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When programmers know
where and why memory
bottlenecks occur, they can
make the appropriate program
transformations to enhance
performance, with the help of

this tool’s detailed statistics.

Computer

ecause modern computer processors are speeding up at a much

faster rate than main memory, relative latencies from processors

to main memory have dramatically increased. Main memory laten-
cies can reach tens of processor cycles in uniprocessors and over a hundred
cycles in multiprocessors. These figures are likely to grow even larger over
the next decade, and systems architects have responded by adding one or
more levels of cache into memory hierarchies between the processor and
main memory. Even with these hierarchies, however, many programs still
have poor memory performance if cache misses are common.

To improve program memory performance, programmers and com-
piler writers can transform the application so that its memory-referenc-
ing behavior better exploits the memory hierarchy. The chalienge in
achieving these program transformations is overcoming the difficulty of
statically analyzing or reasoning about an application’s referencing behav-
ior and interactions. In addition, many performance-monitoring tools col-
lect high-level information that is inadequately detailed to analyze specific
memory performance bugs.

Here we describe MemSpy, a performance-monitoring tool we designed
to help programmers discern where and why memory bottlenecks occur.
MemSpy guides programmers toward program transformations that
improve memory performance through detailed statistics on cache-miss
causes and frequency. Because of the natural link between data-reference
patterns and memory performance, MemSpy helps programmers com-
prehend data structure and code segment interactions by displaying sta-
tistics in terms of both the program’s data and code structures, rather than
for code structures alone.

MemSpy uses cache simulations to gather detailed memory statistics.
Since efficiency is a key concern in simulation-based performance moni-
toring, we have evaluated two performance optimizations—hit bypassing
and reference-trace sampling—that reduce the execution time overhead
required to gather such information. Together, these techniques reduce
simulation time by nearly an order of magnitude. For a simple memory
simulator and sequential applications, the time to run a program with
MemSpy is 3 to 10 times as long as the time to run the program normally.
For parallel applications, the overhead increases to factors of 8 to 25. Our
experience in using MemSpy to tune several sequential and parallel appli-
cations demonstrates that it effectively profiles memory performance at
speeds that make it an attractive alternative to other approaches. (See
“Previous performance-monitoring approaches” sidebar.)
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TUNING PROGRAM MEMORY
BEHAVIOR

Memory performance bottlenecks can be diagnosed
and tuned by using tools that provide specific information
on program memory behavior. The first step for such tools
is to locate bottlenecks by identifying data structures or
code where the memory stall time attributed to it is both
large in an absolute sense, and larger than expected in arel-
ative sense. The next step—determining why memory bot-
tlenecks are occurring—depends on the types of
performance bugs encountered, as described next. Based
on where and why bottlenecks are occurring, program-
mers can devise fixes to avoid them.

Common memory performance bugs

Three frequently occurring memory performance bugs
in sequential and parallel applications are cache interfer-
ence, poor spatial locality, and interprocessor sharing.
Because of their differing characteristics, they are recog-
nized and tuned in different ways. Tools like MemSpy pro-
vide information that will help distinguish these cases.

CACHE INTERFERENCE. Bottlenecks arise from inter-
ference when multiple memory lines mapping to the same
cache line compete for cache space and cause excessive
misses. Tools can help programmers identify interference
by pointing out data structures with excessive replacement
misses. These misses occur if a particular memory line has
been referenced but replaced out of the cache by an inter-
vening reference to another line competing for the same
cache space. In such programs, simple adjustments or col-

oring strategies to stagger data structures in the cache can
significantly improve performance.

POOR SPATIAL LOCALITY. Performance can also suffer
from poor spatial locality, which occurs when a program’s
data access order is not well correlated with the data stor-
age order. As a result, the program might not efficiently
use the full line of data fetched on a cache miss. Poor spa-
tial locality can be especially pronounced in parallel code,
because data structures that are stored and accessed con-
tiguously in a sequential program might be distributed
over several processors in a parallel program. Poor spatial
locality can frequently be deduced from seeing many
memory stalls due to first-reference misses. (Other metrics
can also be useful for identifying poor spatial locality—for
example, counting the number of bytes accessed per cache
line between cache misses.) Spatial locality can then be
improved by restructuring data accesses or storage
schemes to pack cache lines more efficiently with useful
data.

