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Abstra
t

The DNA motif dis
overy problem abstra
ts the task of dis
overing short, 
onserved sites in

genomi
 DNA. Pevzner and Sze re
ently des
ribed a pre
ise 
ombinatorial formulation of motif

dis
overy that motivates the following algorithmi
 
hallenge: �nd twenty planted o

urren
es of

a motif of length �fteen in roughly twelve kilobases of genomi
 sequen
e, where ea
h o

urren
e

of the motif di�ers from its 
onsensus in four randomly 
hosen positions. Su
h \subtle" motifs,

though statisti
ally highly signi�
ant, expose a weakness in existing motif �nding algorithms, whi
h

typi
ally fail to dis
over them. Pevzner and Sze introdu
ed new algorithms to solve their (15,4)-

motif 
hallenge, but these methods do not s
ale eÆ
iently to more diÆ
ult problems in the same

family, su
h as the (14,4)-, (16,5)-, and (18,6)-motif problems.

We introdu
e a novel motif dis
overy algorithm, Proje
tion, designed to enhan
e the perfor-

man
e of existing motif �nders using random proje
tions of the input's substrings. Experiments

on syntheti
 data demonstrate that Proje
tion remedies the weakness observed in existing algo-

rithms, typi
ally solving the diÆ
ult (14,4)-, (16,5)-, and (18,6)-motif problems. Our algorithm is

robust to nonuniform ba
kground sequen
e distributions and s
ales to larger amounts of sequen
e

than that spe
i�ed in the original 
hallenge. A probabilisti
 estimate suggests that related motif-

�nding problems that Proje
tion fails to solve are in all likelihood inherently intra
table. We

also test the performan
e of our algorithm on realisti
 biologi
al examples, in
luding trans
ription

fa
tor binding sites in eukaryotes and ribosome binding sites in prokaryotes.
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1 Introdu
tion

The DNA motif dis
overy problem abstra
ts the task of dis
overing short, 
onserved sites in ge-

nomi
 DNA sequen
e. Pevzner and Sze (Pevzner and Sze, 2000) studied a pre
ise 
ombinatorial

formulation of this problem that had previously been 
onsidered by Sagot (Sagot, 1998). This for-

mulation, the planted motif problem, is of parti
ular interest be
ause it is intra
table for 
ommonly

used motif �nding algorithms.

Planted (l; d)-Motif Problem: Let M be a �xed but unknown nu
leotide sequen
e

(the motif 
onsensus) of length l. Suppose that M o

urs on
e in ea
h of t ba
kground

sequen
es of 
ommon length n, but that ea
h o

urren
e ofM is 
orrupted by exa
tly d

point substitutions in positions 
hosen independently at random. Given the t sequen
es,

re
over the motif o

urren
es and the 
onsensus M .

A parti
ular parameterization of this problem, the so-
alled \
hallenge problem" of (Pevzner

and Sze, 2000), plants a (15,4)-motif (that is, a motif of length l = 15 with d = 4 substitutions

per o

urren
e) in ea
h of t = 20 ba
kground sequen
es of 
ommon length n = 600 
omposed of

independent random bases with equal frequen
ies. Su
h a well-
onserved motif should be easy to

identify be
ause it is highly unlikely to o

ur by 
han
e in twenty random sequen
es of the spe
i�ed

length and 
omposition. The values of n, t, and l in the 
hallenge problem are typi
al of su
h motif

dis
overy problems as �nding trans
ription fa
tor binding sites in a 
olle
tion of 
oregulated gene

promoter regions in yeast.

A number of algorithms to �nd motifs have been proposed previously, in
luding Bailey and

Elkan's MEME (Bailey and Elkan, 1995), Hertz and Stormo's CONSENSUS (Hertz and Stormo,

1999), Lawren
e et al.'s Gibbs sampler, (Lawren
e et al., 1993), and the algorithms in (Lawren
e

and Reilly, 1990) and in (Ro
ke and Tompa, 1998). These algorithms all try to �nd a motif that

maximizes some s
ore, su
h as a likelihood ratio, designed to distinguish true motifs from 
han
e

aggregations of ba
kground l-mers. The algorithms employ heuristi
 methods based on lo
al sear
h,

su
h as Gibbs sampling, expe
tation maximization, or a greedy approa
h, to maximize their s
ore

fun
tions.

Although lo
al sear
h-based motif �nders have seen mu
h su

ess in pra
ti
e, Pevzner and Sze

showed (Pevzner and Sze, 2000) that CONSENSUS, GibbsDNA, and MEME all perform poorly

on the (15,4)-motif 
hallenge problem. When presented with an instan
e of the 
hallenge problem,

lo
al sear
h methods usually terminate at a lo
al maximum of their s
ore fun
tion 
orresponding to
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a randomly o

urring pattern in the input, missing the planted motif despite its mu
h higher s
ore.

These failures suggest that the performan
e of 
onventional motif �nders is strongly in
uen
ed by

the pre
ise distribution of mutations within a motif.

In addition to the lo
al sear
h te
hniques mentioned above, there are also a number of motif-

�nding algorithms, based on enumeration of all motifs or all mutation patterns, that are guaranteed

to �nd the highest-s
oring motif in the input. See, for example, (Blan
hette et al., 2002), (Br�azma

et al., 1998), (Galas et al., 1985), (Sagot, 1998), (Sinha and Tompa, 2000), (Staden, 1989), (Tompa,

1999), and (van Helden et al., 1998). Unfortunately, these enumerative algorithms be
ome impra
-

ti
al for motifs as long or with as many mutations as those in the 
hallenge problem. Other motif

dis
overy algorithms have been proposed in (Fraenkel et al., 1995) and (Rigoutsos and Floratos,

1998).

Pevzner and Sze developed two novel algorithms, WINNOWER and SP-STAR, to more reliably

solve the (15,4)-motif 
hallenge problem. Brie
y, WINNOWER 
onstru
ts a graph whose verti
es


orrespond to all l-mers present in the t input sequen
es, with an edge 
onne
ting two verti
es if

and only if the 
orresponding l-mers di�er in at most 2d positions and do not both 
ome from the

same sequen
e. WINNOWER then looks for a 
lique of size t in this graph. The se
ond algorithm,

SP-STAR, is a more 
onventional lo
al sear
h method that starts in turn from ea
h individual

l-mer x in the input, 
hooses the 
losest mat
h to x from every other input sequen
e, and uses a

sum-of-pairs s
ore and iterative re�nement to 
onverge on a good motif.

AlthoughWINNOWER and SP-STAR usually �nd planted (15,4)-motifs, they are less su

essful

at solving more diÆ
ult planted motif problems. For example, the (14,4)-, (16,5)-, and (18,6)-motif

problems, all with the same ba
kground length and 
omposition as the 
hallenge problem, prove

intra
table for the new algorithms as well as for existing lo
al sear
h te
hniques (see Table 1).

In this work, we introdu
e a new motif-�nding algorithm, Proje
tion, that ameliorates the

limitations of existing motif �nders by using random proje
tions of the input, an approa
h distin
t

from all the motif dis
overy algorithms listed above. The key idea of Proje
tion is to partition

the set of all l-mers in the input sequen
es into bu
kets, su
h that some bu
ket re
eives several

o

urren
es of the desired motif and little else. Having several 
opies of the motif in hand greatly

enhan
es the ability of lo
al sear
h te
hniques to �nd motifs that would otherwise be missed. To

a
hieve the desired partition, we 
hoose k of the l positions in the unknown motif at random (the

value of k to be determined later), then hash every l-mer x into a bu
ket f(x) determined by its

bases at these k positions. A bu
ket re
eiving an unusually large number of l-mers has an elevated
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probability of being enri
hed for the motif.

Ante
edents of our Proje
tion algorithm in
lude proje
tion-based te
hniques for sparse index-

ing of databases and for high-dimensional 
omputational geometry. Estimates of similarity based

on sparse sampling of positions from feature ve
tors have long been used in ma
hine vision to mat
h

a per
eived obje
t against a database of known obje
ts (Duda and Hart, 1973, Chapter 6); in the

vision and 
omputational geometry 
ommunities, this te
hnique has a distinguished history under

the name \geometri
 hashing" (Wolfson and Rigoutsos, 1997). Analyti
al proof of the sensitivity of

uniform, randomized geometri
 hashing for �nding near neighbors of points in a high-dimensional

metri
 spa
e appears in Indyk and Motwani's work on \lo
ality-sensitive hashing" (Indyk and

Motwani, 1998; Gionis et al., 1999), building on theoreti
al work in random proje
tion by, e.g.,

Johnson and Lindenstrauss (Johnson and Lindenstrauss, 1984), Bourgain (Bourgain, 1985), and

Linial, London, and Rabinovi
h (Linial et al., 1994).

