.10)

We can use function approximators to approximate value function

vapprox(x) = −log(Σiwiφi(x)), (6.11)

and make the approximated value function accurate on nodes/samples, vapprox(xI) =

v∗(xI).

Then, we can obtain approximated control policy from uapprox(x) = −R−1BT∇vapprox(x),

and test the corresponding trajectories. These setting will encourage the system to go back

to origin, and if our approximated control policy fails this purpose, we can call it disastrous.

Please note that no rational engineers should use function approximation schemes at all

for LQR problems. This formulation also ignores any delays, which is an important source

of difficulty for unstable systems in practice; thus, unstable systems are as easily controlled

as stable ones.

Value function approach may yield disastrous behavior when the original dynamical system

is unstable AND the number of function approximators is limited

We used a 1D spring-mass-like system, A = [p, 1;−1, 0], B = [0, 1]T , Q = diag([1, 1]T). p

is a variable controlling stability of passive dynamics. If p > 0, the system is unstable. We

use moving least squares base functions to approximate the base functions.

We solve the problem with sufficient basis functions (101×101) (Fig. 6.1c); the simulated

trajectory is identical to that of ground truth. However, with a moderate number of basis

functions, (11× 11 grid over [−2, 2]× [−2, 2])(Fig. 6.1b), even the value function seems to

77

be close to the real solution (Fig.6.1g,6.1h), the simulated trajectory is distorted since the

gradient and Hessian of value functions bring error into trajectory, and the controller fails

to stabilize the system to origin.

On the other hand, if the system is not unstable, for example p = 0, the low density

of base function will still be able to stabilize the system at origin (Fig. 6.1d,6.1e,6.1f),

although the trajectory slightly differs from the theoretical one. In this case, the errors are

not accumulated enough to cause disaster, and the controller can still push the system back

to origin.

This means dynamical systems with inherited instability will be more sensitive to de-

ficiencies of value function and may be more apt to yield disastrous results. This may be

solved either by better form of function approximator (for example, polynomial in v(x)

space), or sufficient number of base functions. However, it is difficult to require too many

base functions in problems with higher dimensionalities.

In this specific problem, normalized gaussian bases perform better than moving least

square bases by being able to stabilize the system even if the system is unstable. This is

due to better smoothness of normalized gaussians, and we will show that this is due to

where we place them on an 11× 11 grid, where with one of node is the origin itself.

This means for dynamical systems with instability, value function schemes are likely

to require more base functions and they make the value function scheme prohibitive in

problems with higher dimensionalities.

Value function approach may yield disastrous behavior when the original dynamical system

is unstable AND function approximators are not used correctly

When the density of basis functions is low, the placement of base functions also matters.

Let’s start from our “better” base function- normalized gaussians and use the same linear

dynamical system as in the previous section.

With base functions placed on 11×11 grid, the controller for unstable dynamical systems

can still stabilize the system. If we increase the base function to 21×11 and set the diagonal

of covariance matrices as an identical matrix, the controller for the unstable system fails

78

(a) Theoretical - unstable (b) (11×11) - unstable (c) (101×101) - unstable

(d) Theoretical - p = 0 (e) (11×11) - p = 0 (f) (101×101) - p = 0

(g) Optimal value function -

unstable

(h) Approximated value func-

tion - unstable

Figure 6.1: Combined impact of insufficient base functions and instability of passive dy-
namics: Results shows the results obtained by approximating the value function by LQR
solution. When passive dynamics is unstable, a lower density of base functions(11× 11)
cannot yield an acceptable trajectory and fails to stabilize the system to origin. If the den-
sity or number of base functions increases, the control policy will converge to the analytical
LQR solution. However, if the passive dynamics is not unstable (p=0), a lower density of
base functions(11× 11) can yield an acceptable trajectory and stabilize the system to ori-
gin, although it is slightly difference from the outcome of analytical solution of LQR. 6.1g
further demonstrates the difference between theoretical value function, and approximated
value function and we can see the value function approximation is not bad; and the problem
lies in the derivatives of value functions.

79

even if we have more base functions (Fig. 6.2e,6.2f). It is not surprised that if we put

200 base functions randomly, the controller for unstable system also fails (Fig. 6.2i,6.2j).

Ironically, for a stable system with p = 0, the optimal controller based on approximated

base function can recover from those errors in value function and stabilize the system to

origin.

Thus, when using approximated value function to deal with unstable dynamical sys-

tems, in order to avoid unexpected consequences, one needs to set base functions in a good

way, which is hard in real applications when we are trying to solve this problem auto-

matically. This fact underscores the importance of basis function adaptation, both the

gradient-descend method and the heuristic method described in this thesis. All these meth-

ods can make basis function adjusting to the real value function well, but none of these

basis function adaption methods can guarantee the basis functions will always be perfect.

In certain problems such as acrobot, which are extremely sensitive to errors in value func-

tion, automatic value function approaches may easily fail to generate an acceptable control

policy.

Approximating value function in desirability space further limits flexibility of function ap-

proximators

We just illustrated that the actual control policy can be very sensitive for certain func-

tion approximators. In the above examples, one way to improve it is to approximate value

function as polynomials, i.e. v(x) = xTV x/2. However, since we are considering Bellman

equation in the z(x) = exp(−v(x)) space rather than v(x) space, quadratic function would

become a gaussian base function in z(x) space. Directly updating coefficients in polynomials

of v(x) space would become a nonlinear problem in the z(x) space. This will bring compli-

cations, and we lack sufficient good ways to directly solve for those coefficients. Moreover,

in general cases where the problem is no longer linear, we do not know what kind of poly-

nomials we need. Thus the fact that we are working in the desirability function space limits

our choice of base functions and exposes our approaches to the complications demonstrated

above.

