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Abstra
t

Understanding the me
hanisms that determine the

regulation of gene expression is an important and


hallenging problem. A fundamental subproblem

is to identify DNA-binding sites for unknown reg-

ulatory fa
tors, given a 
olle
tion of genes believed

to be 
oregulated, and given the non
oding DNA

sequen
es near those genes. We present an enu-

merative statisti
al method for identifying good


andidates for su
h trans
ription fa
tor binding

sites. Unlike lo
al sear
h te
hniques su
h as Ex-

pe
tation Maximization and Gibbs samplers that

may not rea
h a global optimum, the method pro-

posed here is guaranteed to produ
e the motifs

with greatest z-s
ores. We dis
uss the results of

experiments in whi
h this algorithm was used to

lo
ate 
andidate binding sites in several well stud-

ied pathways of S. 
erevisiae, as well as gene 
lus-

ters from some of the hybridization mi
roarray ex-

periments.
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1. Trans
ription Fa
tor Binding

Sites

1.1. Identifying Eukaryoti
 Regulatory

Sequen
es

One of the major 
hallenges fa
ing biologists is to

understand the me
hanisms for the regulation of

gene expression. In parti
ular, for any given bio-


hemi
al pathway, there are often 
omplex intera
-

tions among its set of genes and their produ
ts.

There have been a number of re
ent studies that

used DNA mi
roarrays to identify the sets of genes

�
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involved in 
ertain pathways of the yeast S. 
ere-

visiae (DeRisi et al. (1997), Chu et al. (1998),

Spellman et al. (1998)). These studies divided the

set of genes into subsets whose expression patterns

suggest that they may be 
oregulated.

The next step in unraveling the regulatory inter-

a
tions is to identify 
ommon binding sites in the

regulatory regions of these 
oregulated genes and,

from these binding sites, identify the regulatory fa
-

tor that binds there (Chu et al. (1998), Roth et

al. (1998), Spellman et al. (1998), Tavazoie et al.

(1999)). It is pre
isely this problem of identifying

unknown trans
ription fa
tor binding sites that we

address.

The analysis of non
oding regions in eukaryoti


genomes in order to identify regulatory sequen
es

is a diÆ
ult problem, and one that is by no means

well understood. There are several reasons for this

diÆ
ulty:

1. The regulatory sequen
es may be lo
ated quite

far from the 
orresponding 
oding region, either

upstream or downstream or in the introns.

2. The regulatory sequen
es need not be in the same

orientation as the 
oding sequen
e or ea
h other.

3. There may be multiple binding sites for a single

fa
tor in a single gene's regulatory region.

4. There 
an be great variability in the binding sites

of a single fa
tor, and the nature of the allowable

variations is not well understood.

In S. 
erevisiae, the �rst of these problems is not

severe: nearly all trans
ription fa
tor binding sites

are believed to lie within 800 bp upstream of the

translation start site (Zhu and Zhang (1999)). The

three remaining 
onfounding problems are, how-

ever, present.

1.2. Previous Methods for Finding

Regulatory Motifs

A number of algorithms to �nd general motifs have

been proposed previously. (See, for example, Bai-
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ley and Elkan (1995), Fraenkel et al. (1995), Galas

et al. (1985), Hertz and Stormo (1999), Lawren
e

et al. (1993), Lawren
e and Reilly (1990), Rigout-

sos and Floratos (1998), Ro
ke and Tompa (1998),

and Staden (1989).) Many of these algorithms are

designed to �nd longer and more general motifs

than are required for identifying trans
ription fa
-

tor binding sites. The types of general motif used in

the 
ited referen
es in
lude weight matri
es, align-

ments, and gapped alignments. The pri
e paid for

this generality is that many of the 
ited algorithms

are not guaranteed to �nd globally optimal solu-

tions, sin
e they employ some form of lo
al sear
h,

su
h as Gibbs sampling, expe
tation maximization,

and greedy algorithms, that may end in a lo
al op-

timum. There have been a few studies that have

applied these lo
al sear
h te
hniques spe
i�
ally

to the problem of identifying trans
ription fa
tor

binding sites in S. 
erevisiae (Chu et al. (1998),

Roth et al. (1998), Spellman et al. (1998), Tava-

zoie et al. (1999)), with some su

ess.

The number of well 
onserved bases in the 
olle
-

tion of binding sites of a single S. 
erevisiae tran-

s
ription fa
tor is typi
ally six to ten (Wingender et

al. (1996), Zhu and Zhang (1999)). This number is

small enough that, for this parti
ular problem, one

need not rely on su
h general lo
al sear
h heuris-

ti
s. Instead, one 
an a�ord to use enumerative

methods that guarantee global optimality. This is

the approa
h taken by the 
urrent paper, whose

method is most 
losely allied to that of van Helden

et al. (1998) and Tompa (1999).