Rigoutsos and Califano observed that proje
tion 
an be applied to sear
h problems in bioinfor-

mati
s, spe
i�
ally to dete
t similarity between pairs of biosequen
es, by treating a �xed-length se-

quen
e as a feature ve
tor whose features are individual residues (nu
leotides or amino a
ids). This

observation led to their FLASH algorithm for dete
ting strong pairwise lo
al alignments between

biosequen
es (Rigoutsos and Califano, 1993). Buhler (Buhler, 2001) took a somewhat di�erent

approa
h, applying Indyk and Motwani's lo
ality-sensitive hashing te
hnique to obtain random-

ized sensitivity guarantees for genomi
 sequen
e similarity sear
h independent of the underlying

sequen
e 
omposition. Both of these appli
ations, like the earlier work in vision and geometry, fo-


used on dete
ting similar pairs of sequen
es, though the te
hniques used extend naturally to �nding

sets of sequen
es that are all pairwise highly similar, after the fashion of WINNOWER. Linial et

al. (Linial et al., 1997) used yet another randomized proje
tion algorithm to 
luster proteins.

The Proje
tion motif �nder extends previous proje
tion-based sear
h te
hniques to solve a

multiple alignment problem that is not e�e
tively addressed by pairwise alignment. We show that

random proje
tion 
an dire
tly address the problem of �nding sets of sequen
es 
lose to a 
ommon


onsensus without �rst 
omputing pairwise distan
es among them. Our approa
h of pi
king uniform

random proje
tions redu
es the extent to whi
h Proje
tion's performan
e depends sensitively

on parti
ular properties of the motif being sought and simpli�es some a priori 
hoi
es, su
h as

proje
tion size and number of proje
tions, that must be made to parameterize the algorithm. The

new algorithm both expli
itly meets Pevzner and Sze's planted motif 
hallenge and demonstrates

that random proje
tion is a useful initialization te
hnique to improve the sensitivity of lo
al sear
h-
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based motif �nders.

We have found that Proje
tion performs better than existing lo
al sear
h or 
lique-�nding

motif �nders on planted (l; d)-motif problems. In experiments with randomly generated input

sequen
es, Proje
tion typi
ally solved the diÆ
ult (14,4)-, (16,5)-, and (18,6)-motif problems.

Proje
tion is also eÆ
ient, typi
ally solving Pevzner and Sze's planted (15,4)-motif 
hallenge

problem in under two minutes on a 667 MHz Alpha workstation. The algorithm is robust to


hanges in the ba
kground base distribution and 
ontinues to outperform existing methods as the

length n of the input sequen
es in
reases.

A probabilisti
 analysis given in Se
tion 3.2 suggests (again for Pevzner and Sze's parameters

t = 20 and n = 600) that those small values of d for whi
h Proje
tion fails to re
over planted

(l; d)-motifs are in all likelihood inherently intra
table. Spe
i�
ally, problem instan
es with these

parameters are likely to 
ontain spurious motifs that are as well 
onserved as the planted motif. For

example, twenty random sequen
es of length 600 (with no planted motif) are expe
ted to 
ontain

at least one (9,2)-motif by 
han
e, whereas the expe
ted number of (10,2)-motifs that they 
ontain

is approximately 10

�7

. Similar statements 
an be made for (11,3)- vs. (12,3)-motifs, (13,4)- vs.

(14,4)-motifs, (15,5)- vs. (16,5)-motifs, and (17,6)- vs. (18,6)-motifs. Thus, there is a rather sharp

line between those planted motif problems that Proje
tion solves, and those that inherently


annot be solved.

The remainder of this work is organized as follows. Se
tion 2 des
ribes the Proje
tion algo-

rithm, in
luding both the key random proje
tion phase and the lo
al sear
h that bene�ts from it,

and provides some insight into why the algorithm works. Se
tion 3 is devoted to experimental re-

sults. In Se
tion 3.1, we test Proje
tion's performan
e on syntheti
 instan
es of the (15,4)-motif


hallenge and more diÆ
ult planted motif problems. Se
tions 3.3 and 3.4 respe
tively determine

the performan
e impa
t of introdu
ing ba
kground sequen
es with nonuniform distributions and

longer lengths than in the original 
hallenge problem.

In Se
tions 3.5 and 3.6, we 
omplement our syntheti
 results by addressing realisti
 biologi
al

motif �nding problems, �rst identifying trans
ription fa
tor binding sites in the promoter regions of

eukaryoti
 genes, then ta
kling the problem of �nding ribosome binding sites in prokaryotes. The

promoter data sets 
ontain just a few motif o

urren
es in an equal number of sequen
es, while

the ribosome binding site data sets 
onsist of thousands of nu
leotide sequen
es, only a fra
tion

of whi
h 
ontain the motif. We validate the motifs found by Proje
tion by 
omparing them to

published sites from the literature and, for ribosome binding sites, to their 
omplementary 16S
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rRNA sequen
es.
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2 The PROJECTION Algorithm

2.1 Why Planted Motif Problems are DiÆ
ult

To motivate the development of Proje
tion, we begin with an example to illustrate why lo
al

sear
h-based motif �nders have diÆ
ulty solving planted (l; d)-motif problems. Figure 1 shows

two hexamer motifs, A and B, ea
h 
onsisting of �ve approximate o

urren
es of the 
onsensus

sequen
e CCATAG. Ea
h o

urren
e di�ers from the 
onsensus by exa
tly two substitutions. In terms

of mutations per o

urren
e, these two motifs are equally well 
onserved. However, given equal

amounts of ba
kground sequen
e, motif A is more likely than B to be found by motif �nders, su
h

as MEME and GibbsDNA, that are based on lo
al sear
h. Figure 1

hereThe di�eren
e between motifs A and B is that the mutations in B, as spe
i�ed in the planted

(l; d) problem formulation, are distributed uniformly a
ross its positions, while those in A are 
on-

�ned to its two 
enter positions. This di�eren
e makes B harder to �nd for two reasons. First,

despite having the same number of mutations, motif B has only slightly more than half the infor-

mation 
ontent of A (4.4 versus 8.2 bits). Algorithms that s
ore motifs using statisti
al measures

related to information 
ontent will have more trouble separating motif B from the ba
kground.

A se
ond, more insidious problem is the fa
t that the average Hamming distan
e between o
-


urren
es of motif B is large { 3.6 substitutions versus only 1.6 for motif A. Lo
al sear
h methods

typi
ally start their sear
h by guessing a single o

urren
e (alternatively, several independent o
-


urren
es) of the motif, then try to �nd additional o

urren
es by sele
ting l-mers similar to the

initial guess. Lo
al sear
h is likely to terminate at a lo
al maximum di�erent from the motif if

the ba
kground 
ontains substantial \noise," i.e. random l-mers that are more similar to the initial

guess than are other true o

urren
es of the motif. A larger average distan
e between motif o

ur-

ren
es in
reases the 
han
e that the l-mers most similar to an initially guessed o

urren
e are not

other 
opies of the motif but random sequen
es from the ba
kground. For example, a DNA hexamer


hosen uniformly at random has probability 0.038 of mat
hing a �xed motif o

urren
e to within

two substitutions, but it has probability 0.466 of mat
hing it within four substitutions

1

. Hen
e,

lo
al sear
h methods using typi
al initialization strategies en
ounter substantially more noise when

�nding motif B and so are more likely to fail.

We 
an make lo
al sear
h more robust to a large average distan
e between motif o

urren
es by

1

Using more realisti
 parameters, a random 15-mer will mat
h a �xed o

urren
e of a (15,4)-motif to within four

substitutions with probability 1:2�10

�4

, but it has a greater than 5% 
han
e of mat
hing within eight substitutions.
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improving the way the sear
h is initialized. Suppose we initially guess s > 1 o

urren
es of motif

B. For example, suppose s = 3, and we somehow guess the �rst, se
ond, and fourth o

urren
es

of B in Figure 1. The 
onsensus of these three strings is CNATAG, whi
h di�ers from the true

motif's 
onsensus in only one position and from its o

urren
es by an average of 2.6 substitutions

{ substantially less than the average distan
e between one o

urren
e and another. Starting with

multiple o

urren
es permits an initial guess that more 
losely resembles the true motif and so

de
reases the opportunity for noise to 
onfound subsequent lo
al sear
h.