INTERPROCESSOR SHARING. Finally, in multiproces-
sors, the performance of some programs might suffer due
to excessive interprocessor sharing, resulting in heavy
cache-coherence traffic. Because shared data is used for
interprocessor communication in shared-memory paral-
lel programs, some memory stalls due to sharing are
unavoidable. However, an excess of invalidation misses can
indicate data structures or code sections that would ben-
efit from restructuring to minimize the required commu-
nication. These misses occur when a processor re-references

Previous performance-monitoring approaches

Earlier performance tools did not generally sup-
port memory performance tuning per se. For exam-
ple, Gprof' is a widely used tool that ranks
procedures by expended execution time but gives
programmers little insight into what causes bottle-
necks and whether memory behavior may be respon-
sible. Other tools (for example, Quartz?) have been
designed specifically to identify sychronization and
computation bottlenecks in parallel programs.
However, like Gprof, Quartz doesn‘t specifically
examine application-memory performance.

Mtool,? on the other hand, supports memory per-
formance tuning. It identifies code fragments that
constitute memory bottlenecks by presenting statis-
tics on the amount of memory stall time per basic
block. (Stall time is the wait time associated with
cache misses.) However, this level of detail doesn't
explain why bottlenecks occur or which data struc-
tures are most responsible.

At the other extreme of detail, SHMAP? (Shared-
Memory.Access Pattern) provides a reference-by-ref-
erence animation of program memory behavior.
Cache animation can sometimes help programmers
distinguish memory performance pitfalls, but the
lack of summary:information or automatic analysis
can make tuning difficuit. Reference patterns and

performance bugs may be particularly hard to under-
stand in irregular, nonscientific code. Here, the vol-
ume of animation data can be overwhelming.

MemSpy, through statistics on data and code, and
also on cache-miss causes and frequency, addresses
some of these tools’ shortcomings.
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‘ Figure 1. Data-oriented
statistics offer a second
dimension to the infor-
mation programmers
can use about memory
performance. This dia-
gram abstractly illus-
trates a program
divided into data and
code statistics bins.

data after a cache invalida-
tion from another proces-
sor. Programs can also be
restructured to reduce false
sharing, in which multiple
processors actively read
and write different vari-
ables on the same cache
line.

From the characteristics
of these performance bugs,
we can see that under-
standing the causes of
cache misses can greatly
help a programmer tune
memory for enhanced per-
formance.

MemSpy’s approach
to memory tuning
Effective performance
tools must give program-
mers information regard-
ing the location and cause

1. block(X, Y, Z, N, B)

2. Matrix *X, *Y, *Z;

3. intN,B;

4. {

5. intkk, jj, i, k;

6. doubler;

7. forkk=1toNbyBdo

8. forjj=1toNbyBdo

9. fori=1toNdo
10. for k = kk to min(kk + B-1, N) do
11. r= X[i, k],
12. for j = jj to min(jj + B-1, N) do
13. ZIi, jl = Z[i, j1 + r+YIk, jI;
14. }

Figure 2. Pseudocode for MatMul, the blocked-
matrix multiply program in the case study.

of code bottlenecks. In determining where they exist,
MemSpy presents statistics about the application’s data
and code structures. In determining the cause of bottle-
necks, MemSpy gives statistics on the frequency and
causes of cache misses, thereby guiding programmers
(and compilers) toward effective program transforma-
tions.

DATA- AND CODE-ORIENTED STATISTICS. Figure 1
abstractly illustrates possible code- and data-oriented sub-
divisions in a program. Because of the inherent link
between memory performance and the program’s access
patterns to particular data structures, these statistics can
be crucial to reasoning about memory behavior. (Cprof,’
developed independently by Lebeck and Wood, is the only
other tool that features data-oriented statistics.)

Data-oriented statistics are especially helpful in cases
where a particular data structure constitutes a memory

Computer

bottleneck and accesses to that structure are distributed
across several procedures. For example, in Pthor (a
SPLASH benchmark2?), the ElementArray structure
causes more cache misses than any other program vari-
able, but these misses are distributed across several pro-
cedures. Code-oriented statistics cannot emphasize
ElementArray’s performance problems as well as data-ori-
ented statistics can, because no one section of code causes
the bottleneck. In this case, therefore, the bottleneck lends
itself to data-oriented viewing. Furthermore, combina-
tions of data- and code-oriented statistics can be instru-
mental in isolating memory bottlenecks resulting from a
single data structure in a large procedure.