Van Helden et al. (1998) used an enumerative

statisti
al method to ta
kle the same problem of

�nding trans
ription fa
tor binding sites in S. 
ere-

visiae. Their method proved reasonably su

ess-

ful at �nding short, 
ontiguous trans
ription fa
tor

binding sites. However, their method su�ers from

some drawba
ks that we re
tify:

1. They 
onsider only exa
t mat
hes, disallowing

variations in the binding site instan
es of a given

trans
ription fa
tor.

2. Their motifs do not in
lude \spa
ers", whi
h

pre
ludes their algorithm from �nding su
h well

known binding sites as that of Gal4p, whose 
on-

sensus is CGGNNNNNNNNNNNCCG (Wingender et al.

1996; Zhu & Zhang 1999).

3. In their statisti
al model, they assume that o
-


urren
es of a motif at distin
t sequen
e posi-

tions are probabilisti
ally independent, whereas

in reality overlapping o

urren
es (in both ori-

entations) have rather 
omplex dependen
ies

(Ni
od�eme et al. (1999)).

4. Their measure of statisti
al signi�
an
e of a motif

s is based on the frequen
y of o

urren
e of s

over all regulatory regions of the genome. This

is problemati
 for those motifs that appear rarely,

be
ause there may be insuÆ
ient data to support

reliable statisti
s. (See Salzberg et al. (1998)

for a dis
ussion.) The more standard Markov


hain model that we employ 
an be based on the

frequen
ies of shorter (and hen
e more frequent)

oligonu
leotides.

Br�azma et al. (1998) employed a similar te
h-

nique for identifying binding sites. They did allow

their motifs to 
ontain up to three o

urren
es of

the N 
hara
ter.

Tompa (1999) used an enumerative method simi-

lar to that of van Helden et al. (1998), but for �nd-

ing ribosome binding sites in prokaryoti
 genomes.

We adopt some of that work's statisti
al 
onsid-

erations here, in parti
ular, the use of a Markov


hain to model the ba
kground genomi
 distribu-

tion, the use of z-s
ore as the measure of statisti
al

signi�
an
e, and attention to the auto
orrelation

of overlapping motif instan
es. However, Tompa's

algorithm also su�ers some short
omings for the

present appli
ation:

1. Tompa's algorithm also did not allow for spa
ers

in the motifs, sin
e they seemed irrelevant in the

prokaryoti
 ribosome binding site problem.

2. The allowable variability among binding site in-

stan
es that proved suÆ
ient for the prokaryoti


ribosome binding site problem, namely zero or

one substitution from some 
onsensus sequen
e,

proved insuÆ
ient in the present appli
ation.

3. The possibility of multiple binding sites for a sin-

gle fa
tor in a single gene's regulatory region does

not arise in the prokaryoti
 ribosome binding site

problem. This 
ompli
ates the motif auto
orre-

lation 
omputation.

2. Motifs and Their Signi�
an
e

2.1. Variability Among Binding Site

Instan
es

The �rst question that must be addressed is \What


onstitutes a motif?" for the appli
ation of tran-

s
ription fa
tor binding sites in S. 
erevisiae. An

inspe
tion of trans
ription fa
tor databases (su
h

as TRANSFAC (Wingender et al. 1996) or SCPD

(Zhu & Zhang 1999)), or of the relevant literature

(parti
ularly Jones et al. (1992), whi
h is ri
h in

examples, and also Blaiseau et al. (1997), Mai and

Breeden (1997), M
Inerny et al. (1997), Nurrish

and Treisman (1995), Oshima et al. (1996), and

Wemmie et al. (1994)) reveals that there is sig-

ni�
ant variation among the binding sites of any

single trans
ription fa
tor, so that it is overly rigid

to insist on exa
t mat
hes among motif instan
es.

Moreover, the nature of the variability itself varies
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from fa
tor to fa
tor, so that the \
orre
t" motif

model is far from 
lear.

Certain trends that must be in
orporated in the

motif model do, however, emerge:

1. Like the Gal4p binding site 
onsensus mentioned

in Se
tion 1.2, many of the motifs have spa
ers

varying in length from 1 to 11 bp. The spa
er

usually o

urs at the middle of the motif, often

be
ause the fa
tors bind as dimers.

2. The number of well 
onserved bases (not in
lud-

ing spa
ers, of 
ourse) is usually in the range 6{

10.

3. When there is variation in a 
onserved motif po-

sition, it is often a transition (that is, the substi-

tution of a purine for a purine, or a pyrimidine for

a pyrimidine) rather than a transversion. This is

be
ause of the similarity in nu
leotide size ne
es-

sary to �t the trans
ription fa
tor's �xed DNA-

binding domain. Somewhat less often, the vari-

ation in a given position may be between a pair

of 
omplementary bases. Other positional varia-

tions are rarer.

4. Insertions and deletions among binding sites are

un
ommon, again be
ause of the �xed stru
ture

of the fa
tor's DNA-binding domain.