The main problem with a more robust initialization strategy is its 
omputational 
ost. We do

not know where the motif appears in the input, so to �nd s o

urren
es we might naively guess

every (multi)set of s l-mers in the input as a starting point for lo
al sear
h, requiring

0

�

t

s

1

A

(n �

l+1)

s

sear
hes overall. Even for small s, exhaustive enumeration and testing of all su
h guesses is

prohibitively expensive. Proje
tion takes a di�erent approa
h: it randomly samples multisets of

at least s (non-independent) l-mers in a way that is biased toward pi
king sets of motif o

urren
es.

Spe
i�
ally, Proje
tion prefers sets of l-mers that are likely to be similar to (i.e. to have few

substitutions versus) a 
ommon 
onsensus.

2.2 Initialization through Random Proje
tion

The initial goal of Proje
tion is to guess at least s o

urren
es of an (unknown) planted motif.

To this end, the algorithm performs m independent trials, ea
h of whi
h may generate multiple

guesses. In ea
h trial, it 
hooses a random proje
tion f and hashes ea
h l-mer x in the input to a

bu
ket labeled f(x). Any bu
ket re
eiving suÆ
iently many entries is explored as a potential motif,

using a lo
al sear
h-based re�nement pro
edure des
ribed in the next se
tion.

As outlined in Se
tion 1, the proje
tions f are 
onstru
ted by 
hoosing k positions uniformly

at random without repla
ement from the set f1 : : : lg, for a value of k to be determined later. If x

is an l-mer, then f(x) is simply the k-mer that results from 
on
atenating the bases at the sele
ted

k positions of x. Viewing x as a point in an l-dimensional Hamming spa
e, f(x) is the proje
tion

of x onto a k-dimensional subspa
e.

Let M be the unknown motif's 
onsensus. De�ne the planted bu
ket to be that bu
ket labeled

with hash value f(M). The fundamental intuition underlying random proje
tion is that, if k < l�d,

there is a good 
han
e that at least s o

urren
es ofM will hash together into the planted bu
ket. At

the same time, if k is not too small, it is unlikely that many random l-mers from the ba
kground
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sequen
e will hash to the planted bu
ket, be
ause ea
h su
h l-mer must agree with M in all k

sampled positions. Thus, the l-mers in the planted bu
ket will likely be highly enri
hed for the

planted motif. Of 
ourse, the algorithm does not know whi
h bu
ket is the planted one and so

attempts to re
over the motif from every bu
ket that re
eives at least s l-mers. (On o

asion,

Proje
tion a
tually su

eeds in re
overing the 
orre
t motif by re�ning some bu
ket other than

the planted bu
ket, whi
h is an added bonus.)

To fully spe
ify the Proje
tion algorithm, we must des
ribe how to 
ompute both the pro-

je
tion size k and the number of trials m as a fun
tion of the algorithm's parameters l, d, n, t, and

s and the probability q that the algorithm su

essfully hashes at least s motif o

urren
es to the

planted bu
ket. We must also des
ribe how to 
hoose s, whi
h while notionally an input to the

algorithm is not a \natural" parameter for motif �nding.

We 
hoose the proje
tion size k so as to minimize 
ontamination of the planted bu
ket by

random ba
kground sequen
es. Suppose we require at most E ba
kground l-mers per bu
ket on

average. Proje
tion hashes t(n� l + 1) l-mers into 4

k

bu
kets, so if we set

k � log

4

�

t(n� l + 1)

E

�

;

then the expe
ted number of ba
kground l-mers per bu
ket is at most E. We normally �x E < 1 so

that the planted bu
ket is expe
ted to 
ontain less than one l-mer from the ba
kground sequen
e.

The number of trials m must be set large enough so that with probability at least q, some

trial produ
es a planted bu
ket 
ontaining at least s motif o

urren
es. The probability q is


omputed over both the random 
hoi
es of proje
tions and the random distribution of mutations

in the problem instan
e. We generally set q = 0:95, whi
h is high enough that Proje
tion

often produ
es planted bu
kets with at least s motif o

urren
es in several trials, providing some

robustness against unsu

essful re�nements.

Be
ause Proje
tion 
hooses its proje
tions uniformly at random, ea
h motif o

urren
e in

the planted model hashes to the planted bu
ket with probability p̂(l; d; k), de�ned by

p̂(l; d; k) =

0

�

l � d

k

1

A

0

�

l

k

1

A

:

In parti
ular, those planted o

urren
es for whi
h the d mutated positions are disjoint from the k

hash positions will hash to the planted bu
ket. Let

^

t be an estimate of the number of input sequen
es
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ontaining a planted motif o

urren
e (

^

t = t for our syntheti
 
hallenge problems and promoter

examples). Then the probability that fewer than s planted o

urren
es hash to the planted bu
ket

in a given trial is B

^

t;p̂(l;d;k)

(s), where B

t;p

(s) is the probability that there are fewer than s su

esses

in t independent Bernoulli trials, ea
h trial having probability p of su

ess. We may assume that

the trials for di�erent motif o

urren
es are independent be
ause the problem formulation states

that mutations appear independently at random in ea
h o

urren
e.

If Proje
tion is run for m trials, the probability that s or more motif o

urren
es hash to the

planted bu
ket in at least one trial is

1�

h

B

^

t;p̂(l;d;k)

(s)

i

m

� q:

In order to satisfy this inequality, 
hoose

m =

&

log(1� q)

log(B

^

t;p̂(l;d;k)

(s))

'

: (1)

It remains to des
ribe how to 
hoose the bu
ket size threshold s. We must 
hoose s large

enough so that a bu
ket with at least s true motif o

urren
es is likely to produ
e the planted

motif after re�nement. Unfortunately, we know of no theory that determines a lower bound for s

from this 
riterion, though we have found empiri
ally that in experiments on problems 
ontaining

4{20 motif o

urren
es in ba
kground sequen
es of 600{1000 bases, setting s = 3 or 4 usually works

well. An alternative lower bound for s follows from eÆ
ien
y 
onsiderations: we wish to dis
ard

bu
kets 
omposed entirely of ba
kground l-mers, whi
h are unlikely to be useful as starting points

for re�nement. We assume for simpli
ity that in a 
olle
tion of random ba
kground sequen
es, the

number of l-mers x that proje
t to a 
ommon hash value y is approximately Poisson-distributed

with a mean �

y

given by

�

y

= t(n� l + 1)Pr

x

[f(x) = y℄

where the latter probability is 
omputed over the ba
kground distribution of l-mers x. The Poisson

assumption derives from the fa
t that we are 
ounting o

urren
es of a short �xed pattern, namely

the bases of y appearing in the positions read by f , in the ba
kground sequen
e. We set the

threshold size s for ea
h bu
ket to the larger of its empiri
ally derived value and the 90th per
entile

value of the bu
ket's size distribution.

In the 
ase of nonuniform ba
kground base frequen
ies, the probability Pr[f(x) = y℄ may be

di�erent for ea
h bu
ket, produ
ing larger thresholds for bu
kets likely to 
ontain many ba
kground

10



l-mers purely by 
han
e. For a uniform ba
kground, this probability is always 1=4

k

. In the experi-

ments performed in this work, the empiri
al value of s is larger than the lower bounds implied by

the 90th per
entile size for most bu
kets, so we use the empiri
al s to 
al
ulate m.

Using the above 
riteria for m, k, and s, �nding motifs in problems of the sizes 
onsidered

here requires at most thousands of trials, and usually many fewer, to produ
e a bu
ket 
ontaining

enough motif o

urren
es for e�e
tive re�nement.

2.3 Motif Re�nement and S
oring

Proje
tion re�nes ea
h suÆ
iently large bu
ket in hopes of re
overing the planted motif. If the

bu
ket being re�ned is the planted bu
ket, its l-mers already mat
h the motif's 
onsensus in at least

k positions. These positions plus the information in the remaining l � k positions of the bu
ket's

l-mers provide a strong signal, starting from whi
h a few iterations of re�nement should lead to

the 
orre
t motif.