80

(a) v(x) - unstable (b) Trajectory - unsta-

ble

(c) v(x) - p = 0 (d) Trajectory - p = 0

(e) v(x) - unstable (f) Trajectory - unsta-

ble

(g) v(x) - p = 0 (h) Trajectory - p = 0

(i) v(x) - unstable (j) Trajectory - unsta-

ble

(k) v(x) - p = 0 (l) Trajectory - p = 0

Figure 6.2: Misusing basis functions leads to unexpected outcomes in problems with unstable
passive dynamics. The first two columns show the value function and simulated trajectory
of unstable system and instability is erased in the second two columns. The first row shows
the results for normalized gaussian base functions with 11 × 11 base functions on grid. If
we increase the grid to 21× 11 with unadjusted covariance matrices, the simulated results
are blurred and the controller cannot stabilize the system for unstable passive dynamics..
Similarly, with 200 random base functions, the controller cannot stabilize the system for
unstable passive dynamics. These shows that value function approximation maybe blurred
if functions are not set “properly” and dynamical systems are hard to control if their passive
dynamics are unstable.

Summary

In this section, we demonstrated that even if we solve the Bellman equation perfectly in

the simplest problems in optimal control-LQR, we may still fail to control such a dynamical

81

system with certain function approximators. This behavior is problem-specific. Certain

problems, which tends to amplify errors in control policy, may be very sensitive to flaws in

function approximators and make value function approximation schemes seems unlikely to

succeed. Other problems (e.g. examples in previous chapters), which are more stable, are

most easily solved with few base functions.

6.2.4 Discussion

Using value function schemes to compute a global time-invariant policy u(x) is difficult not

only because of the curse of dimensionality, but also because of its inability to correct the

errors it produces.

The discussions in this section do not rule out possibilities for value function schemes

to control difficult problems. However, to solve such problems, one may have to manually

tune the parameterization of value functions, and such an approach cannot scale to general

cases.

As opposed to manually tuning, we chose to design automatic basis function adaptation,

which is harder than manually tuning but is the right direction towards automatic control

design in real applications. In certain problems with stability and low dimensionality, value

function approximation with automatic basis function adaptation will work well. There

are sufficient applications for those simpler problems in design, most likely in the field of

navigating service robots. On harder problems similar to acrobot, naive value function may

be not economical, and we will explore ways to enhance it.

6.3 Possible ways to apply LMDP in more applications

Previously we have discussed value function schemes’ difficulty with certain problems. Un-

fortunately, many problems arising from applications such as walking involves substantial

instability and very high dimensionality. Moreover, we cannot conclude which problems

are easier to solve using value function schemes. Despite difficulties, there are still some

potential ways to apply LMDP global methods in more applications.

1. Hierarchy control with subproblem suitable for LMDP

82

Since certain problems can easily be solved by function approximation schemes, we can

limit its application to certain problems with low dimensionality and less instability.

The example of this category can be a point-mass. Using hierarchy control, this may

be a subproblem of a practical task, such as navigating in a complicated environment.

This field involves substantial understanding of individual systems, and hierarchy

control is not a new idea in theories and applications. Therefore, we will not expand

on this idea in this thesis, although it is one promising way to apply LMDP in broader

contexts.

2. Combining with other methods to address stability

We can combine other approaches with LMDP global value function approximation

methods to improve stability.

As mentioned before, for cart-pole, it is possible to let LMDP controller swing up the

pole and use LQR controller to stabilize the pole at the top. This will only improve

the control policy near the target and the combination of LQR with LMDP is likely

not scalable to general problems, which involves careful planning of trajectories.

Another option is trajectory-based methods. For example, it has been shown that the

MPC controller can swing-up and stabilize the acrobot. In the next chapter, we will

discuss combining MPC controllers with LMDP in depth.

83

Chapter 7

MODEL PREDICTIVE CONTROL AND LMDP-BASED VALUE
FUNCTION APPROXIMATION

(This chapter contains part of [59])

7.1 Background

7.1.1 Motivation

While reinforcement learning global methods to find globally defined cost-to-go functions

and control policies may be guaranteed to converge in the limit of a large number of basis

functions, neurons, or a high-degree of polynomials, in practice, these approximate methods

must handle the finite error in representation that they generate. These shortcomings

motivate us to find novel, practical methods of exploiting a globally defined cost-to-go

function and control policy.

The alternative to global reinforcement learning algorithms is to use trajectory opti-

mization, focusing the limited computational resources on the most relevant states. Model-

predictive control (MPC) [42] [43] is an approach that applies, in real time, trajectory opti-

mization to the current state of the system. Computing the policy in real time makes MPC

very reactive, allowing it to generate a control law for any state of the system. However,

this reliance on online computation is also the main limiting factor for MPC — computa-

tional resources are invariably limited, and online trajectory optimization for high-DOF,

complex systems is a taxing task as well. The main parameter used to regulate the com-

putational demand of MPC is the length of the planning horizon. Compare to the search

depth in classical AI applications (e.g., how many steps ahead a chess software considers

before choosing a move), the choice of a particular horizon affects both the computational

load (shorter horizons are easier to compute) and the level of performance (planning over

shorter horizons result in less-optimal behavior).

84

7.1.2 Related work

Finding a good way to combine the advantages of local and global dynamic programming is

not new. In particular Atkeson and colleagues have been actively exploring this area for the

past decade [4][5]. Similar results can also found in real-time dynamical programming [8],

heuristics for the go game [21] and the heuristics approach to solve shortest path problem

[19].

In some domains we may expect the optimal system to converge to a small volume of state

space, e.g., when the optimal behavior leads to some target state or a limit cycle. In these

cases, we may compute the accurate value function in that small region, and use it as a final

cost for the MPC computation. This scheme is called infinite-horizon MPC [12] [22] [18],

and it is guaranteed to produce the optimal behavior as long as the trajectory terminates

in an area where the terminal cost accurately reflects the value function. Unfortunately,

in high-DOF domains the system may find itself very far from the asymptotically-optimal

region of state space. For example, consider a walking humanoid that has fallen on the

ground; in this case, knowing the value function around the optimal gait does not provide

enough information to figure out how to get up.

7.1.3 Contribution

The main contribution of this section is to demonstrate the results of interfacing model

predictive control with LMDP based value function approximation. We obtain a global

final cost by using the cost-to-go function generated by solving a linearly-solvable Markov

Decision Process (LMDP), and we also warm-start MPC’s policy search with the control

policy also from solving the LMDP (both control policy and value function can be obtained

in the same solve). The LMDP is an optimization problem explicitly related to the trajec-

tory optimization problem that MPC solves, but it assumes a particular structure in the

mathematical formulation that differs from the MPC optimization problem. This structure

makes the problem exactly solvable in theory, but discretization of the problem for numer-

ical solution introduces finite error. We present results in which we use the solution of

the LMDP as a final cost for MPC. With this value function approximation as a final cost

85

and an extra “hint” from the computed LMDP policy, we are able to shorten the horizon

of MPC while maintaining solution quality even on underactuated problems; the cart-pole

and the acrobot.