Based on these observations, a motif for our

appli
ation will be a string over the alphabet

fA; C; G; T; R; Y; S; W; Ng, with 0-11 
onse
utive N's at

the 
enter, and a limited number of R's (purine),

Y's (pyrimidine), S's (strong), and W's (weak). We


hoose su
h a 
onsensus model rather than (say)

a weight matrix in order to be able to enumerate

motifs. Note that there is little need to allow fur-

ther variation in motif instan
es, sin
e the variation

is already in
orporated in the motif's allowan
e of

R,Y,S,W,N. An examination of 50 binding site 
on-

sensi in
luded in SCPD (Zhu & Zhang 1999) re-

vealed that the number of 
onsensi that exa
tly �t

this 
hara
terization is 31 (62%). About 10 more �t

the 
hara
terization if very slight di�eren
es from

the exa
t 
onsensus are tolerated.

2.2. Measure of Statisti
al Signi�
an
e

Given some set of (presumably 
oregulated) S. 
ere-

visiae genes, the input to our problem is the 
or-

responding set of upstream sequen
es, ea
h having

length 800 bp and having its 3

0

end at the gene's

translation start site.

A good measure for 
omparing motifs must take

into a

ount both the absolute number of o

ur-

ren
es of the motif in the input sequen
es, and

the ba
kground genomi
 distribution. (See Tompa

(1999) for a detailed dis
ussion.) For ea
h motif

s, let N

s

be the number of o

urren
es of s in the

input sequen
es, allowing an arbitrary number of

o

urren
es per upstream sequen
e. A reasonable

measure of s as a motif, then, would re
e
t how

unlikely it would be to have N

s

o

urren
es, if the

sequen
es were instead drawn at random a

ording

to the ba
kground distribution.

More spe
i�
ally, let X be a set of random

DNA sequen
es of the same number and lengths

as the input sequen
es, but generated by a Markov


hain of order m, whose transition probabilities

are determined by the (m + 1)-mer frequen
ies in

the full 
omplement of 6000+ upstream regions

(ea
h of length 800 bp) in S. 
erevisiae. (In our

experiments, we 
hose m = 3 in order for the

ba
kground model to in
lude the TATA, AAAA, and

TTTT sequen
es that are ubiquitous throughout the

genome's upstream regions (van Helden, Andr�e, &

Collado-Vides 1998).) Let the random variable X

s

be the number of o

urren
es of the motif s in X ,

and let E(X

s

) and �(X

s

) be its mean and standard

deviation, respe
tively. Then the z-s
ore asso
iated

with s is

z

s

=

N

s

�E(X

s

)

�(X

s

)

: (1)

The measure z

s

is the number of standard devia-

tions by whi
h the observed value N

s

ex
eeds its

expe
tation, and is sometimes 
alled the \normal

deviate" or \deviation in standard units". See Le-

ung et al. (1996) for a detailed dis
ussion of this

statisti
. The z-s
ore z

s

obeys, in the asymptoti


limit, a normal distribution. This is known to be

the 
ase when X is a singleton set: see Ni
od�eme

et al. (1999, Theorem 2). The result extends to an

arbitrary �nite set X (with equal sized regions) by

a Central Limit Theorem due to Lindeberg (Feller

1993, Se
tion X.1, Formula 1.4). The measure z

s

is

normalized to have mean 0 and standard deviation

1, making it suitable for 
omparing di�erent motifs

s.

What remains to dis
uss, then, is how to 
ompute

the mean E(X

s

) and standard deviation �(X

s

).

The former is straightforward but the latter, be-


ause of the possibility of overlap of a motif with

itself (in either orientation), is not. Fortunately,

this problem of pattern auto
orrelation has been

well studied, beginning with its introdu
tion by

Guibas and Odlyzko (1981). (See the ex
ellent

overview by Ni
od�eme et al. (1999).) In parti
u-

lar, a method for 
omputing the standard deviation

�(X

s

) that is more eÆ
ient than using the general

re
urren
e formulae of Ni
od�eme et al. (1999) was

presented by Kle�e and Borodovsky (1992) for �rst-

order Markov 
hains and the 
ase in whi
h the motif

s is a single string. We have generalized their for-

mulae to our 
ase, in whi
h s represents a �nite set

of strings. (See also R�egnier (1998).) Note that, in

this 
ase, one must take into a

ount all possibilities
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of one string in the set overlapping with any other.

Our extension allows higher order Markov 
hains,

spa
ers to be handled at no extra run-time 
ost,

and the possibility of a motif o

urring in either

orientation, none of whi
h were relevant 
onsidera-

tions for Kle�e and Borodovsky. All these 
hanges

taken together result in a substantial modi�
ation

of the formulae of Kle�e and Borodovsky: see the

Appendix for details.

2.3. Algorithm Summary

The 
omplete algorithm is summarized as follows.

The inputs to the algorithm are

1. a set of upstream sequen
es,

2. the number of nonspa
er 
hara
ters in the motifs

to be enumerated, and

3. the transition matrix for an order m Markov


hain 
onstru
ted from the full 
omplement of

upstream sequen
es of S. 
erevisiae.