It is important to note that Proje
tion is primarily an initialization strategy that produ
es

starting points for re�nement. We des
ribe one parti
ular re�nement method below, but Proje
-

tion 
ould instead be adjoined to the lo
al sear
h phases of existing motif �nders like MEME or

GibbsDNA. The re�nement phase, whatever algorithm it uses, is ultimately responsible for produ
-

ing the most signi�
ant motif from the starting points o�ered and dis
arding all other 
andidates.

Hen
e, we need not be 
on
erned (ex
ept for reasons of eÆ
ien
y) by the fa
t that most large

bu
kets passed to re�nement are \false positives" that do not lead to a signi�
ant motif.

Our primary tool for re�ning 
andidate motifs is expe
tation maximization (EM), as formulated

for the motif �nding problem by Lawren
e and Reilly (Lawren
e and Reilly, 1990). This EM

formulation derives from the following simpli�ed probabilisti
 model. An o

urren
e of the motif

appears exa
tly on
e in ea
h input sequen
e. Motif o

urren
es are generated at random from

a 4 � l weight matrix model W whose (i; j)th entry gives the probability that base i appears in

position j of an o

urren
e, independent of its other positions. The remaining n � l residues in

ea
h sequen
e are 
hosen independently at random a

ording to a ba
kground base distribution

P . Although this model only approximates the motifs of real biosequen
es, it is both simple and

sensitive enough to let EM identify meaningful motifs in pra
ti
e. Bailey and Elkan (Bailey and

Elkan, 1995) give more a

urate motif models, though �tting their parameters from sequen
e data

requires signi�
antly more 
omputation.

Let T be a set of t input sequen
es, and let P be the ba
kground distribution. EM-based
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re�nement seeks a weight matrix model W

�

that maximizes the likelihood ratio

LR(W

�

) =

Pr(T j W

�

; P )

Pr(T j P )

;

that is, a motif model that explains the observed sequen
es mu
h better than the ba
kground

model alone. The position at whi
h the motif o

urs in ea
h sequen
e is not �xed a priori, making


omputation of W

�

diÆ
ult be
ause Pr(T jW

�

; P ) must be summed over all possible positions for

the o

urren
es. To address this diÆ
ulty, the 
ore EM algorithm (Dempster et al., 1977) spe
i�es

an iterative 
al
ulation that, given an initial guess W

1

at the motif model, 
onverges linearly to a

lo
ally maximum-likelihood model in the neighborhood of W

1

.

Proje
tion performs EM re�nement on every bu
ket with at least s l-mers. It forms an initial

guess W

b

from a bu
ket b as follows: set W

b

(i; j) to be the frequen
y of base i among the jth

positions of all l-mers in b. This guess forms a 
entroid for b, in the sense that positions that are

well 
onserved in b are strongly biased in W

b

, while poorly 
onserved positions are less biased. In

order to avoid zero entries in W

b

, we add a Lapla
e 
orre
tion of p

i

to W

b

(i; j), where p

i

is the

probability of base i in the ba
kground sequen
e.

Be
ause EM 
onverges only linearly, running it to 
onvergen
e for every W

b

would be 
ompu-

tationally prohibitive. Fortunately, just a few iterations of EM (�ve in our implementation) 
an

signi�
antly improve a well-
hosen starting model to the point where it identi�es the planted motif.

Let W

�

b

be the 
andidate motif model re�ned fromW

b

. We form a guess at the planted motif by se-

le
ting from ea
h input sequen
e the l-mer x with the largest likelihood ratio Pr(x j W

�

b

)=Pr(x j P ).

This multiset S

b

of l-mers represents the motif in the input that is most 
onsistent with the model

W

�

b

.

Proje
tion generates re�ned guesses for every suÆ
iently large bu
ket and for every trial, but

we wish to pi
k a single best motif to report to the user. For the biologi
al examples of Se
tion 3.5,

we s
ore ea
h re�ned motif S

b

a

ording to its likelihood as follows. Let W

S

b

be the weight matrix

model inferred from S

b

(in the same way that we form initial guesses). Then the likelihood ratio

s
ore LR(S

b

) is de�ned as

LR(S

b

) =

Y

x2S

b

Pr [x j W

S

b

℄

Pr [x j P ℄

We report the motif S

�

that maximizes this s
ore over all bu
kets and all m trials.

To maximize the number of motif o

urren
es re
overed in the syntheti
 
hallenge problems

of Se
tion 3.1, we perform a further 
ombinatorial re�nement of ea
h S

b

. This further re�nement

pro
ess is similar to SP-STAR (Pevzner and Sze, 2000) but uses a di�erent s
ore fun
tion. Compute

12



the 
onsensusM

b

of the sequen
es in S

b

, and de�ne the s
ore �(S

b

) to be the number of sequen
es in

S

b

whose Hamming distan
e to S

b

is at most d. Let S

0

b


ontain the l-mer from ea
h input sequen
e

that is 
losest in Hamming distan
e to M

b

. If �(S

0

b

) > �(S

b

), repla
e S

b

by S

0

b

and repeat. This

re�nement usually 
onverges in a few iterations. Again, we report the motif S

�

for whi
h �(S

�

) is

maximum over all bu
kets and all m trials.
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3 Experimental Results

3.1 Challenge Problems on Syntheti
 Data

We �rst tested Proje
tion on syntheti
 problem instan
es generated a

ording to the planted

(l; d)-motif model. Pevzner and Sze (Pevzner and Sze, 2000) showed su
h problems to be intra
table

to most existing motif �nders even for l = 15 and d = 4, so they are natural test 
ases for our

algorithm. We produ
e problem instan
es as follows: �rst, a motif 
onsensusM of length l is 
hosen

by pi
king l bases at random. Se
ond, t = 20 o

urren
es of the motif are 
reated by randomly


hoosing d positions per o

urren
e (without repla
ement) and mutating the base at ea
h 
hosen

position to a di�erent, randomly 
hosen base. Third, we 
onstru
t t ba
kground sequen
es of length

n = 600 using n � t bases 
hosen at random. Finally, we assign ea
h motif o

urren
e to a random

position in a ba
kground sequen
e, one o

urren
e per sequen
e. All random 
hoi
es are made

uniformly and independently with equal base frequen
ies. This generation pro
edure 
orresponds

to the \FM" model used in the 
hallenge problem des
ribed by Pevzner and Sze.

We report the performan
e of Proje
tion using the performan
e 
oeÆ
ient of (Pevzner and

Sze, 2000), de�ned as follows. Let K denote the set of t � l base positions in the t o

urren
es

of a planted motif, and let P denote the 
orresponding set of base positions in the t o

urren
es

predi
ted by an algorithm. Then the algorithm's performan
e 
oeÆ
ient on the motif is de�ned

to be jK \ P j=jK [ P j. When all o

urren
es of the motif are found 
orre
tly, the performan
e


oeÆ
ient a
hieves its maximum value of one.

Table 1 
ompares the performan
e of Proje
tion with that of previous motif dis
overy algo-

rithms on sets of 100 random problem instan
es, ea
h generated as des
ribed above. All experiments

used proje
tion size k = 7 and bu
ket size threshold s = 4, whi
h 
ombined with the problem pa-

rameters requires numbers of trials m as shown in the table. The values of m are determined by

Equation (1). For ea
h set of problem parameters, we give the average performan
e 
oeÆ
ient

for Proje
tion as well as the number of problem instan
es (out of 100) for whi
h it 
orre
tly

re
overed the planted motif's 
onsensus. For 
omparison, we provide 
orresponding average perfor-

man
e 
oeÆ
ients for three other algorithms: GibbsDNA, WINNOWER (k = 2), and SP-STAR.

The data for previous algorithms was 
olle
ted by Pevzner and Sze and summarized in (Pevzner

and Sze, 2000, Figures 1 and 2). Table 1

hereIn every line of Table 1, the average performan
e 
oeÆ
ient of Proje
tion is at least as great

as that of any of the previous algorithms. Proje
tion 
orre
tly solved planted (11,2)-, (13,3)-,

14



(15,4)-, (17,5)-, and (19,6)-motif problems at least 98 times out of 100; in these 
ases, average

performan
e 
oeÆ
ients less than one o

urred primarily be
ause our algorithm, like any motif

�nder, sometimes pi
ked as a motif o

urren
e a ba
kground l-mer that was at least as similar to

the 
orre
t 
onsensus as was the true o

urren
e. The (11,2)-, (13,3)-, and (15,4)-motif problems

were roughly equally a

essible to WINNOWER, somewhat less so to SP-STAR.