STATISTICS ON CAUSES OF CACHE MISSES. After iso-
lating program bottlenecks, programmers need progres-
sively more detail to understand the causal relationships.
Recall that cache misses occur for one of three reasons:
first reference, replacement, or invalidation.

Regardless of how important detailed information is to
understanding memory performance, most existing tools
have provided no statistics on memory behavior, or, like
Mtool,? give only high-level information to identify code
that causes bottlenecks. The lack of details stems partly
from the difficulty of gathering fine-grained memory sta-
tistics, which require fine-grained monitoring through spe-
cialized hardware or software simulation. Specialized
hardware, however, can limit the tool’s general applica-
bility; on the other hand, software simulation can be too
slow. As we will show, techniques developed for MemSpy
improve the efficiency of simulation-based monitoring.

USING MEMSPY: A CASE STUDY

For case study purposes, we ran MemSpy with a pro-
gram called MatMul, which performs a blocked-matrix
multiply. Although MatMul is a simple application, it is
also a case where the common intuitions about the code’s
behavior are incorrect; namely, choosing block sizes to fit
into the cache is not necessarily sufficient for good per-
formance. Tools—specifically MemSpy—guide the pro-
grammer in locating and eliminating bottlenecks such as
the ones we demonstrate in this blocked code.

The blocked-matrix multiplication pseudocode (com-
puting Z = X x Y) is shown in Figure 2. Unlike standard
matrix algorithms, blocked algorithms like this are coded
to operate on submatrices or blocks of the original matrix.
These blocks are sized to fit in the cache to maximize data
reuse. By iterating over all blocks, the full matrix multi-
plication can be performed, ostensibly with better cache
performance due to the blocking.

AsLam et al.* reported, the performance of such blocked
operations is often erratic, and is sensitive to even small
changes in matrix size, block size, and cache organization.
For a DECstation 3100, they report that a 300 x 300-ele-
ment blocked-matrix multiply (with 56 x 56 block size)
executes at 4 million floating-point operations per second
(Mflops), while by contrast, an only slightly smaller 293 x
293 matrix with the same block size executes at only
2 Mflops on the same machine.

Our case study illustrates how data-oriented statistics
powerfully focus the programmer’s attention on prob-
lematic code and how cache-miss statistics on the causes



of cache misses are intrinsic to understanding why the per-
formance bottleneck is occurring.

Tuning using MemSpy

To emphasize MatMul’s performance bug (in this case,
cache interference), we show MemSpy’s statistics on one
of Lam’s* poor-performance cases. We multiply two 293 x
293-element matrices together, using a block size of 56.
(A single 56 x 56 block requires roughly 25 Kbytes and
should easily fit into the 64-Kbyte cache.)

MemSpy first displays the output shown in Figure 3. The
program procedures—Block, CheckProduct, Matmat—are
indicated along the X axis of the graph, and the processor-
cycle time spent on behalf of each procedure appears on the
Y axis. The bar for each procedure categorizes the elapsed
time according to how much was spent in computation and
how much in memory stalls. (For parallel programs, the bar
would indicate synchronization time as well.)

Figure 3 clearly indicates that most of the application’s
time is spent in the block routine. It accounts for over 90
percent of the program’s execution time. Furthermore,
the breakdown of time within the block routine shows a
clear memory bottleneck. While we expected the compu-
tation to be concentrated in the block routine, the obser-
vation that roughly 80 percent of the time is spent on
memory stalls is surprising, since we expected the 25-
Kbyte block to easily fit in the 64-Kbyte cache for the com-
putation’s duration.

In the block routine, the execution time is concentrated
inline 13 of Figure 2’s pseudocode. In this line, the appro-
priate elements of X (r, in line 13) and Y are multiplied,
and the result is accumulated in an element of Z. Since all
three matrices are accessed on source-line 13, code-ori-
ented statistics alone do not help determine the relative
contributions of the three matrices toward the bottleneck.
To further understand and tune this code, programmers
need information on whether the bottleneck is caused by
a single matrix or by an interaction between matrices.