This approach means different things in different fields. In the area of Bellman equation-

based methods, this approach presents a novel way to recover complicated behaviors even

from the coarse approximation of the cost-to-go function. In the area of MPC, this method

serves as an automatic way to summarize the final cost.

The results are still limited in several ways: (1) For problems that are already solved

by MPC, the actual performance gain of hybrid methods may not be significant enough.

(2) It is limited by the shape of function approximators, which are limited in LMDP’s case.

(3) Interfacing two methods increases error in value function. Despite these limitations,

interfacing two methods may still affect certain actual applications and make LMDP value

function approximation methods valuable.

7.2 Model Predictive Control and LMDP

7.2.1 Model Predictive Control

Model predictive control, also known as receding horizon control, solves the optimal control

problem to a user-chosen time horizon. That is, from the given position in state space, it

searches for an optimal policy in the neighborhood of the current position to some finite

horizon. It applies the first control of the computed optimal policy, and then it recomputes

a new optimal trajectory from the new state (having not completed the old planned policy).

Computationally, MPC solves the discrete-time problem

min
ui,...,i+N−1

[
Σi+N−1
k=i l(xk,uk) + vF (xi+N)

]
, (7.1)

where l(x,u) represents the running cost, vF is the final cost, and the states xk and controls

uk are constrained by the discretized dynamics xk+1 = f(xk,uk, h). Here h represents the

time step. MPC applies only ui to the system and then resolves the problem at the next

time step. It is outlined in the following algorithm.

for i = 0 to the end of simulation do

86

Obtain intial control uinitk from interpolation or other warmstarts

Find optimal policy ui,...,i+N−1 from (7.1)

Apply only ui to dynamical system, xi+1 = f(xi, ui)

end for

There are multiple trajectory based optimization methods available. However, we utilize

exclusively the iLQG method [42] [43][52] in which the trajectory optimizer assumes a locally

linear model of the dynamics and maintains a local value function of second-order accuracy.

7.2.2 Model Predictive Control Revisited

Constantly solving for and updating the optimal policy enables cheap trajectory based opti-

mal control, and it is able to adjust to a variety of disturbances. The primary computational

bottleneck in preventing MPC from running in real time, especially for high degree of free-

dom systems, is the need to plan far in advance at nearly every time step. Therefore, it

is desirable to add something on top of MPC that permits the same quality of policy at a

shortened horizon, or, equivalently, a better policy with the same horizon.

From equation 7.1, one sees that MPC sums the costs up through the end of the finite

horizon (i = 1, ..., N − 1) and then anything that would define the system’s behavior from

time N to infinity is lumped into the final cost vF (xN). That is, the final cost should give

information about the desirability of any state which the finite-horizon planner is able to

reach. The more accurately the final cost describes the desirability of the state AND which

directions in state-space increase this desirability at the end of MPC’s time horizon, the

less the method relies on solving the equation 7.1. If the MPC horizon is fixed by limited

computational resources, we are still able to obtain a better policy with a more descriptive

final cost.

To further characterize a desirable final cost function, recall that MPC is a trajectory-

based method of approximating and computing a solution to the Bellman equation

min
u
l(x,u) + V (f(x,u)) (7.2)

where V (f(x,u) is the value function evaluated at the state (x,u) under the dynamics f

87

and l(x,u) is the one-step cost function. Note that, the running cost l(x,u) defines the

task, and it also determines the optimal value function.

Putting the Bellman equation and the MPC framework together, we notice that the final

cost in MPC vF (xN) is, in the limit an infinite horizon, the optimal value function evaluated

at the last state in the finite horizon trajectory. In the next sections, therefore we will give

the value function approximated by LMDP to MPC as a final cost, and if the approximation

is accurate (or even if it is inaccurate but useful information is still attainable), we may be

able to achieve our aim of reducing the need for a long horizon for MPC.

A second aspect of trajectory-based MPC that makes it fast, besides solving the local

problem to only a finite horizon, is knowing that if we only employ the first control of a

computed optimal policy before recomputing a new trajectory from our new location, we

expect that the optimal policy has not changed drastically from that of the previous time

step. Thus, MPC uses the entire optimal policy computed at the last time step to start

the search for the optimal policy at the new position. One can easily see that this “warm

start” of the policy search permits real-time solution at every time step. However, it is also

the case that it may constrain the solver in a local minimum; it does not permit the system

to look for solutions that are perhaps better but that are too different from the solution it

already has in hand. In the next section, we will also discuss using LMDP to enhance the

warm-start of MPC.

7.2.3 Using an LMDP solution for value function approximation

We have discussed several methods to solve LMDP problems and obtain both desirability

function z(x) and optimal control policy u∗(x). To simplify our discussion, we focus on

the aggregation method. After obtaining u∗ in a discrete state space and, using the cluster

positions, we are able to define desirable locations for the continuous system. In MPC,

we set final cost as vF (x) = − log(z(x)) and set the warm start of new states as LMDP’s

control policy uiniti+N−1 = u∗(xiniti+N−1) .

The probabilistic framework introduces noise that is not present in MPC, so we are

not approximating the value function of MPC. However, all that we are interested in is

88

supplying to MPC is an approximation to the value function that will help nudge it in the

right direction.

7.3 Numerical results

We now turn to using the LMDP solution for value function approximation to find a method

that works well for the more difficult systems the acrobot.

Building MPC on aggregation methods improved both methods

Solving the LMDP by aggregation methods as described previously, we obtain a global value

function approximation. However, using this value function as a final cost fails to provide

successful results in achieving either swing up or stabilization in the underactuated system

acrobot. Also, recall that in solving the LMDP, we also obtain the LMDP optimal policy.