Proje
tion's improved performan
e is more striking on the more diÆ
ult planted (14,4)-,

(16,5)-, (17,5)-, (18,6)-, and (19,6)-motif problems. Our algorithm's performan
e on these prob-

lems substantially ex
eeds that of previous algorithms, in
luding those of Pevzner and Sze, whi
h

typi
ally fail to �nd the planted motifs. Finding ea
h syntheti
 motif in the most diÆ
ult (18,6)

problem required about one hour on a 667 MHz Alpha workstation; easier problems like (15,4) were

typi
ally solved in only a few minutes.

3.2 Limitations on Solvable (l,d)-Motif Problems

Although Proje
tion performs well on the planted motifs of Table 1, it generally fails to �nd

motifs with slightly di�erent parameters, su
h as (9,2)-, (11,3)-, (13,4)-, (15,5)-, or (17,6)-motifs

(again for t = 20 and n = 600). We naturally investigated why our algorithm tends to fail on

problems that seem quite similar to the original 
hallenge.

A probabilisti
 analysis suggests that problems involving planted motifs with the parameters

given above are quantitatively di�erent from the problems in Table 1. For example, twenty random

sequen
es of length 600, with no planted motif, are expe
ted to 
ontain more than one spurious (9,2)-

motif by 
han
e, whereas the expe
ted number of (10,2)-motifs that they 
ontain is approximately

6:1� 10

�8

. We derive these estimates as follows. Let

p

d

=

d

X

i=0

0

�

l

i

1

A

�

3

4

�

i

�

1

4

�

l�i

be the probability that a �xed l-mer o

urs with up to d substitutions at a given position of a random

sequen
e. Then the expe
ted number of length-l motifs that o

ur with up to d substitutions at

least on
e in ea
h of t random length-n sequen
es is approximately

E(l; d) = 4

l

�

1� (1� p

d

)

n�l+1

�

t

:

This expe
tation is only an estimate be
ause overlapping o

urren
es of a given 
onsensus string

M do not o

ur independently in the ba
kground.
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Table 2 lists relevant values of E(l; d) and E(l + 1; d) for 
omparison. In ea
h line of the

table, the expe
ted number of spurious (l; d)-motifs is around 1{5, whereas the expe
ted number

of spurious (l+1; d)-motifs is negligible. We therefore expe
t that on the spe
i�ed (l; d)-problems,

Proje
tion, or for that matter any other algorithm, is likely to report a spurious motif as good

as the planted motif, even if it usually su

eeds on the 
orresponding (l + 1; d)-motif problems. Table 2

hereThe values E(l; d) in Table 2 are only estimates of the expe
tations, whi
h we do not know

how to 
ompute pre
isely. However, we do know from an exhaustive enumeration of 9-mers and

an exa
t 
al
ulation of their probabilities in twenty random 600-mers that the expe
ted number of

spurious (9,2)-motifs is 1.621. (The probability 
al
ulation was done using an algorithm des
ribed

in (Tompa, 1999, Se
tion 3.1).) Thus, the estimates may not be too ina

urate in pra
ti
e. Su
h

an exhaustive analysis for mu
h greater values of l is unfortunately 
omputationally impra
ti
al.

To further 
orroborate our analysis, we ran Proje
tion on sets of twenty random instan
es

of the planted (l; d)-motif problems of Table 2 generated as des
ribed in the previous se
tion. The

algorithm's performan
e on these sets is also reported in Table 2, in
luding the average performan
e


oeÆ
ient, the number of problem instan
es in whi
h the 
orre
t 
onsensus was found, and the

number of instan
es where we instead found a spurious (l; d)-motif appearing in all twenty input

sequen
es. Where Proje
tion failed to �nd either the 
orre
t or an equally good spurious motif, it

found a motif (again not the planted one) o

urring in nineteen of the twenty input sequen
es. These

experiments provide further eviden
e that the (l; d)-motif problems that Proje
tion 
onsistently

fails to solve are fundamentally less tra
table be
ause they 
ontain spurious motifs that are as well


onserved as, and hen
e 
annot be distinguished from, the planted motif.

3.3 Performan
e vs. Ba
kground Base Distribution

Real biosequen
es frequently have base 
ompositions di�erent from the equal base frequen
ies

used in the experiments of Se
tion 3.1. We therefore tested the performan
e of Proje
tion

on syntheti
 motif-�nding problems with ba
kground sequen
es of varying 
omposition. These

problems were 
onstru
ted and solved identi
ally to those of Se
tion 3.1, ex
ept that we 
hose a

ba
kground G+C fra
tion �

GC

, then generated the ba
kground sequen
e from a distribution with

Pr[G℄ = Pr[C℄ = �

GC

=2 and Pr[A℄ = Pr[T ℄ = (1��

GC

)=2. We 
ontinued to generate planted motifs

from a distribution with equal base frequen
ies.

Figure 2 shows the performan
e of Proje
tion on both (15,4)- and more 
hallenging (14,4)-

motifs at di�erent ba
kground 
ompositions. The algorithm's performan
e, as measured by the
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average performan
e 
oeÆ
ient, was not signi�
antly 
hanged on (15,4)-motifs down to 35% G+C

and on (14,4)-motifs down to 40% G+ C. Below these thresholds, re
overy of the motif drops o�

pre
ipitously, with average performan
e 
oeÆ
ients below 0.1 o

urring at 35% G+ C for (14,4)-

motifs and 25% G+ C for (15,4)-motifs.

The major performan
e drops for highly biased G + C 
ontents o

ur be
ause a biased ba
k-

ground is more likely to produ
e problem instan
es that, like those of Se
tion 3.2, by 
han
e 
ontain

spurious motifs at least as good as the planted motif. In support of this 
laim, we observe that in

every problem instan
e with 35% or lower G + C where the algorithm failed to �nd the planted

motif, it found a 
olle
tion of twenty l-mers that were at least as well 
onserved. For (14,4)-motifs

in parti
ular, this behavior is radi
ally di�erent from the normal failure mode at 45% and 50%

G+C: of the roughly 15% of trials that failed at these G+C 
ontents, none found a spurious motif

as well-
onserved as the planted one. This observed shift from �nding suboptimal motifs to �nding

spurious but optimal motifs provides strong empiri
al eviden
e for the high frequen
y of spurious

motifs at more biased G+ C 
ontents.

We 
on
lude that the performan
e of the Proje
tion algorithm on sequen
es of biased G+C


ontent is limited primarily by the appearan
e of spurious motifs as good as the planted motif. In

the absen
e of su
h spurious motifs, Proje
tion's ability to �nd the planted motif is robust to

moderate 
hanges in G+ C. Figure 2

here

3.4 Performan
e vs. Ba
kground Sequen
e Length

We tested Proje
tion's ability to handle in
reasingly noisier problems by �nding planted motifs

in in
reasingly large amounts of ba
kground sequen
e. Longer ba
kgrounds 
ontain more random l-

mers similar to real motif o

urren
es, as well as more 
olle
tions of l-mers almost as well-
onserved

as the true motif. Both phenomena in
rease the 
han
e that lo
al sear
h will terminate at a

suboptimal lo
al maximum instead of �nding the true motif.

Figure 3 shows the performan
e of Proje
tion on (15,4)- and (14,4)-motifs for ba
kground

lengths ranging from n = 600 to n = 2000. Other than the in
reased length n, problem instan
es

were generated identi
ally to those of Se
tion 3.1. All experiments used the parameters given in

Table 1 for (15,4)- and (14,4)-motifs. In these experiments, we retained the proje
tion size k = 7

at all lengths, even though for ba
kgrounds longer than 800 bases, setting k = 7 
auses the average

bu
ket size to ex
eed one l-mer. Setting k = 8 would have kept the average bu
ket size below

one but would have required an order of magnitude more iterations (m = 1987 for (15,4) and
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m = 14860 for (14,4)) to maintain a 95% probability of produ
ing a planted bu
ket with at least

s = 4 o

urren
es of the motif. Figure 3

hereProje
tion's performan
e on (15,4)-motifs degraded gra
efully with in
reasing length, from

an average performan
e 
oeÆ
ient of 0.93 for n = 600 to 0.53 at n = 2000. As predi
ted, some

of the de
ay 
ould be attributed to failures to �nd the planted motif at all (in 32 of 100 problem

instan
es for n = 2000), while the rest was attributable to admixture of ba
kground l-mers into

otherwise 
orre
t motifs. The 
omplete failures were 
onsistent with a proliferation of suboptimal

lo
al maxima. For example, at n = 2000 the failed problem instan
es all yielded spurious (15,4)-

motifs with sixteen to eighteen o

urren
es, whi
h by the estimates of Se
tion 3.2 are expe
ted to

o

ur frequently by 
han
e at this ba
kground size.