The algorithm �rst makes a pass over the input

sequen
es, tabulating the numberN

s

of o

urren
es

of ea
h motif s in either orientation. For ea
h mo-

tif s for whi
h N

s

> 0, it then uses the method

des
ribed in the Appendix to 
ompute E(X

s

) and

�(X

s

), and uses Equation (1) to 
ompute the z-

s
ore z

s

. It outputs the motifs sorted by z-s
ore.

For a single motif s, the running time to 
ompute

z

s

is O(


2

k

2

), where k is the number of nonspa
er


hara
ters in s, and 
 is the number of possible

instantiations of R, Y, S, and W symbols in s. Be-


ause the number of motifs is exponential in k, we


an a�ord this enumerative method only for mod-

est values of k. Note, however, that the dependen
e

on genome size is linear, so that the method s
ales

very well to large genomes.

Moreover, the O(


2

k

2

) time z-s
ore 
omputation

does not need to be 
omputed for most of the mo-

tifs. A very signi�
ant redu
tion in running time

is a
hieved by the following optimization: We note

that the dominant part of a motif's z-s
ore 
om-

putation is the varian
e 
al
ulation. We also note

that z

s


an be bounded by the expression

z

s

�

N

s

�E(X

s

)

p

E(X

s

)�E(X

s

)

2

(2)

sin
e �(X

s

)

2

� E(X

s

)�E(X

s

)

2

. (See Equation (4)

in the Appendix.) Hen
e, before 
omputing �(X

s

),

we 
ompute E(X

s

) and use Inequality (2) to exam-

ine if it may be worthwhile to go into the varian
e


omputation. (We 
ompare this expression to the

lowest z-s
ore among the top ranking motifs dis-


overed so far.) If not, the varian
e 
omputation

for s is aborted, and the next motif is examined.

A similar bounding te
hnique is used to opti-

mize the varian
e 
omputation itself. Noting that

the dominant part of the varian
e 
omputation is


omputing the overlap term

P

jCW j

i=1

E(X

(CW )

i

) (see

Equation (5) in the Appendix), whi
h is nonnega-

tive, we 
ompute the remaining terms of the vari-

an
e �rst, and 
ompute the overlap term only if

there is a possibility of getting a high enough z-

s
ore. (The overlap term 
ontributes to the de-

nominator of the expression in Equation (1), so the

z-s
ore is maximized when the overlap term is 0.)

Our experiments showed that these two optimiza-

tions redu
e the running time of the algorithm dras-

ti
ally.

3. Experimental Results

3.1. Known Regulons

We implemented and ran the program des
ribed in

Se
tion 2.3 on seventeen well studied 
oregulated

sets of genes in S. 
erevisiae. For ea
h of these sev-

enteen sets of upstream sequen
es, there is a known

trans
ription fa
tor with a known binding site 
on-

sensus, so that the su

ess of the experiments 
an

be assessed.

In all but two of these experiments, our algorithm

su

eeded in determining the known 
onsensus, in

the following sense: In nine of them, the known 
on-

sensus was one of the three highest s
oring motifs;

and in six others a very similar looking motif was in

the top three. Tables 1 { 8 give examples of some of

these su

esses. In ea
h table, the known 
onsen-

sus is given in the 
aption, and its instan
es in the

program's output are itali
ized. As 
an be seen, of-

ten the known 
onsensus and its 
lose relatives are

prominent in the �ve highest-s
oring motifs. (We


hose the number of nonspa
er 
hara
ters in order

to make the 
omparison with the known 
onsensus

easier. Choosing a slightly di�erent number pro-

du
es similar results.)

Note the unusually high z-s
ores in many of these

tables; one would not expe
t s
ores so many stan-

dard deviations above the mean in random data.

To verify this assertion, for ea
h family we ran the

program on several independent sets of simulated

data generated by the 3rd order Markov 
hain de-

s
ribed for the random variable X in Se
tion 2.2.

For ea
h su
h simulated input, we 
omputed the

maximum z-s
ore, and then the mean of these max-

ima. We 
all this the mean max z-s
ore for the

family, and in
lude it in the 
aption of ea
h table.

Note the disparity between this mean max z-s
ore

and the a
tual z-s
ores of the top motifs in most of

the tables.

In the remaining two experiments (ACE2 and

ADR1, both being families with very few genes in

8th Intl. Conf. on Intelligent Systems for Mole
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s N