Warm-starting MPC with this control policy and not providing a final cost also fails to

improve MPC. Contrary to intuition, when both the control policy and the value function

are provided to MPC, the required horizon of planning for MPC can be reduced while still

achieving the control tasks.

Figure 7.1b shows the percentage of 100 trials (initializing simulation from a random

initial state) in which the controller is able to swing the pendulum to vertical and in which

the controller is able to stabilize the pendulum after swing-up. In the acrobot problem, we

need a 800 ms time horizon to swing up and stabilize the acrobot. This is in a sharp contrast

to the MPC method itself, which needs a 1500 ms horizon to obtain similar results on both

problems. Thus using both the value function and the control policy derived from LMDP

is a way to effectively shrink the horizon MPC needed. Using the value function alone is

detrimental, and using the control policy provides little benefit. In both underactuated

problems, LMDP helps MPC to quickly discover the target, although too short a horizon

limits the hybrid method’s ability to stabilize the system. On the other hand, when the

horizon is too long, the hybrid method often fails to achieve the task before the simulation is

terminated due to the decaying effect of the policy warm-start. We demonstrate an example

of those trials in 7.2

89

This combination in general cannot effectively lower the cost accumulated, since LMDP

is actually solving a different optimal control problem. Yet the result for success rates show

that the combination of LMDP and MPC would be helpful in solving practical problems.

These results were obtained solving for the value function on a regular grid with approxi-

mately 10,000 bases; such grids are too coarse for aggregation methods alone to be effective.

The computation time of the LMDP is around 10 seconds with 6 threads and utilizing the

Mujoco solver[56]. The solution of the LMDP is done offline. Extracting the control policy

and the value function online after the LMDP solve is cheap given proper implementation,

so the computational efficiency of MPC can be improved.

We can obtain much better results in single pendulum and double pendulum, and similar

results in cart-pole. In double pendulum, with 100ms time horizon in MPC and the solution

in LMDP, the double pendulum can be swung up, while MPC alone needs a 1500 ms horizon.

However, this is not a surprise since this problem has already be solved roughly in LMDP.

In cart-pole, MPC alone needs a 1500 ms horizon, while the combination method needs a

500 ms. We can see that the more difficult the problem becomes, the longer horizon we

need in the combinatorial method.

First exit formulation

The flexibility of the LMDP statement of the optimal control problem permits us to solve

for a value function and control policy under a first exit formulation as well as in the average

cost formulation we used previously. Interestingly, we find that in the first exit formulation,

the aggregation method may be used to generate an acceptable control policy even when

the state costs are not finely-tuned to describe the control problem. That is, the solution is

foremost designed to obtain the goal state, and the state cost is of secondary concern. This

thinking puts less of a burden on the control engineer.

Figure 7.1d presents results in which we solved the LMDP for the acrobot under the

first exit formulation with the upward position is assigned as the target. In one case of the

LMDP the state cost is defined to be constant and the control cost is made very small; such

a combination would yield a practically uncontrollable system under other formulations. In

90

the other case of solution of the LMDP in the first exit formulation, we retain the well-

tuned state cost. The percentage of trials in which swing up and stabilization are achieved

is nearly equivalent to the case of the solution of the LMDP in an average cost formulation,

but the first exit formulation is not reliant on a hand-tuned state cost.

Please do note that first exit formulation theoretically requires MPC to terminate at

the exit state, which is not consistent with our MPC formulation with constant horizon.

However, heuristically it is helpful in this specific case for swing up, and then MPC can be

replaced by a simple feedback control law near the terminal state to maintain equilibrium

for some types of control problems.

Resolution of the value function

By using more bases in the LMDP solver, the accuracy of the value function will be increased.

However, for the acrobot, we can still reduce the MPC planning horizon with as few as 3000

bases, and the addition of more bases does not significantly decrease the needed horizon.

It is particularly encouraging that the computational expense of a highly accurate LMDP

solution is not required to provide benefit to MPC.

Selection of basis function

If we do not place base function on grids, LMDP will hardly improve MPC. In parallel with

MPC and LMDP combination, we also explored the final cost generated by fitting value

function with the information from MPC, and it gives even worse results in acrobot and

cart-pole. One observation is that in many failed cases, control policy is not 0 in origin(

∇v(0) 6= 0 and u(0) 6= 0), which clearly may bring complications. Although MPC provides

more tolerance of flaws in function approximation, MPC cannot fix all problems brought

by function approximators. Which base functions may robustly improve results of MPC

remains an open question.

91

(a) Reach the top (b) Swing up and stablize (c) Percentage of lower cost

(d) Compare with first exit

Figure 7.1: Results for swing up and stabilization on acrobot. The success rate is measured
as follows: we simulate the dynamical systems from random initial states and find how many
times we achieved desired tasks. The success rate is the chance of achieving desired states
among all trials and it demonstrates the quality of the global controller we constructed. (a)
shows the success rate of swing up, (b) shows the success rate of swing-up and stabilization.
Combining MPC with LMDP’s value function and policy do shorten the time-horizon of
MPC(c) Shows the percentage of lower running cost. In(a-c) Red “x“ represents MPC
alone, green triangle represents MPC warm-started with control policy, yellow “+“ from
using LMDP’s value function only, and blue triangle represents using both information
value function and policy warm-start. (d) Success rate of swing up and stabilization on
the acrobot in different formulations. Green triangle represents the first exit LMDP tuned
state cost, yellow “+” represents the first exit LMDP constant state cost, and green triangle
represents the average cost LMDP. It shows that differences between the formulations are
minor.

7.4 Conclusions and future work

7.4.1 Shortening MPC’s horizon automatically

The planning horizon required by MPC for effective control of a system is highly dependent

upon the descriptiveness of the final cost function. Better methods of function approxi-

mation in the highly nonlinear and difficult high-dimensional spaces of complex systems

92

Figure 7.2: Demonstration of the actual movement of acrobot under different approaches.

need to be used to approximate the value function, if any benefit to MPC is to be seen.

Our LMDP results show that exploiting both a global value function and optimal policy is

required to provide substantial benefit to MPC, which is mostly due to fixing certain errors

in the gradient of value functions.