Finding (14,4)-motifs proved mu
h harder at in
reased sequen
e lengths. The algorithm's ability

to �nd the planted motif degraded more rapidly, from an average performan
e 
oeÆ
ient of 0.72

at n = 600 to 0.17 at n = 1400. Again, the frequent appearan
e of spurious motifs with sixteen

or seventeen o

urren
es arose 
on
urrently with the failure of lo
al sear
h. However, as the

ba
kground length in
reased to 1000 bases and beyond, an in
reasing fra
tion of failures were

again attributable to the presen
e of spurious (14,4)-motifs with a full twenty o

urren
es. By

n = 1400, su
h spurious motifs a

ounted for nearly half of all observed failures, 
ompared to none

at n = 800. Again, this behavior provides empiri
al eviden
e that the performan
e of Proje
tion

is in part limited by the in
reasing frequen
y of spurious motifs in longer ba
kgrounds.

In
reased length testing is useful not only to determine the absolute performan
e of Proje
-

tion but also to 
ompare its performan
e to that of previous algorithms, in
luding the spe
ialized

methods of Pevzner and Sze. Previous motif �nders usually fail to �nd (15,4)-motifs when n = 1000,

exhibiting a performan
e 
oeÆ
ient of 0.23 or less (Pevzner and Sze, 2000, Table 1). Only WIN-

NOWER, a non-lo
al-sear
h-based motif �nder, maintains an average performan
e 
oeÆ
ient of at

least 0.8 at this ba
kground size, and that only with parameter k = 3. Proje
tion's 
ompara-

tively high performan
e, even for n = 2000, again demonstrates the power of augmenting ordinary

lo
al sear
h with intelligent initialization.

3.5 Trans
ription Fa
tor Binding Sites

To test Proje
tion on realisti
 biologi
al data, we used it to �nd known trans
riptional regula-

tory elements upstream of eukaryoti
 genes. We examined orthologous sequen
es from a variety

of organisms taken from regions upstream of four types of gene: preproinsulin, dihydrofolate re-
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du
tase (DHFR), metallothioneins, and 
-fos

2

. These sequen
es are known to 
ontain binding

sites for spe
i�
 trans
ription fa
tors. We also tested a 
olle
tion of promoter regions

3

from the

yeast S. 
erevisiae that are known to 
ontain a 
ommon 
ell-
y
le-dependent promoter, the ECB

element (M
Inerny et al., 1997).

The motifs in these data sets are mu
h better 
onserved than those in our syntheti
 problem

instan
es, with little variation and a stru
ture more like the simple motif A of Figure 1 than like the

more subtle B. In general, we have been unable to lo
ate published examples of biologi
al motifs

as subtle as those of Se
tion 3.1, but the dearth of su
h examples need not imply that subtle motifs

do not exist biologi
ally. Motifs like those in the planted (l; d) model are ina

essible to existing


omputational sear
h te
hniques, and a high degree of 
onservation is ne
essary to dete
t a motif

at all given only four or �ve o

urren
es. For example, a (15,4)-motif o

urring only �ve times

with uniformly distributed mutations would be statisti
ally meaningless in a ba
kground like those

of our promoter data sets. Many published motifs were likely inferred using few enough sequen
es

that a subtle (l; d)-motif would have been impossible to dete
t.

In all experiments, we set l = 20 and d = 2 to re
e
t the approximate lengths and degrees

of 
onservation of published motifs. Following the rule of Se
tion 2.2 that we should 
hoose k

large enough to a
hieve less than one expe
ted ba
kground l-mer per bu
ket, we 
hose a uniform

proje
tion size k = 7 for all experiments. Be
ause the inputs 
ontained only 4{5 sequen
es, we set

a smaller than usual bu
ket size threshold s = 3 so as not to demand that all motif o

urren
es in

the input end up in one bu
ket. We note that the parameters that generated the results reported

here were 
hosen a priori without prior experimentation on these data sets; subsequent testing

with slightly di�erent parameters suggests that our results are robust to small 
hanges in l and

k. Given the high expe
ted amount of 
onservation and the low size threshold, the numbers of

iterations m 
omputed from Equation (1) proved quite small, requiring only a few se
onds' running

time. Motifs were s
ored by likelihood ratio s
ore as des
ribed in Se
tion 2.3.

Table 3 gives for ea
h experiment the 
onsensus strings of the highest-s
oring motifs found by

Proje
tion, along with published motifs that 
losely mat
h substrings of these 
onsensuses. For

experiments listing multiple motifs, the �rst motif listed is the one of highest s
ore. The lo
ations

of motif o

urren
es were not known a priori, so we do not give performan
e 
oeÆ
ients. Analysis

2

Sequen
es were kindly provided by M. Blan
hette; see (Blan
hette, 2001) for a list of organisms used and an

alternative approa
h to �nding motifs in these sequen
es.

3

Genes used: SWI4, CLN3, CDC6, CDC46, and CDC47.
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of the preproinsulin promoter region yielded a motif known from the TRANSFAC database (Win-

gender et al., 1996), while the other four experiments all produ
ed motifs 
orresponding to experi-

mentally veri�ed trans
ription fa
tor binding sites (see Table 3). Table 3

hereIn 
ases where a data set 
ontained several distin
t known binding sites, we attempted to �nd

additional motifs beyond that of highest s
ore. To �nd multiple motifs, we masked the motif of

highest s
ore, repla
ing ea
h base in its o

urren
es with X, then reran the motif �nder on the

masked sequen
es. This pro
edure proved e�e
tive in �nding the additional do
umented motifs

listed in Table 3. In the preproinsulin data, the se
ond motif found 
ontained the well-known CT-

II promoter element (Boam et al., 1990), while the se
ond and third motifs from the metallothionein

data respe
tively 
ontained the MREd and MREf promoter elements of (Andersen et al., 1987).

In addition to the promoter sequen
es listed in Table 3, we ran Proje
tion on a set of twenty

1000-base C. elegans promoter regions 
ontaining the \X box" motif RYYNYYATRRNRAC, the target

site for the DAF-19 trans
ription fa
tor (Swoboda et al., 2000). The genes from whi
h these

sequen
es are taken were 
hosen by P. Swoboda (personal 
ommuni
ation) be
ause their expression

is likely regulated by DAF-19. Some genes exhibit empiri
al eviden
e of su
h regulation, while the

remainder were 
hosen be
ause they exhibit an o

urren
e of the X box motif between 50 and 300

bases upstream of the translation start site.

The X box looks somewhat more like the subtle motifs for whi
h Proje
tion was designed.

Only four of the fourteen positions in the motif are perfe
tly 
onserved a
ross all twenty o

urren
es;

of the remaining positions, one is poorly 
onserved, while the rest exhibit a strong preferen
e for

either purine or pyrimidine, with one base appearing in 13{19 o

urren
es. Proje
tion easily

found nineteen of twenty known motif o

urren
es (performan
e 
oeÆ
ient 0.90) using parameters

l = 14, d = 2, k = 8, m = 6, and s = 4; again, further experimentation suggested that the

algorithm's performan
e was not highly sensitive to the exa
t parameters used. The twentieth

annotated o

urren
e was not found, but the l-mer reported by Proje
tion had a higher likelihood

ratio than the annotated o

urren
e and, based on its position in the sequen
e, 
ould 
on
eivably

be a se
ond o

urren
e of the X box site.

Although the motifs we found are not parti
ularly subtle and indeed have previously been found

by existing methods (Blan
hette, 2001), the results of these experiments are noteworthy for two

reasons. First, we a
hieved good performan
e even with a fairly primitive re�nement strategy that

did not in
lude, e.g., s
ore 
orre
tions for motif length or iteration of EM to 
onvergen
e. We expe
t

that random proje
tion would yield even better performan
e if adjoined to a more sophisti
ated
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lo
al sear
h pro
edure. Se
ond, be
ause Proje
tion sele
tively samples good starting points for

lo
al sear
h, it uses fewer restarts than the usual approa
h of starting from ea
h l-mer in the input

in turn. As shown in Table 3, the number of starting points in the various experiments ranged from

22% to 75% of the input sequen
e length { substantially fewer than the number of starts required

with the usual sear
h initialization. For the X box, the number of starts was 2832, just 14% of

the input length. Moreover, the reported motifs were invariably found during several di�erent

iterations, so we 
ould have been even more aggressive in redu
ing m and therefore the number

of starts. Future work should determine how aggressively m 
an be redu
ed for \easy" motifs like

those of this se
tion without sa
ri�
ing sensitivity.