s

z

s

TCANNNNNNACG 27 9.67

TCRNNNNNNACG 34 9.36

YCANNNNNNACG 34 8.58

TCANNNNNNWCG 37 8.39

YCANNNNNNWCG 52 8.31

Table 1: Five highest s
oring motifs for the 19-

gene family ABF1, whose known 
onsensus is

TCANNNNNNACG (Zhu & Zhang 1999). Mean max

z-s
ore on simulated data : 6.37

s N

s

z

s

CGGNNNNNNNNNNNCCG 28 32.72

CGGNNNNNNNNNNNSCG 31 28.72

CGGNNNNNNNNNNNCSG 28 26.03

CGGNNNNNNNNNNNCCS 28 25.52

CGGNNNNNNNNNNNYCG 29 25.13

Table 2: Five highest s
oring motifs for the 6-

gene family GAL4, whose known 
onsensus is

CGGNNNNNNNNNNNCCG (Zhu & Zhang 1999). Mean

max z-s
ore on simulated data : 6.84

s N

s

z

s

ACGCGT 26 19.24

ACGCGW 35 17.63

ACGCGY 30 15.74

ACGSGT 30 14.39

CGCGTY 31 14.38

Table 3: Five highest s
oring motifs for the 12-gene

family MCB, whose known 
onsensus is ACGCGT

[Chris Roberts, personal 
ommuni
ation℄. Mean

max z-s
ore on simulated data: 6.48

s N

s

z

s

TCCGYGGA 14 38.02

TCCGCGGA 8 34.16

TCCRYGGA 20 33.53

TCCGYGGR 15 32.02

TCCRCGGR 15 31.81

Table 4: Five highest s
oring motifs for the 7-gene

family PDR3, whose known 
onsensus is TCCGYGGA

(Zhu & Zhang 1999). Mean max z-s
ore on simu-

lated data: 14.32

s N

s

z

s

CACGTGGG 3 16.75

CCGCNNNNNNNNNTGCC 3 16.66

CACGTGSG 4 16.56

CCGGNNNNCGGC 2 16.36

CACGTGGR 5 16.34

Table 5: Five highest s
oring motifs for the 5-gene

family PHO, whose known 
onsensus is GCACGTGGG

or GCACGTTTT (Oshima, Nobuo, & Harashima

1996). Mean max z-s
ore on simulated data: 16.0

s N

s

z

s

CACGAAA 10 15.92

CCGNNNNCGGA 4 15.11

CRCGAAA 12 14.95

CWCGAAA 12 13.37

CGTNNNNNNCGCA 4 13.21

Table 6: Five highest s
oring motifs for the 3-gene

family SCB (or SWI), whose known 
onsensus is

CNCGAAA (Zhu & Zhang 1999). Mean max z-s
ore

on simulated data: 10.98

s N

s

z

s

TGAAACA 15 9.17

AACNNNNNNNWRAC 22 8.91

TGAAACR 18 8.61

TRAAACA 23 8.59

TRAAWCA 30 8.35

Table 7: Five highest s
oring motifs for the 9-gene

family STE12, whose known 
onsensus is TGAAACA

[Chris Roberts, personal 
ommuni
ation℄. Mean

max z-s
ore on simulated data: 8.9

s N

s

z

s

TCACGTG 19 23.63

TCRCGTG 20 20.33

TCACGYG 20 20.07

ATANAYAT 62 19.28

ATANNNAYAT 57 18.87

Table 8: Five highest s
oring motifs for the 11-gene

family MET, whose known 
onsensus is TCACGTG or

AAAACTGTGG (van Helden, Andr�e, & Collado-Vides

1998). Mean max z-s
ore on simulated data: 8.26

8th Intl. Conf. on Intelligent Systems for Mole
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s N

s

z

s

ACGCGT 104 34.88

ACGCGW 149 34.02

ACGCGY 121 28.57

RCGCGW 172 26.77

CGCGTY 119 24.63

Table 9: Five highest s
oring motifs for the 57-gene


luster CLN2 (Spellman et al. 1998). The 
luster is

regulated by MCB, SCB and the binding site 
ould

be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang

1999). See also Table 3.

them), the known 
onsensus was in the top twenty

reported motifs.

3.2. Coexpressed Gene Clusters

We also ran our program on eight of the 
oex-

pressed gene 
lusters dis
overed by Spellman et al.

(1998) and Tavazoie et al. (1999).

Tables 9 { 12 summarize the results from the best

four of these experiments (three from (Spellman et

al. 1998) and one from (Tavazoie et al. 1999)).

Again, the top �ve motifs in ea
h family have very

high z-s
ores and mat
h the binding site 
onsensus

of the trans
ription fa
tor believed to regulate the

family. In three out of four of these experiments,

the authors found a very similar motif. The fourth

experiment is on the Y

0


luster from Spellman et

al. (1998), whose regulation is not well understood,

and for whi
h the authors reported no striking mo-

tif. Table 10 does reveal some very 
onspi
uous and

high s
oring motifs. These turn out to be part of

a repeated 168- to 173-mer, whi
h o

urs in 
lose

variations in 18 of the 31 upstream regions.

4. Future Work

The results of our approa
h have been most promis-

ing. There are several issues and aspe
ts that war-

rant further resear
h:

� The 
urrent motif 
hara
terization is still limited.

In some true binding sites, spa
ers may not be


entered, or there may be more than one run of

spa
ers. We do not handle su
h motifs yet.

� We are investigating how mu
h of the work done

in the enumerative loop of the algorithm 
an

be moved to the prepro
essing step, before the


oregulated gene sequen
es are input. We be-

lieve the program 
an be made mu
h faster this

way.