7.4.2 Applying global methods to more problems

These results show that MPC is valuable to the global LMDP method. In our results, we

obtain only a very rough estimate of cost-to-go function, which is far from the accuracy

required to achieve the desired control task. Yet, even a coarse global solution still contains

information about the solution of the optimal control problem. Online adaptation can

exploit this helpful yet inaccurate information. Instead of increasing the accuracy of a

global method solution by introducing more basis functions or neurons, it may be more

practical to include online correction.

Online planning can also expand a global method’s applicability in real-time applications.

First, the prediction generated by planning provides a last minute safety check of the control

policy. Second, it decreases the demand on the limited computational power installed in

robots. Rather than storing and computing solutions to the global Bellman equation locally

on robots, we have the freedom to compute them on a remote server and send only the

planned trajectories.

Our approach of generating a final cost by aggregation methods still suffers from the

93

approximation structure we have employed. It makes the final cost non-convex and requires

warm starting to perform well, and LMDP’s control policy serves as a good warm-start for

MPC.

94

Chapter 8

SUMMARY AND DISCUSSIONS

8.1 Summary

In this dissertation, we aim to contribute to answering the big question: how to automate

control design in complicated control problems such as locomotion. As a means to pro-

vide alternatives for other existing methods, we focus on the value function approximation

method in the global method of optimal control in the Linearly-solvable Markov Decision

Process (LMDP) to provide alternatives for other existing methods.

First, we designed scalable, numerical methods that are tailored to solve LMDP prob-

lem efficiently and reliably. LMDP problems can be reduced to computing the principle

eigenfunction of a linear operator. We provide two new frameworks, moving least squares

approximation (Chap. 4) and aggregation methods (Chap. 5), to solve for value functions

in LMDP problems. The moving least squares approximation method uses linear basis

functions constructed by the moving least square process to approximate value function.

The aggregation methods utilize aggregation and deaggregation functions to discretize the

continuous space MDP in LMDP problems. Both methods avoid matrix factorization and

take advantage of sparsity by using efficient iterative solvers. Adaptive schemes for basis

placement are developed to provide higher resolution at the regions of state space that are

more frequently visited. . By combining with other improvements discussed in Chap. 6 and

by applying the preexisting Gaussian basis function approach, these methods in the LMDP

framework are able to verify the benefits of LMDP framework, provide scalable efficient

solvers for value functions, and can be applied in a sizable range of applications.

Second, we discussed the limitations of the above methods in Chap. 6. These methods

alone are less likely to solve certain control problems, such as acrobat or walking, due

to the general difficulty in applying value function methods to problems with instability.

Those problems require a more delicate design in basis functions; any minor flaws in the

95

choice of basis function may lead to unexpected results. This fact reinstates the known,

nontrivial relationships between errors in value function and control policy, and it limits

the automatic control design based on value function approaches. In regard to our efficient

LMDP solvers in more applications, we should carefully design basis functions, find suitable

stable subproblems for LMDP, or exploit alternative approaches to derive a control policy

from value function.

Finally, we demonstrated one way to derive acceptable control policy from the approx-

imate value function solved by LMDP methods: through the application of the Model

Predictive Control (MPC)). We used the aggregation methods discussed above to reinforce

the MPC method. The combination method not only shortens the MPCs time horizon

but also expands LMDP methods on problems LMDP originally cannot solve. We tested

this method on difficult benchmark problems such as acrobot, which most value function

approximation approaches. have difficulty solving. These results are illustrative of the po-

tential for exploring more robust control design based on suboptimal approximation of value

function and suggest that MPC is such an option.

We will further discuss the results from different perspectives in the following sections.

8.2 Applications for value function methods in Linearly solvable framework

The benefits of linearly solvable framework are appealing: By solving Bellman equations

linearly, more efficient algorithms can be developed and some complicated problems may

be solved using an optimal control approach. In local methods LMDP can be reduced to a

regular trajectory optimization problem with modified cost function, so we cannot expect

much gain in efficiency. The improvement in actual computation time is significant in global

methods, and we have developed multiple methods to exploit such benefits.

However, there are multiple obstacles to using linearly solvable framework global meth-

ods to provide accurate solution for the value function. First, the assumption of LMDP

limits the freedom of noise assumption and the selection of control cost, so LMDP models

are normally already an oversimplified model. Second, a linearly solvable framework limits

the choice of function approximations, so although it gives faster algorithms, it may fail to

provide accurate enough solutions of value function.

96

To apply our LMDP global methods to a more difficult problem, acrobot, we demon-

strated that combining MPC with LMDP aggregation methods can overcome difficulties

mentioned above, i.e. MPC helps correct flaws brought by both incorrect noise model and

base functions. The applications of LMDP are expanded by MPC, which is one way to

carefully plan trajectories and enhance robustness. To extend value function methods in

linearly-solvable frameworks into more applications, we need to further improve methods

similar to MPC to help us extract information from inaccurate value function approxima-

tors. Alternatively, we can treat LMDP as a way to quickly generate an initial guess of

value function and use other value function methods to enhance it.

Formulations not involving z(x) in LMDP may promise more directions, since approx-

imating control policy u(x) or other quantities is likely to be more flexible and generate a

more robust control signal in a time horizon.

8.3 Base function in value function approximation

There is no reason to assume that base function selection is a trivial problem in the field of

function approximations. It is true that in certain problems, such as car-on-the-hill or other

2D problems, control policy is not sensitive to which base functions and parameters are

used. However, we have shown multiple cases where base function selection does matter.

An unstable linear system can be sensitive to base function selection. In acrobot, using

LMDP solution in random base functions may hardly improve MPC. Similarly, even directly

fitting value function may still fail to improve MPC. The selection of base functions plays

a significant role in the success of value function approximation, both in stand-alone value

function approaches and combinatorial methods with MPC.

8.4 Combining MPC with value function approximation

Combining MPC and value function approximation approaches may be more important

than expected.

From value function approximations’ perspective, MPC is crucial for bringing value

function approximation into more applications. MPC brings extra robustness thereby over-

coming certain limitations of value function. Moreover, adding MPC to value function

97

schemes can also be an economical choice. Moreover, it may also improve the architecture

of actual programs by keeping the more computationally expensive value function methods

on the cloud.