3.6 Ribosome Binding Sites

To test Proje
tion's robustness on a very di�erent sort of biologi
al example, we applied it to the

problem of �nding prokaryote ribosome binding sites. A ribosome binding site problem instan
e


onsists of thousands of short DNA sequen
es (n = 20) taken from just upstream of the translation

start site of ea
h of an organism's genes. The goal is to identify the site (l � 6) at whi
h the 16S

rRNA of the ribosome binds to mRNAs trans
ribed from the genes. It is known that this binding

site is approximately 
omplementary to a short sequen
e near the 3

0

end of the 16S rRNA (Kozak,

1983).

The ribosome binding site problem poses 
hallenges to Proje
tion not en
ountered in previous

se
tions. First, be
ause of in
orre
t gene annotation and other limitations, only a fra
tion of

the sequen
es in any problem instan
e a
tually 
ontain a ribosome binding site. To model this

phenomenon, we set

^

t = t=3 in Equation (1) when determining the number of iterations to perform.

Se
ond, the total amount of sequen
e in this problem is suÆ
iently large that we 
annot 
hoose k

to simultaneously satisfy k < l � d and a
hieve a 
ontamination threshold of fewer than tens or

hundreds of ba
kground l-mers. Instead, we set k = l�d�1, as large as possible, and set the bu
ket

size threshold s to twi
e the average bu
ket size t(n�l+1)=4

k

. This bound should on average sele
t

bu
kets in whi
h motif o

urren
es (whi
h are numerous in these examples) outnumber ba
kground

l-mers, that is, bu
kets with more signal than noise. Be
ause prokaryote genomes often have highly

biased 
omposition, some bu
kets may still be mu
h larger than the threshold s, but these bu
kets

are dis
arded by the Poisson �ltering heuristi
 des
ribed in Se
tion 2.2.

For all ribosome binding site experiments, we 
hose l = 6, d = 1, and proje
tion size k = 4.

Table 4 shows the problem sizes t, thresholds s, and numbers of iterations m for ea
h experiment.
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Again, these values were 
hosen without prior experimentation on the data set. The motif predi
ted

by Proje
tion is shown in the 
olumn labeled \Motif." Ea
h experiment �nished in under three

minutes on an 800 MHz Intel Pentium III workstation. Table 4

hereAlthough random proje
tion 
ontinued to perform well in 
hoosing appropriate starting points

for re�nement, the very di�erent features of the ribosome binding site problems 
ompared to the

other motif �nding examples des
ribed here exposed the limitations of our simple re�nement pro
e-

dure, for
ing us to make a somewhat ad ho
 modi�
ation to it. In parti
ular, likelihood ratio s
oring

favored motifs with unusual nu
leotide 
omposition (e.g. TCAGGA for E. 
oli), even if they were rel-

atively infrequent in the input, while 
ombinatorial re�nement as des
ribed in the last paragraph

of Se
tion 2.3 
hose very 
ommon strings without regard for the unusualness of their 
omposition

(e.g. TAAAAT for T. maritima). Ea
h of these problems with re�nement a�i
ted roughly half the

examples tested; in ea
h 
ase, the known ribosome binding site motif was found but no longer

re
eived the highest s
ore and so was not reported. In an e�ort to 
ompromise between the impor-

tan
e of high frequen
y and meaningful 
omposition, we ultimately altered our re�nement strategy

by 
hoosing the motifs in Table 4 using � s
oring but without performing 
ombinatorial re�nement

after expe
tation maximization.

We believe that the diÆ
ulties we en
ountered in re�ning 
andidate motifs in ribosome binding

site problems stems from the fa
t that our motif model does not properly a

ount for sequen
es

la
king an o

urren
e of the motif. S
oring by likelihood is a 
ommon and well-founded te
hnique,

but by 
hoosing an o

urren
e from every input sequen
e, we in
lude a large number of ba
kground

l-mers that 
orrupt the 
onsensus reported for the motif. Our solution to this problem, though

e�e
tive, remains ad ho
. A future version of Proje
tion should instead in
orporate re�nement

based on a probabilisti
 motif model that a

ounts for sequen
es with no motif o

urren
e, in

parti
ular the ZOOPS model (Bailey and Elkan, 1995) used by MEME.

Many pie
es of eviden
e 
orroborate the ribosome binding site motifs predi
ted by Proje
tion.

The �rst is the 
omplementarity of these motifs to the 3

0

end of the 16S rRNA sequen
es (with

the possible ex
eption of H. in
uenzae), as shown in Table 4. More 
orroboration follows from

the well-known fa
t that in many ba
teria, the binding site for the 16S rRNA during translation

initiation is the Shine-Dalgarno sequen
e AAGGAGG or a large substring of it (Kozak, 1983; Lewin,

1997). The reported motifs for the four ba
teria in Table 4 agree quite well with this sequen
e. In

ar
haea su
h as M. jannas
hii, the 3

0

end of the 16S rRNA is missing a few terminal nu
leotides


ompared to the ba
terial rRNA sequen
es, and the 16S rRNA binding site is instead AGGTGAT
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or a large substring of it (Woese, personal 
ommuni
ation). Hayes and Borodovsky (Hayes and

Borodovsky, 1998) dis
overed the motif GGTGA in M. jannas
hii using a Gibbs sampler, and Tompa

(Tompa, 1999) dis
overed similar binding sites in both this and three other ar
haeal genomes.

Tompa used a very di�erent enumerative statisti
al algorithm to solve the ribosome binding

site problem, ranking motifs by their z-s
ores. All the motifs found by Proje
tion are in good

agreement with the highest-s
oring motifs that his algorithm reported. For example, the last


olumn of Table 4 shows for ea
h problem instan
e the pentamer motif, allowing no substitutions,

with highest z-s
ore. Note the strong overlap between ea
h of these 5-mers and the 
orresponding

Proje
tion predi
tion.

Randomization is not stri
tly ne
essary to �nd good starting points for re�nement in the ri-

bosome binding site problem. There are only �fteen di�erent proje
tions of a hexamer into four

dimensions, so one 
ould eÆ
iently test all possible proje
tions rather than pi
king them at ran-

dom. Indeed, be
ause the embedded motifs are so short, this parti
ular problem has been addressed

enumeratively without resorting to iterative sear
h te
hniques at all (Tompa, 1999). The signi�-


an
e of our ribosome binding site results is rather to show that Proje
tion is 
apable of solving

motif-�nding problems that are quite di�erent both from the typi
al appli
ations of Se
tion 3.5 and

from the formal motif model for whi
h it was designed.
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4 Con
lusions and Future Extensions

We have des
ribed Proje
tion, a new algorithm for �nding motifs based on random proje
tion.

Proje
tion was designed to eÆ
iently solve problems from the planted (l; d)-motif model, whi
h

it does more reliably and for substantially more diÆ
ult instan
es than previous motif �nding

algorithms. Proje
tion is robust to 
hanges in ba
kground sequen
e 
omposition and, to some

extent, to long ba
kground sequen
es that 
reate noisier motif �nding problems. For t = 20 and

n = 600, our algorithm a
hieves performan
e 
lose to the best possible, being limited primarily by

the statisti
al 
onsiderations of Se
tion 3.2.

Despite its development in a parti
ular formal model, Proje
tion performs well on real bi-

ologi
al motif �nding problems, even 
ases as dissimilar from the model as the ribosome binding

site problem. As a general sampling te
hnique for initializing lo
al sear
h, our method 
an extend

a variety of existing motif �nding algorithms, both in
reasing their sensitivity to diÆ
ult motifs

and redu
ing the number of sear
hes required to �nd easier motifs. Even so, we 
ontinue to seek

biologi
al motifs that are more subtle than those des
ribed in Se
tions 3.5 and 3.6.