� The a

ura
y of the results 
ould be improved

by �ltering out well known repeats from the up-

stream regions of the genes before running our

tool on them.

s N

s

z

s

GACGNNNNNNGGAC 23 56.33

CTGCNNNNNGCAG 36 55.85

GCAGNNNCTGC 36 55.67

CAGANTCTG 36 51.93

CAGANNCTGC 36 50.29

Table 10: Five highest s
oring motifs for the 31-

gene 
luster Y

0

(Spellman et al. 1998). The regu-

lator and binding site for the 
luster are unknown.

s N

s

z

s

RARCCAGC 23 14.82

ARCCAGCA 17 13.75

ARCCAGCR 20 12.94

RRCCAGCA 20 12.33

ARAANAARA 138 12.23

Table 11: Five highest s
oring motifs for the 27-

gene 
luster SIC1 (Spellman et al. 1998). The


luster is regulated by Swi5p/A
e2p and the bind-

ing site is believed to be RRCCAGCR.

s N

s

z

s

ACGCGW 51 10.19

ACGCGT 32 9.77

CGCGTY 49 9.02

ACGCGW 175 29.87

ACGCGT 114 28.77

RCGCGW 207 23.48

ACGCGT 116 29.33

ACGCGW 164 27.68

ACGCGY 140 24.51

Table 12: Three highest s
oring motifs for ea
h of

three subsets of the the 186-gene 
luster 2, whi
h is

involved in repli
ation and DNA synthesis (Tava-

zoie et al. 1999). The three subsets mimi
 the au-

thors' 
ross-validation experiment. The 
luster is

regulated by MCB, SCB and the binding site 
ould

be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang

1999). See also Tables 3 and 9.
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� More experiments need to be done to determine

a good threshold for signi�
ant z-s
ores. This

threshold should depend on the number of non-

spa
er 
hara
ters as well as the size of the input

sequen
es.

� We are experimenting with more gene families for

whi
h the binding site is not yet known, in
luding

families from other eukaryoti
 genomes.

� In some of the experiments some motifs with very

high signi�
an
e were dis
overed, but they are

not do
umented as binding sites. These motifs

need 
loser examination.
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A. Appendix

This se
tion des
ribes how we 
ompute E(X

s

) and

�(X

s

) for a given motif s, when X is a single region

of length n. The motif s is assumed to be a string of

length l over the alphabet fA,C,G,T,R,Y,S,W,Ng.

For simpli
ity, the Markov model assumed here is

of 1st order; in Se
tion A.4 the 
hanges ne
essary

to a

ommodate higher orders are des
ribed.

The motif s is �rst 
onverted into a set W of

strings, whi
h 
ontains strings of length l over the

alphabet fA,C,G,T,Ng, by repla
ing the R's, Y's,

S's, and W's by all possible 
ombinations of the ap-

propriate bases. Then for ea
h string in W , its

reverse 
omplement is also added to W . (As a re-

sult, W may be a multiset.) Noti
e that motif s

o

urs at a given position in X (on either strand) if

and only if some string in the set W o

urs at that

position.

A.1. Number of O

urren
es

X

s

is de�ned as the sum of the number of o

ur-

ren
es (in X) of ea
h member of W . (Overlapping

instan
es are 
ounted as separate.) Sin
e palin-

dromes o

ur twi
e in W , we are e�e
tively 
ount-

ing two for ea
h o

urren
e of every su
h palin-

drome. The reason for this is that an o

urren
e

of a palindrome on one strand a

ounts for two o
-


urren
es of the motif when both strands are 
on-

sidered.

We denote members of W by W

i

, and jW j by T

(
ounting dupli
ate elements as distin
t).

De�ne X

ij

, for i 2 f1; 2; : : : ; Tg and j 2

f1; 2; : : : ; n� l+ 1g, as a 0=1 indi
ator variable for

the o

urren
e of W

i

at position j, i.e.,

X

ij

=

�

1; if W

i

o

urs at position j of X

0; otherwise

:

Also,

X

sj

def

=

T

X

i=1

X

ij

;

X

i

def

=

n�l+1

X

j=1

X

ij

;

X

s

def

=

T

X

i=1

X

i

:

This de�nition of X

s

is 
onsistent with the de�-

nition in Se
tion 2.2. X

s


ounts the total number

of o

urren
es of the motif s in X , taking both

strands into a

ount, and 
onsidering the spe
ial


ase of palindromes also.

(Note that X

s

=

P

T

i=1

X

i

=

P

T

i=1

P

n�l+1

j=1

X

ij

=

P

n�l+1

j=1

P

T

i=1

X

ij

=

P

n�l+1

j=1

X

sj

.)

A.2. Expe
tation

By de�nitions and the linearity of expe
tation, we

have

E(X

s

) =

T

X

i=1

E(X

i

);

E(X

i

) =

n�l+1

X

j=1

E(X

ij

);

E(X

ij

) = Pr(X

ij

= 1) = p

j

(a

i1

)p

�

(W

i

);

where p

j

(
) is the probability of o

urren
e of base


 at position j, a

im

is the mth 
hara
ter of string

W

i

and p

�

(W

i

) is the probability of W

i

starting at

any position, given that a

i1

o

urs at that position.