From MPC’s perspective, our results are preliminary yet promising. Combining LMDP

can shorten MPC’s horizon and in the long run may shorten the running time of MPC and

bring MPC to more real-time applications. It also has the potential to free engineers from

designing final costs that are tailored to individual problems.

8.5 Future direction

While LMDP value function approximation methods demonstrated applicability to certain

problems and exposed limitations, there are still several ways to further improve methods

and extend LMDP’s impact.

First, more research should be done on hierarchy control based on LMDP value function

approaches. Trajectory methods generally may converge to local minimum and fail to

navigate in maze-like environments. Global methods may be helpful in such circumstances

and be applied to areas such as service robots.

Second, understanding the behavior of value function for certain dynamical systems is

very important. As more and more research is conducted on a few dynamical systems such

as hand or humanoid, understanding the properties of their value functions and developing

corresponding feature functions may be very important because it can help global methods

to supplement local methods.

Moreover, more insights into the robustness of MPC are needed. These will not only

benefit the area of MPC, but also benefit value function approximation methods.

Finally, more attention should be paid to other frameworks arising from linearly-solvable

framework. Certain components of methods derived in this thesis may be transferred to

broader contexts, while certain lessons can be helpful in developing suitable numerical meth-

ods for those frameworks.

98

BIBLIOGRAPHY

[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through appren-

ticeship learning. The International Journal of Robotics Research, 29(13):1608–1639,

June 2010.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y Ng. An application of reinforcement

learning to aerobatic helicopter flight. In Advances in Neural Information Processing

Systems 19: Proceedings of the 2006 Conference, page 1, 2007.

[3] Nils A Andersen, Lars Skovgaard, and Ole Ravn. Control of an under actuated unstable

nonlinear object. In Experimental Robotics VII, pages 481–490. Springer, 2001.

[4] C.G. Atkeson et al. Using local trajectory optimizers to speed up global optimization

in dynamic programming. Advances in neural information processing systems, pages

663–663, 1994.

[5] C.G. Atkeson and J. Morimoto. Nonparametric representation of policies and value

functions: A trajectory-based approach. Advances in neural information processing

systems, page 16431650, 2003.

[6] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learn-

ing. Artificial intelligence review, 11(1-5):11–73, 1997.

[7] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learn-

ing for control. Artificial Intelligence Review, 11(1-5):75–113, 1997.

[8] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using real-time dynamic

programming. Artificial Intelligence, 72(1):81–138, 1995.

[9] Ted Belytschko, Yury Krongauz, Daniel Organ, Mark Fleming, and Petr Krysl. Mesh-

less methods: an overview and recent developments. Computer methods in applied

mechanics and engineering, 139(1):3–47, 1996.

99

[10] Dimitri Bertsekas. Dynamic programming and optimal control. Athena Scientific, Bel-

mont Mass., 2nd ed. edition, 2000.

[11] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement

learning and dynamic programming using function approximators, volume 39. CRC

Press, 2010.

[12] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control

scheme with guaranteed stability. Automatica, 34(10):1205–1217, 1998.

[13] Graziano Chesi and Didier Henrion. Guest editorial: Special issue on positive polyno-

mials in control. Automatic Control, IEEE Transactions on, 54(5):935–936, 2009.

[14] William S Cleveland. Robust locally weighted regression and smoothing scatterplots.

Journal of the American statistical association, 74(368):829–836, 1979.

[15] William S Cleveland and Susan J Devlin. Locally weighted regression: an approach

to regression analysis by local fitting. Journal of the American Statistical Association,

83(403):596–610, 1988.

[16] Rémi Coulom. Reinforcement learning using neural networks, with applications to

motor control. 2002.

[17] Marco da Silva, Frédo Durand, and Jovan Popović. Linear bellman combination for

control of character animation. In Acm transactions on graphics (tog), volume 28,

page 82. ACM, 2009.

[18] T. Erez, Y. Tassa, and E. Todorov. Infinite horizon model predictive control for non-

linear periodic tasks. Manuscript under review, 2011.

[19] M. Fink. Online learning of search heuristics. In Proceedings of the 11th International

Conference on Artificial Intelligence and Statistics (AISTATS 2007), pages 114–122,

2007.

100

[20] Tamar Flash and Neville Hogan. The coordination of arm movements: an experimen-

tally confirmed mathematical model. The journal of Neuroscience, 5(7):1688–1703,

1985.

[21] S. Gelly and D. Silver. Combining online and offline knowledge in uct. In Proceedings

of the 24th international conference on Machine learning, pages 273–280. ACM, 2007.

[22] B. Hu and A. Linnemann. Toward infinite-horizon optimality in nonlinear model pre-

dictive control. Automatic Control, IEEE Transactions on, 47(4):679–682, 2002.

[23] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, 1970.

[24] Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and Andrew

Packard. Some controls applications of sum of squares programming. In Decision and

Control, 2003. Proceedings. 42nd IEEE Conference on, volume 5, pages 4676–4681.

IEEE, 2003.

[25] H.J. Kappen. Linear theory for control of nonlinear stochastic systems. Physical review

letters, 95(20):200201.

[26] P. Kulchenko and E. Todorov. First-exit model predictive control of fast discontinuous

dynamics: Application to ball bouncing. In Robotics and Automation (ICRA), 2011

IEEE International Conference on, pages 2144–2151. IEEE, 2011.

[27] Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.

Motion fields for interactive character locomotion. In ACM Transactions on Graphics

(TOG), volume 29, page 138. ACM, 2010.

[28] C Karen Liu. Dextrous manipulation from a grasping pose. In ACM Transactions on

Graphics (TOG), volume 28, page 59. ACM, 2009.

[29] James Lu and David L Darmofal. Higher-dimensional integration with gaussian

weight for applications in probabilistic design. SIAM Journal on Scientific Computing,

26(2):613–624, 2004.

101

[30] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along

trajectories with sums of squares programming. In 2013 IEEE International Conference

on Robotics and Automation (ICRA), 2013.

[31] Richard C Merton. Optimum consumption and portfolio rules in a continuous-time

model. MIT, 1970.