DATA-ORIENTED BREAKDOWN. To display more infor-
mation about the stall time contributed by each data struc-
ture, MemSpy lets programmers click on the memory
portion of the block routine’s bar. This display, shown in
Figure 4, breaks down the memory stall time into compo-
nents incurred by each data structure in the procedure.
The data-oriented statistics show that this routine’s bot-
tleneck is almost entirely due to cache misses on references
to the Y matrix. These misses produce over 85 percent of
the total stall time in the program. Since the Y matrix is
the one that was blocked for good data reuse, it is sur-
prising that Y is responsible for so much stall time.

DETAILED STATISTICS ON CAUSES OF MISSES. While
MemSpy has thus far enlightened us as to where the bot-
tleneck is, we don’t yet know its cause. To learn more, we
can click on the Y bar in Figure 4 to display information
on the causes of misses. The bar chart in Figure 5 breaks
down the cache-miss causes for the Y matrix in the block
routine. In this routine, all of ¥’s misses are caused by pre-
vious replacements. That is, the data objects were all pre-
viously in the cache, but have been replaced out of the
cache before the re-references occurred that resulted in
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Figure 3. In code-oriented display, MemSpy presents
overview statistics for the MatMul program.
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Figure 4. In data-oriented display, MemSpy presents
memory stall time in the block procedure attributed
to the X, Y, and Z matrices in the MatMul program.
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Figure 5. MemSpy displays detailed statistics on the
Y matrix in the block procedure of the MatMul
program.

cache misses. (The first-reference misses for the Y matrix

occur in a separate initialization routine.)

The many replacement misses incurred by Y indicate
that the bottleneck is probably related to cache-interfer-
ence effects. To understand the cause of the memory bot-
tleneck, however, programmers must know which
accesses are causing the cache replacements. Clicking on
the replacements portion of the “cause of misses” bar in
Figure 5 displays a breakdown (not shown here) of what
causes these replacements. Surprisingly, over 95 percent
of the replacements are due to the Y matrix. MemSpy, in
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this case, informs us that
(1) the bottleneckisin the Y

matrix, (2) it’s caused by

} Overlap . .
. excessive cache interference,
: and (3) thisinterference isin
} Overlap fact self-interference, since
the replacements are caused

: by the Y matrix itself.
Programmers can deter-
mine that self-interference

Cache

Figure 6. This diagram occurs here because the
illustrates self-interfer- subrows within the cur-
ence in a blocked matrix  rently used block of Y aren’t
Y, caused by subrows stored contiguously and
that map to common thus do not map neatly
lines in the cache. across the whole cache.

Rather, as shown in Figure

6, subrows are separated by
intervening amounts of matrix storage. This leads to cases

: where some subrows map on top of one another in the

cache, while other portions of the cache remain unused.
This effect can be minimized if the programmer chooses
a block size with less interference or copies the block so
that it occupies a contiguous region of memory.

Without MemSpy’s data-oriented statistics, program-
mers would find it difficult to see which matrix was caus-
ing the memory bottleneck. Furthermore, without
detailed information on the causes of misses and replace-
ments, programmers would have difficulty interpreting
this situation as self-interference.

Other applications of MemSpy

In addition to the MatMul case study, MemSpy has also
been used to tune other programs as well. For example, it
has identified performance bugs due to

false sharing and a “vestigial” (incremented but unused)
variable in LocusRoute, a SPLASH benchmark;
self-interference in the ElementArray in Pthor?;

poor spatial locality in a sequential volume-rendering
program, Vrender®; and

shared accesses to a private variable in a parallel ver-
sion of Vrender.

MEMSPY IMPLEMENTATION

Having confirmed the utility of MemSpy’s detailed,
data-oriented statistics through our case study discussion,
we now examine the issues involved in building MemSpy,
which will explain our rationale in creating this tool as we
did. In implementing tools like MemSpy, there are two
principal design decisions: how to gather detailed infor-
mation efficiently, and at what code and data granularity
to display this information.