Assuming p

j

to be a 
onstant independent of j,

we 
an denote p

j

by p and rewrite the formula above

as E(X

ij

) = p(a

i1

)p

�

(W

i

), from whi
h we get

E(X

i

) = (n� l + 1)p(a

i1

)p

�

(W

i

): (3)

The assumption that p

j

is independent of j is

dis
ussed and justi�ed by Kle�e and Borodovsky

(1992). The ve
tor p is the so-
alled stationary dis-

tribution of the Markov 
hain.

We 
ompute p

�

(W

i

) by following the Markov


hain for l� 1 steps starting with a

i1

. In following

the Markov 
hain, we have to \skip over" any spa
-

ers by using higher powers of the transition matrix

(whi
h 
an be pre
omputed for eÆ
ien
y).
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A.3. Varian
e

The varian
e of X

s

is, by de�nition,

�(X

s

)

2

= E(X

2

s

)�E(X

s

)

2

;

where

E(X

2

s

) = E((

n�l+1

X

i=1

X

si

)

2

)

=

n�l+1

X

j=1

n�l+1

X

k=1

E(X

sj

X

sk

)

=

n�l+1

X

i=1

E(X

2

si

)

+2

n�l+1

X

j=1

n�l+1

X

k=j+1

E(X

sj

X

sk

):

Let B be the �rst summation in this expression,

and 2C be the remaining terms. We �rst 
onsider

the term C.

C =

n�l+1

X

j=1

n�l+1

X

k=j+1

E(X

sj

X

sk

)

=

n�l+1

X

j=1

j+l�1

X

k=j+1

E(X

sj

X

sk

)

+

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

)

=

n�l+1

X

j=1

l�1

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;j+k

) +A;

where

A =

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

):

Now let CW be the set of all overlapping 
on-


atenations of pairs of strings from W . That is,

CW = fxyz j W

i

1

= xy and W

i

2

= yz; for some

i

1

; i

2

; and nonempty x; y; zg:

We denote members of CW by CW

i

. Like W , CW


an potentially be a multiset.

Also, de�ne

X

(CW )

ij

=

�

1; if CW

i

o

urs at position j

0; otherwise

:

Noti
e that there is a one-to-one 
orresponden
e

between

f(k; i

1

; i

2

) j X

i

1

;j

X

i

2

;j+k

= 1 and 0 < k < lg

and

fi j X

(CW )

ij

= 1g;

for any j. Note also that the eventX

i

1

;j

X

i

2

;j+k

= 1

is identi
al to the event X

(CW )

ij

= 1, for the 
orre-

sponding i.

Therefore,

l�1

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;j+k

) =

jCW j

X

i=1

E(X

(CW )

ij

)

where jCW j denotes the 
ardinality of CW.

We 
an thus write

C =

n�l+1

X

j=1

jCW j

X

i=1

E(X

(CW )

ij

) +A

=

X

i

n�jCW

i

j+1

X

j=1

E(X

(CW )

ij

) +A;

where jCW

i

j denotes the length of the string CW

i

.

Let X

(CW )

i

=

P

n�jCW

i

j+1

j=1

X

(CW )

ij

. Then we have

n�jCW

i

j+1

X

j=1

E(X

(CW )

ij

) = E(X

(CW )

i

);

whi
h 
an be 
omputed just as any E(X

i

) is 
om-

puted. (See Equation (3).) Let p

k

(


2

j


1

) denote the

probability of �nding the 
hara
ter 


2

k steps (of

the Markov 
hain) after 


1

. De�ning q = n�2l+2,

we 
an then write C as

C =

jCW j

X

i=1

E(X

(CW )

i

) +A;

where

A =

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

)

=

q�1

X

j=1

q�j

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;k+j+l�1

)

=

X

j

X

k

X

i

1

X

i

2

p

j

(a

i

1

;1

)p

�

(W

i

1

)p

k

(a

i

2

;1

ja

i

1

;l

)p

�

(W

i

2

)

=

X

i

1

X

i

2

p

�

(W

i

1

)p

�

(W

i

2

)S

i

1

i

2

;

where

S

i

1

i

2

=

q�1

X

j=1

q�j

X

k=1

p

k

(a

i

2

;1

ja

i

1

;l

)p

j

(a

i

1

;1

):

By imitating the 
omputation shown in the proof

of Theorem 1 in Kle�e and Borodovsky (1992),
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and making appropriate approximation (repla
ing

a 
ertain power series sum by its asymptoti
 limit,

as explained in Kle�e and Borodovsky (1992)), we

�nally get

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QPe

a

i

2

1

� e

0

a

i

1

l

QP

2

Qe

a

i

2

1

g:

Here, e

a

i

1

l

and e

a

i

2

1

are elementary unit ve
tors

of length 4 that have a 1 in the position 
or-

responding to the last 
hara
ter of W

i

1

and the

�rst 
hara
ter of W

i

2

respe
tively, P is the 4 � 4

transition probability matrix of the Markov 
hain

and Q is (P� I� 1p

0

)

�1

, as de�ned in Kle�e and

Borodovsky (1992). (The notations e

0

and p

0

de-

note the transpose of those ve
tors, and the ve
tor

1 is the 
olumn ve
tor with all 1s.)