[32] Andrew Y Ng and Michael Jordan. Pegasus: A policy search method for large mdps

and pomdps. In Proceedings of the Sixteenth conference on Uncertainty in artificial

intelligence, pages 406–415. Morgan Kaufmann Publishers Inc., 2000.

[33] Norman S Nise. Control systems engineering, volume 5. Wiley Hoboken, NJ, 2008.

[34] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods

in robustness and optimization. PhD thesis, Citeseer, 2000.

[35] Stephen Prajna, Antonis Papachristodoulou, and Pablo A Parrilo. Introducing sostools:

A general purpose sum of squares programming solver. In Decision and Control, 2002,

Proceedings of the 41st IEEE Conference on, volume 1, pages 741–746. IEEE, 2002.

[36] S. Singh, T. Jaakkola, and M.I. Jordan. Reinforcement learning with soft state aggre-

gation. Advances in neural information processing systems, pages 361–368, 1995.

[37] Mark W Spong. The swing up control problem for the acrobot. Control Systems, IEEE,

15(1):49–55, 1995.

[38] Robert F. Stengel. Optimal Control and Estimation. Dover Publications, September

1994.

[39] A Stroud. Approximate calculation of multiple integrals. Prentice-Hall, Englewood

Cliffs N.J., 1971.

[40] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy

gradient methods for reinforcement learning with function approximation. Advances

in neural information processing systems, 12(22), 2000.

102

[41] R.S Sutton and A.G Barto. Reinforcement learning : an introduction. MIT Press,

Cambridge Mass., 1998.

[42] Y. Tassa, T. Erez, and W. Smart. Receding horizon differential dynamic programming.

Advances in Neural Information Processing Systems, 20:1465–1472, 2008.

[43] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors

through online trajectory optimization. IROS, 2012.

[44] Yuval Tassa and Tom Erez. Least squares solutions of the HJB equation with neu-

ral network value-function approximators. IEEE Transactions on Neural Networks,

18(4):1031–1041, July 2007.

[45] Yuval Tassa and Emo Todorov. Stochastic complementarity for local control of discon-

tinuous dynamics. In Proceedings of Robotics: Science and Systems (RSS). Citeseer,

2010.

[46] R. Tedrake. Underactuated robotics: Learning, planning, and control for efficient and

agile machines course notes for 6.832. 2008.

[47] E. Todorov. Linearly-solvable markov decision problems. Advances in neural informa-

tion processing systems, 19:1369, 2007.

[48] E. Todorov. Efficient computation of optimal actions. Proceedings of the national

academy of sciences, 106(28):11478–11483, 2009.

[49] E. Todorov. Eigenfunction approximation methods for linearly-solvable optimal con-

trol problems. In Adaptive Dynamic Programming and Reinforcement Learning, 2009.

ADPRL’09. IEEE Symposium on, pages 161–168. IEEE, 2009.

[50] E. Todorov. Finding the most likely trajectories of optimally-controlled stochastic

systems. In World Congress of the International Federation of Automatic Control

(IFAC), 2011.

[51] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.

Under Review.

103

[52] E. Todorov and Weiwei Li. A generalized iterative LQG method for locally-optimal

feedback control of constrained nonlinear stochastic systems. In Proceedings of the

2005, American Control Conference, 2005., pages 300–306, Portland, OR, USA, 2005.

[53] Emanuel Todorov. Optimality principles in sensorimotor control. Nature Neuroscience,

7(9):907–915, September 2004.

[54] Emanuel Todorov. Optimal control theory. Bayesian brain: probabilistic approaches to

neural coding, pages 269–298, 2006.

[55] Emanuel Todorov. Compositionality of optimal control laws. Advances in Neural

Information Processing Systems, 22:1856–1864, 2009.

[56] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on, pages 5026–5033. IEEE, 2012.

[57] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Number 50. Society

for Industrial and Applied Mathematics, 1997.

[58] Kevin Wampler and Zoran Popović. Optimal gait and form for animal locomotion. In

ACM Transactions on Graphics (TOG), volume 28, page 60. ACM, 2009.

[59] M. Zhong, M. Johnson, T. Erez, Y. Tassa, and E. Todorov. Value function approxima-

tion and model predictive control. In Adaptive Dynamic Programming And Reinforce-

ment Learning (ADPRL), 2013 IEEE Symposium on. IEEE, 2013.

[60] M. Zhong and E. Todorov. Aggregation methods for lineary-solvable markov deci-

sion process. In World Congress of the International Federation of Automatic Control

(IFAC), 2011.

[61] M. Zhong and E. Todorov. Moving least-squares approximations for linearly-solvable

stochastic optimal control problems. Journal of Control Theory and Applications,

9(3):451–463, 2011.

104

Appendix A

DETAILS OF TEST PROBLEMS

A.1 Car-on-the-hill

This test problem is adapted from [49] with 2D state space and 1D control space. This

dynamical system simulates a point mass (a car) moving along a curve (inverted Gaussian)

in the presence of gravity. The control signal is the force acting in the tangential direction.

One interesting property of this model is that the continuous dynamics are augmented with

the following rule. When the car hits its “walls” at xmin or xmax , its speed becomes 0. Such

a discontinuity cannot be captured by the diffusion model (3.9), yet it can easily be captured

by our LMDP [49]. The reason for constructing a model with collisions is that we hope

our methods will work for more complex tasks such as locomotion and hand manipulation,

where contact phenomena and discontinuity are essential.

This dynamical system is a point mass(a car) moving along a valley-shaped curve(an

inverted Gaussian) with the existence of gravity. Thus x = [xp, xv]
T , where xp denotes

horizontal position and xv denotes tangential velocity. The passive dynamics can be defined

as

a(x) =

 xv(1 + s(xp)
2)−1/2

−9.8sgn(xp)(1 + s(xp)
−2)−1/2

 , (A.1)

where s(xp) = xp exp(−x2p/2) is the slope of the inverted gaussian “hill” at xp position.

B(x) = [0, 1]T . Only the velocity of the car is controlled. Magnitude of noise is σ = 3 while

time step is set as h=0.1. If xp < xmin, at the next time step xp = xmin. If xp > xmax, at

the next time step xp = xmax. In both cases B = [0; 0](controller would not work when “hit

the wall”). The time step is h = 0.1 (finite-horizon setting uses h = 0.04.) Cost functions

for each formulation are discussed in the following.