We intend to improve our implementation of Proje
tion to in
orporate additional features


ommon to pra
ti
al motif-�nding algorithms. Basi
 improvements in
lude a 
omplexity 
orre
tion

that would allow predi
ting the length of the motif, as well as extending EM re�nement to handle

sequen
es with multiple motif o

urren
es or, as dis
ussed in Se
tion 3.6, sequen
es with no o

ur-

ren
e at all. Moreover, while EM uses a probabilisti
 motif model, the analysis that parameterizes

Proje
tion is based on a simpler 
onsensus model. Extending our analysis to more general motif

models, besides being of theoreti
al interest, might enable more intelligent parameter 
hoi
es for

easy motifs like those of Se
tion 3.5, allowing us to redu
e the number of iterations performed.

A major open question is how to extend Proje
tion to �nd motifs whose o

urren
es 
ontain

insertions and deletions with respe
t to the 
onsensus as well as substitutions. A general extension

seems extremely diÆ
ult, both be
ause random proje
tion depends on sampling 
orresponding

positions from ea
h l-mer in the input and be
ause the probabilisti
 model used by re�nement only

permits substitutions. The latter problem is 
hara
teristi
 not only of our method but also of many

other popular motif �nders. A simpler extension that has proven more tra
table in pra
ti
e (Cardon

and Stormo, 1992; Sinha and Tompa, 2000; Marsan and Sagot, 2000) is to handle motifs with one

or a few variable-length spa
ers. The dimeri
 stru
ture of many trans
ription fa
tors suggests that

motifs with one 
entral spa
er, as o

ur in e.g. S. 
erevisiae and E. 
oli, are a biologi
ally 
ommon

24




ase worth addressing in our algorithm.
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Table 1:

Average performan
e 
oeffi
ients for planted (l; d)-motifs in syntheti
 data

a

l d GibbsDNA WINNOWER SP-STAR Proje
tion Corre
t m

10 2 0.20 0.78 0.56 0.80 � 0.02 100 72

11 2 0.68 0.90 0.84 0.94 � 0.01 100 16

12 3 0.03 0.75 0.33 0.77 � 0.03 96 259

13 3 0.60 0.92 0.92 0.94 � 0.01 100 62

14 4 0.02 0.02 0.20 0.71 � 0.05 86 647

15 4 0.19 0.92 0.73 0.93 � 0.01 100 172

16 5 0.02 0.03 0.04 0.67 � 0.06 77 1292

17 5 0.28 0.03 0.69 0.94 � 0.01 98 378

18 6 0.03 0.03 0.03 0.73 � 0.06 82 2217

19 6 0.05 0.03 0.40 0.94 � 0.01 98 711

a

Ea
h problem instan
e 
onsists of t = 20 sequen
es ea
h of length n = 600. Average performan
e 
oeÆ
ients of

GibbsDNA, WINNOWER (k = 2), and SP-STAR are from Pevzner and Sze (personal 
ommuni
ation), who averaged

over eight random instan
es. For Proje
tion, we report averages and 95% 
on�den
e intervals for performan
e


oeÆ
ient over 100 random instan
es with proje
tion size k = 7 and threshold s = 4.
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Table 2:

Statisti
s of spurious (l; d)-motifs in syntheti
 data

a

l d E(l; d) E(l + 1; d) a.p.
. Corre
t Spurious 19/20 m

9 2 1.6 6:1� 10

�8

0.28 11 5 4 1483

11 3 4.7 3:2� 10

�7

0.026 1 13 6 2443

13 4 5.2 4:2� 10

�7

0.062 2 15 3 4178

15 5 2.8 2:3� 10

�7

0.018 0 7 13 6495

17 6 0.88 7:1� 10

�8

0.022 0 8 12 9272

a

Parameters used were k = 7, s = 4, m as shown. Column headings: \a.p.
" = average performan
e 
oeÆ
ient over

twenty problem instan
es; \Corre
t" = instan
es yielding 
orre
t motif 
onsensus; \Spurious" = instan
es yielding

equally good but spurious 
onsensus; \19/20" = instan
es yielding a 
onsensus with nineteen o

urren
es.
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Table 3:

Performan
e of Proje
tion on eukaryoti
 promoter sequen
es

a

Sequen
e Input Size m Start Best (20,2) Motif Published Referen
e

(seqs / bases) Points from Proje
tion Motif

preproinsulin 4 / 7689 15 5759 GAAATTGCAGCCTCAGCCCC CCTCAGCCCC

b

5322 CCCTAATGGGCCAGGCGGCA CTAATG




DHFR 4 / 800 15 175 TGCAATTTCGCGCCAAACTT ATTTCnnGCCA

d

metallothionein 4 / 6823 15 3363 CTCTGCGCCCGGACCGGTTC TGCRCYCGG

e

3136 GTGCGCTCGGCTCTGCCAAG TGCGCTCGG

f

2937 AGGGAGCTCTGCACACCACC TGCACACCG

g


-fos 4 / 3695 8 1071 ATATTAGGACATCTGCGTCA . . . CCATATTAGGACATCT

h

yeast ECB 5 / 5000 8 1339 GGAAATTTCCCGTTTAGGAA TTtCC
nntnaGGAAA

i

a

All motifs were found using parameters l = 20, d = 2, k = 7, and s = 3. Underlined portions of motifs indi
ate

mat
hes to known sequen
e features. \Start points" 
ounts total number of bu
kets used as start points for EM

re�nement.

b

TRANSFAC signal (Wingender et al., 1996)




CT-II element (Boam et al., 1990)

d

non-TATA trans
ription start signal (Means and Farnham, 1990)

e

MREa promoter (Andersen et al., 1987)

f

MREd promoter (Andersen et al., 1987)

g

MREf promoter (Andersen et al., 1987)

h

3

0

end of 
-fos serum response element (Natsan and Gilman, 1995)

i

yeast early 
ell 
y
le box (M
Inerny et al., 1997)
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Table 4:

(6,1)-motifs found as 
andidate 16S rRNA binding sites in prokaryotes

a

Organism t s m Motif O

urren
es 16S rRNA Best z-s
ore

M. jannas
hii 1679 196 14 AGGTGA 606 GGAGGTGATCC GGTGA

H. in
uenzae 1716 202 17 AGGAAA 639 TAAGGAGGTGA AAGGA

T. maritima 1846 216 13 GGAGGT 1198 GAAAGGAGGTG AGGTG

B. subtilis 4099 480 35 AGGAGG 2742 TAGAAAGGAGG AGGAG

E. 
oli 4287 502 35 AAGGAG 1306 TAAGGAGGTGA AGGAG

a

All experiments were performed with proje
tion size k = 4. Column headings: t = number of sequen
es; s =

bu
ket size threshold, m = number of iterations; \O

urren
es" = number of input sequen
es 
ontaining motif with

up to one substitution; \16S rRNA" = reverse 
omplement to 3

0

end of organism's 16S rRNA, whi
h should be similar

to true binding site; \Best z-s
ore" = 5-mer with greatest z-s
ore using the algorithm of (Tompa, 1999).
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CCcaAG

CCcgAG

CCgcAG

CCtaAG

CCtgAG

A
CtATgG
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CCcTAc

tCtTAG

CaAcAG

B

Figure 1: two hexamer motifs in whi
h ea
h o

urren
e di�ers by exa
tly two substitutions from

the string CCATAG. Lower 
ase letters indi
ate substitutions. Although the two motifs have the

same number of substitutions overall, motif B's substitutions are distributed uniformly throughout

its o

urren
es (as in the 
hallenge problem), while A's substitutions are 
on
entrated in its two


enter positions.
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Figure 2: performan
e of Proje
tion on syntheti
 motif-�nding problems with unequal ba
k-

ground base frequen
ies. Problems were generated as in Se
tion 3.1, ex
ept that the ba
kground

G+ C fra
tion was set to values di�erent from 0.5 as shown. Problem instan
es 
ontained either

(15,4)-motifs (solid line) or (14,4)-motifs (dashed line) generated with equal base frequen
ies. Error

bars indi
ate 95% 
on�den
e intervals over 100 random trials.
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Figure 3: performan
e of Proje
tion on syntheti
 motif-�nding problems with in
reasing ba
k-

ground sequen
e lengths. Problems were generated as in Se
tion 3.1, ex
ept that the ba
kground

sequen
e length was s
aled from n = 600 to n = 2000 as shown. The number of sequen
es was

maintained at t = 20. Problem instan
es 
ontained either (15,4)-motifs (solid line) or (14,4)-motifs

(dashed line). Error bars indi
ate 95% 
on�den
e intervals over 100 random trials.
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