Now 
onsider the term B de�ned earlier.

B =

n�l+1

X

j=1

E(X

2

sj

)

=

X

j

E(

T

X

k=1

X

2

kj

+

T

X

q=1

X

r 6=q

X

qj

X

rj

)

=

X

j

X

k

E(X

2

kj

) +

X

j

X

q

E(

X

r 6=q

X

qj

X

rj

)

=

X

j

X

k

E(X

kj

) +

X

j

X

q

E(

X

r 6=q

X

qj

X

rj

):

To simplify the se
ond term, when r 6= q,

� X

qj

X

rj

= 1 if W

q

and W

r

are strings that 
an

both be instantiated at position j, and

� X

qj

X

rj

= 0 otherwise.

The simplest 
ase in whi
h X

qj

X

rj

= 1 is when

W

q

and W

r

are two 
opies of the same palindrome,

and it o

urs starting at position j. An example of

the more general 
ase is the motif s = AASANNSTT.

Two of its four instantiations in W would be

W

1

= AACANNCTT

and

W

2

= AAGANNGTT:

The reverse 
omplement of W

1

would then also be

added to W , namely

W

5

= AAGNNTGTT:

Now it is possible for both W

2

and W

5

to be in-

stantiated starting at position j, even though W

2

and W

5

are not identi
al. We will say that W

2

and

W

5


an be superimposed.

If W

q

and W

r


an be superimposed, with r 6= q,

then they 
annot both be instan
es of the motif

s, or both be reverse 
omplements of instan
es of

s. Hen
e, for every q, there is at most one r 6= q

su
h that W

q

and W

r


an be superimposed. Let

PAL be the set of indi
es q su
h that W

q


an be

superimposed with W

r

, for some r 6= q.

Rather than 
he
king all pairs inW to �nd whi
h


an be superimposed, it is more eÆ
ient to iden-

tify su
h pairs dire
tly from the motif s. This is

easily done by reading s from both ends at on
e.

For ea
h pair of superimposable stringsW

q

andW

r

so identi�ed, it is also easy to determine the most

general 
ommon instantiation P

q

of both W

q

and

W

r

. For the example strings W

2

and W

5

above,

P

2

= P

5

= AAGANTGTT. For q 2 PAL, let

Y

qj

=

�

1; if P

q

o

urs at position j

0; otherwise

:

and

Y

q

=

n�l+1

X

j=1

Y

qj

:

Then we 
an write

B =

n�l+1

X

j=1

T

X

k=1

E(X

kj

) +

n�l+1

X

j=1

X

q2PAL

E(Y

qj

)

= E(X

s

) +

X

q2PAL

E(Y

q

):

E(Y

q

) 
an be 
omputed just as any E(X

i

) is 
om-

puted, using Equation (3).

In summary, the varian
e of X

s


an be obtained

from the following set of formulae:

�(X

s

)

2

= E(X

2

s

)�E(X

s

)

2

;

E(X

2

s

) = B + 2C;

B = E(X

s

) +

X

q2PAL

E(Y

q

); (4)

C =

jCW j

X

i=1

E(X

(CW )

i

) +A; (5)

A =

T

X

i

1

=1

T

X

i

2

=1

p

�

(W

i

1

)p

�

(W

i

2

)S

i

1

i

2

;

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QPe

a

i

2

1

�

e

0

a

i

1

l

QP

2

Qe

a

i

2

1

g:

A.4. Higher Order Markov Model

This se
tion outlines how to extend the 
al
ulations

above to handle higher order Markov 
hains. In the
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expe
tation 
al
ulations of Se
tion A.2, p

j

(
) now

denotes the probability of o

urren
e of the m-mer


 at position j, a

i1

in Equation (3) is now the �rst

m-mer ofW

i

, and p

�

(W

i

) is 
omputed, as before, by

following the Markov 
hain, starting with a

i1

. The

transition matrix P is now a 4

m

�4

m

matrix, where

the rows and 
olumns are indexed by the possible

m-mers, and P

ij

is the probability that the m-mer

j starts at position t + 1, given that the m-mer i

starts at position t. Thus, ea
h row in P has at

most 4 nonzero entries.

The varian
e 
al
ulations given in Se
tion A.3

remain the same, ex
ept for S

i

1

i

2

, whi
h depends

on m. For the 
ase m = 3 used in our experiments,

it is given by

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QP

3

e

a

i

2

1

�

e

0

a

i

1

l

QP

2

QP

2

e

a

i

2

1

g:
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