105

A.1.1 Infinite-horizon average cost formulation

State cost function is defined as

q(x) = 2(2− exp((xp − 1)2 + (xv + 1)2)

− exp((xp + 2)2 + (xv − 1)2). (A.2)

It would keep the car passing those two targets (xp = −2, 1 with velocities xv = 1,−1) and

obtain a limit cycle behavior.

A.1.2 Discounted cost formulation

State cost function is the same as before. Costs decline in rate of exp(−t/τ), where τ = 0.5.

A.1.3 First-exit formulation

State cost and exit cost are defined as

q(x) = 2, qT (x) = 0 (A.3)

The terminal states are within [−2.2, 2.6]× [−.4, .4]

A.1.4 Finite-horizon formulation

State cost and terminal cost are defined as

q(x) = 2, (A.4)

qF (x) =

 0, whenx ∈ goal states

100, whenx /∈ goal states

The goal states are within [−2.1, 2.7]× [−.4, .4]

A.2 Coupling independent masses

This model simulates M masses attached on ideal frictionless springs (or equivalently elec-

trical oscillators), which are dynamically independent. Each mass yields oscillation on any

amplitude. Each mass’s determinant dynamical behavior can be expressed as

ẋp,i = Cxv,i, ẋv,i = −Cxp,i, (A.5)

106

where C = 2π is a constant. The control is in form of a force which would only apply on

the velocity. The time step h is 0.01, σ = 1. Hence, the state space is 2M dimensional,

with M freedom of control. Thus a(x) and B(x) can be easily written as a linear function

and a constant matrix, respectively.

The state cost function is designed to achieve the goal, which are, (1) fixing the amplitude

to 1 and (2) making the (i)th mass be π/2 phase ahead of the (i+1)th mass. We would like

to use the average-cost formulation to solve the problem.

The state cost function is

q(x) = Σm
i=1qa([xi, vi]

T)

+Σm−1
i=1 qb([xi, vi]

T , [xi+1, vi+1]
T). (A.6)

Here, qa makes x2 + v2 be a constant 1, i.e.,

qa([xi, vi]
T) = 20(

√
x2i + v2i − 1)2. (A.7)

qb tries to create the π/2 phase shift

qb([xi, vi]
T , [xi+1, vi+1]

T)

= 50fε(x
2
i + v2i)fε(x

2
i+1 + v2i+1)fθ(θi+1, θi) (A.8)

xi = cos(θi)

vi = sin(θi)
, fε(η) = {

1 η >= 0.1

0 η < 0.1
(A.9)

fθ(θi+1, θi) = (1− cos(θi+1 − θi − π/2)). (A.10)

Here, fθ(θi+1, θi) is a function designed to achieve desired phase shift, and fε(η) is a function

employed to avoid numerical difficulties when x2i + v2i is too close to zero (where angles θi

are not well defined).

A.3 2-link arm and acrobot

The acrobot is a 2-link arm with control torque only applied to the joint between the two

parts. The details of this model is well-explained in [16] and [37]. If we can control both

107

Figure A.1: Two link arm or acrobot: This figure demonstrates two link arm or acrobot.
The first arm is linked to the earth via a fixed pivot(shoulder) and the second arm via elbow.
For the two-linked arm model, both shoulder and elbow have actuators. For the acrobot
model, only the elbow is actuated. This figure is adopted from [37]

the center and root joint, this is a fully actuated 2-link-arm. The goal is to swing the arms

to upright position. The cost function is therefore defined accordingly to encourage the

arms to swing upward. We used Mujoco[51] to simulate the dynamics and exactly the same

parameter and cost function as in the MPC paper controlling acrobot[43]. More details are

described in the following paragraphs.

The passive dynamics for acrobot and two-link arm models are the same. The structure

of this dynamical system is shown in Fig.A.1. Although we used explicit equations in

the early phase of this dissertation, the results shown here are generate from the Mujoco

simulator, so we omit the details to avoid confusions.

The goal(the swing-up control task) is to move the system from its stable downward

position to its unstable inverted position and balance it in an inverted position. The task

is extremely easy for the two-linked arm model where both joints are actuated. For ac-

robot, several groups have built success controllers based on a carefully controller design in

both simulation and experiments [3] [37]. This problem remains hard for optimal control

approaches.

In optimal control, there are multiple approaches available to define control cost. Here

we follows the convention in [43]. The state cost q(x) is defined in the smoothed absolute

108

Figure A.2: Cart-pole: This figure demonstrates cart-pole model. The inverted pendulum
is linked to the cart which can move horizontally. The only actuator in the system can move
the cart horizontally.

value for the distance between the height of the tip of the second link and the desired height.

q(x) = C(
√

(h(x)− h0)2 + ε2 − ε), (A.11)

where h(x) represents the height of the tip, h0 represents the desired height(l1 + l2) and ε

is a small parameter to smooth the cost function.

A.4 Cart-pole

The cart pole, a.k.a inverted pendulum in certain literature, is a planar robot composed of

a pendulum and a cart, with the pendulums pivot point mounted on the cart. The cart

to restricted to move only horizontally, and the actuator can only control the horizontal

movement of the cart. (Fig.A.2)

The goal is to swing the pendulum to upright position. The cost function is therefore

defined accordingly to encourage the pendulum to swing up. The state cost q(x) is defined

in the smoothed absolute value for the distance between the height of the tip of the second

link and the desired height. The state cost q(x) is defined in the smoothed absolute value

for the distance between the height of the tip of the pendulum and the desired height.

q(x) = C(
√

(l cos(θ)− l)2 + ε2 − ε), (A.12)

109

where h(x) represents the height of the tip of the pendulum, l represents the length of the

pendulum and ε is a small parameter to smooth the cost function. This cost function is

chosen to better compare results with that of acrobot. Mujuco is used to simulate this

dynamical system.

110

VITA

Mingyuan Zhong was born in Tianjin, China, on November 1st, 1986. He entered De-

partment of Physics, Peking University, China in 2002. In 2006, he entered the Department

of Applied Mathematics at the University of Washington, Seattle.

He welcomes your comments at zhongmy@uw.edu.