Simulation-based monitoring

To display the performance information illustrated in
Figures 3 through 5, MemSpy must monitor code at the
granularity of individual memory references. To accom-
plish this, we implemented MemSpy based on simulation.
(Simulation’s main advantage is that it can be general and
portable, since it does not require specialized hardware
support.)

Computer

MemSpy was built on top of the Tango Lite reference
generator.® Tango Lite is a direct-execution system that
simulates the execution of both multiprocessor and
uniprocessor machines on uniprocessor workstations. In
a direct-execution simulation, events of interest are instru-
mented at compile-time with additional code to call event
simulators. For MemSpy, we instrumented the following
events:

* memory references,

¢ procedure calls and returns,
* memory allocations, and

» synchronizations.

For each event, instrumentation code executes the
MemSpy simulator that maintains internal information
on the state of the simulated memory hierarchy, as well
as the profile information required to report MemSpy’s
statistics.

Granularity of data- and code-oriented
statistics

For data- and code-oriented statistics to be effective, it’s
essential for the tool to present them at useful granulari-
ties. MemSpy statistics are organized and managed as sta-
tistics bins containing program information such as
memory time, number of cache misses, and causes of
cache misses. The information is collected for either spe-
cific data or code sections or for data-code pairings in the
application.

Choosing the right granularity for both data- and code-
oriented statistics is important because statistics that are
too coarse-grained may not localize bottlenecks. On the
other hand, excessively fine-grained statistics may not ade-
quately aggregate activity to distinguish bottlenecks.
Moreover, statistics that are too fine grained may also be
inefficient to implement because of storage inefficiency
(more memory is needed to maintain very fine grained
statistics) and execution time inefficiency (extra time is
needed to manage and update the larger number of sta-
tistics bins).

In its code-oriented statistics, MemSpy maintains infor-
mation separately by procedures. Since the MemSpy sim-
ulator logs procedure entries and exits, it can easily
maintain a shadow of the procedure call stack to track the
currently executing procedure. In most programs, proce-
dure-oriented statistics have been sufficiently fine grained
to localize performance bugs, but future versions of
MemSpy could allow users to choose statistics on basic
blocks, rather than procedures, for finer grained moni-
toring when needed.

In its data-oriented statistics, MemSpy keeps aggregate
data bins that encompass all memory ranges allocated at
the same point in the source code with identical, dynamic
procedure-call paths. When a heap allocation occurs, the
current source code position and stack are noted. If the
current program counter, and the program counters on
the stack, identically match the program-counter stack for
apreviously initialized bin, the statistics for this new mem-
ory range are kept in that bin. The rationale for this heuris-
tic is that, in our experience, data objects allocated at the
same point in the source code via the same call path are



usually similar in memory

behavior. When memory is 120
allocated in separate calls
to a procedure from differ- 100

ent call paths, it is moni-
tored in separate bins.
These methods for mon-
itoring programs and gen-
erating statistics at useful
granularities have proven
effective. These techniques
have been used successfully
on a variety of programs,
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Figure 7. The eight groupings of three columns each show MemSpy'’s execution
time overhead figures for baseline, hit bypassing, and sampling (with hit bypass-

ing) versions run on the eight sequential and parallel benchmark applications.

MEMSPY
PERFORNMANCE

To evaluate MemSpy’s expected runtime performance,
we begin by presenting its execution time overheads for
sequential and parallel applications on a baseline imple-
mentation. All performance measurements were made on
a DECstation 5000/240.

While the baseline simulation overhead is already
acceptable, we also present the results of two performance
optimizations that further reduce MemSpy’s overhead,
bringing it into more interactive regimes:

1. hit bypassing, which optimizes simulation for the more-
common cache hits, and

2. sampling, which generates program statistics based
on samples of references, rather than the full trace.

Measurement setup

To evaluate MemSpy’s overheads, we used a simple
memory simulator with a single direct-mapped cache per
processor. In this simulator, cache hits execute in a single
processor cycle; cache misses require a fixed, parameter-
ized latency to be serviced. Network contention is not
modeled. All heap references and static data references in
the code are instrumented for simulation. For multi-
processors, we simulate an invalidation-based protocol.
When simulating sequential machines, we assume a 128-
Kbyte direct-mapped data cache with 32-byte lines. For
parallel machines, we assume 16 CPUs, each with a 64-
Kbyte direct-mapped cache with 32-byte lines.

We ran eight programs spanning a variety of domains
including numerical computation, scientific, and engi-
neering applications. They featured a range of cache-miss
rates (0.2 to 18.2 percent) and code sizes (500 to 14,000
lines). The four sequential applications were blocked-
matrix multiply; Espresso from the SPEC benchmark suite;
Tri, a sparse triangular matrix solver; and a uniprocessor
run of Mp3d, a SPLASH benchmark. The four parallel
applications were from the SPLASH benchmark suite:
Mp3d, Cholesky, Water, and LocusRoute. By evaluating

MemSpy’s monitoring performance with such diverse,

substantial applications, we demonstrate the real-world
utility of MemSpy’s statistics.

MemSpy's baseline performance

The leftmost column of each benchmark grouping in

Figure 7 shows MemSpy’s baseline performance overheads.
(The other columns reflect hit-bypassing and sampling over-
heads.) We compute the multiplicative (slowdown) factors
by dividing the time for a MemSpy run by the time for an
uninstrumented run of the same program. For the sequen-
tial applications, baseline execution-time overheads range
from a factor of 18 to a factor of 58. Baseline overheads for
the parallel applications, ranging from factors of 64 to 114,
exceed those for the sequential benchmarks because of
increased complexity in simulating the parallel machine.
(For the parallel applications in Figure 7, the overhead is
shown relative to the program’s execution on a uniproces-
sor. To estimate overheads relative to execution time on a
multiprocessor, the overheads shown would be multiplied
by the expected program speedup.)

For both sequential and parallel benchmarks, 97 per-
cent or more of MemSpy’s overhead results from process-
ing memory references. Figure 8 on the next page shows
the action sequence MemSpy performs on each simulated
memory reference. These actions are categorized into
three overhead types:

1. context switches—the register save and restore opera-
tions when entering and exiting the simulator (25 per-
cent),

2. memory simulation (roughly 45 percent of the over-
head), and

3. statistics bin searches (30 percent).

As will be seen, the hit-bypassing and sampling optimiza-

tions reduced the time MemSpy spends in each of these
three categories.
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Figure 8. These flowcharts show the sequence of actions MemSpy takes in the baseline implementation and

also with the hit-bypassing optimization.
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Figure 9. The diagram illustrates time samples in an application
reference trace. Shaded regions correspond to the groups of refer-

ences MemSpy will simulate.

in Figure 8 shows how the cache-hit check
is embedded into the register saves. Thus,
we initially save only the registers required
to check whether the reference is a cache hit
or miss. If the reference is a cache miss, we

Miss rate

complete the rest of the register saves and

20 p . X . X
18 1Q O True cache-miss rate continue simulating. If the reference is a hit,
16 | O Estimated cache-miss rate using sampling we restore the minimal subset of registers
14t and return to the application, bypassing the
2k simulator call entirely. In parallel applica-
0 tions, writes that cause invalidations are
! always simulated, but no statistics are kept
8 S| on cache hits.
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Matm  Espr i Mp3d Mp3d  Chol  Water Locus 3.4 compared to the baseline code
Sequential Parallel

MemSpy’s overhead factors now range

benchmark sequential and parallel applications.

Optimizing MemSpy performance with
hit bypassing

Hit bypassing originates from the observation that
memory events of interest, from a performance-tuning
perspective, are events that incur memory stalls. For many
architectures, only cache misses incur stalls. By keeping
statistics only on cache misses, we can minimize the over-
head incurred on cache hits, which are almost always the
majority of the references.

In the baseline implementation, we save a full set of reg-

Computer

Figure 10. Estimated and true cache-miss rates are shown for the

from 8 to 17 for sequential code and from
30 to 50 for parallel code.

Optimizing MemSpy performance

with sampling
In general, reference-trace sampling refers to the
process of estimating cache behavior based on simulating
only portions of a reference trace, rather than the full
trace. Sampling is intuitively promising because it should
let us approximate program behavior reasonably accu-
rately without incurring the performance cost of a full
simulation. (In fact, other forms of sampling, such as pro-
gram-counter sampling, are already used in performance
tools like Gprof.”) On the other hand, there is an inherent
trade-off between the speed and accuracy of the tool:
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Simulating fewer references will generally make the tool
faster, while simulating more references will tend to make
the tool more accurate. Our work shows that within the
context of a performance debugging tool, trace sampling
can be used effectively to improve the tool’s performance
while retaining acceptable accuracy.

Time sampling, as shown in Figure 9, is implemented
by intermittently turning reference simulation on and off
as a reference trace is processed. The two key parameters
in the implementation are the sample length (number of
references contained in each sample), and the number of
samples. A third dependent parameter is the sampling
ratio, which is the total references in the samples divided
by the total number of references in the run. Reference-
trace sampling is discussed in more detail elsewhere.® 1

SAMPLING’S EFFECT ON ACCURACY. Our results show
that time sampling accurately reproduces cache statistics
derived from a full simulation. For example, based on a 10
percent sampling ratio, Figure 10 compares estimated
cache-miss rates from sampling to the program’s true miss
rate calculated over all references. For the sequential appli-
cations, the samples contain 0.5 million references. (That
is, we simulate 0.5M references, then turn simulation off
for 4.5M references before turning it on again.) For the par-
allel benchmarks, samples are 3M references long, where
asample in this case is a group of references from the inter-
leaved reference traces of all processors. The largest
absolute deviation between the true and estimated miss
rates is 0.74 percent, with small relative deviations as well.
A detailed report® discusses more comprehensive sampling
accuracy results, based on varying numbers and lengths of
samples, cache sizes, and in the parallel case, numbers of
Pprocessors.

Our results show that for sequential benchmarks with
caches smaller than 1 Mbyte, miss rates can be estimated
with absolute deviations under 0.5 percent and relative
deviations of 10 percent or less. These estimates require
sample lengths of only 0.5M references or less. To achieve
accuracy when simulating 1-Mbyte caches or larger, at least
4M references per sample are required to prime the cache.
However, this still allows for aggressive sampling ratios on

many applications. Simulating parallel applications
requires slightly longer samples because parallel machines
generally have more total cache memory. However,
required sample length is not linearly proportional to total
cache size for parallel applications, because coherence traf-
fic can mitigate the need for longer samples.

As illustrated in Figure 11, trace sampling is successful
in MemSpy because the applications most suited to sam-
pling coincide well with the applications most in need of
tuning. Applications with high miss rates and many refer-
ences are most amenable to sampling, because it is easier
to sample them with low relative errors. By contrast, appli-
cations with low miss rates and few references have little
need for MemSpy tuning, so their potential for higher sam-
pling error is less relevant.

SAMPLING’S EFFECT ON PERFORMANCE. Our primary
purpose in using time sampling is to improve MemSpy’s
monitoring speed. To implement sampling, we add per-ref-
erence instrumentation, in which a sampling counter is
decremented and checked to see if simulation is currently
on or off. If simulation is off, control branches around the
memory-simulator procedure call. If simulation is on,
MemSpy saves the application registers and performs the
cache-hit check described earlier. We expect at least
amodest performance improvement on cache hits (which
can be bypassed anyway) and a large performance improve-
ment on cache misses. As
with accuracy, we expect

sampling to yield the largest —___‘__—
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bottlenecks. MemSpy, however, can significantly help tune
memory performance by isolating these bottlenecks through
detailed statistics.

The MemSpy monitoring tool lets programmers view and
analyze program behavior through the additional dimen-
sion of data-oriented statistics. Together with code-oriented
statistics, these are a powerful aid to memory performance
analysis and tuning. In addition, by characterizing the pre-
dominant causes of cache misses for each data structure,
MemSpy helps programmers better understand the causes
of memory bottlenecks and how to fix them.

Finally, key to providing such detailed statistics is the
ability to gather program information efficiently. By com-
bining hit-bypassing and reference-trace sampling opti-
mizations, MemSpy overheads dropped from baseline
factors of 18 to 58 for sequential applications to 3 to 10.
Similarly, the overheads dropped from baseline factors of
64 to 114 for parallel applications to 8 to 25. We have
shown that simulation-based performance monitors like
MemSpy can offer a feasible, effective, and low-overhead
alternative to other data collection methods. 1
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