EnerJ: Approximate Data Types for Safe and General Low-Power Computation - Full Proofs

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman University of Washington, Department of Computer Science and Engineering

June 5, 2011

1 Type System

This report formalizes EnerJ, a programming language for supporting approximate computation 2. The paper describing EnerJ gives an overview of the FEnerJ formalism, but here we describe the language in detail and prove a series of properties over the language.

This section introduces the core type system, which is made up of type qualifiers that extend Featherweight Java [1]. Section 2 describes the big-step operational semantics that define the language's runtime system. Section 3 proves a number of properties about the language, the most important of which is non-interference (intuitively, that the precise part of the program is unaffected by the approximate part). The appendices contain complete listings, generated by the Ott tool, of the language's grammar and definitions 1

1.1 Ordering

We introduce a strict ordering on the language's type qualifiers:

$$
q<:_{\mathrm{q}} q^{\prime}
$$

$q<:_{q} q^{\prime} \quad$ ordering of precision qualifiers

$$
\begin{gathered}
\frac{q \neq \mathrm{top}}{q<i_{\mathrm{q}} \text { lost }} \quad \text { QQ_LOST } \\
\overline{q<:_{\mathrm{q}} \text { top }} \quad \text { QQ_TOP } \\
\overline{q<:_{\mathrm{q}} q} \quad \text { QQ_REFL }
\end{gathered}
$$

Subclassing is standard:
$C \sqsubseteq C^{\prime}$ subclassing

$$
\begin{gathered}
\frac{\text { class } C i d \text { extends } C^{\prime}\left\{-_\right\} \in P r g}{C i d \sqsubseteq C^{\prime}} \quad \text { SC_DEF } \\
\frac{\text { class } C \ldots \in P r g}{C \sqsubseteq C} \quad \text { SC_REFL } \\
\frac{C \sqsubseteq C_{1} \quad C_{1} \sqsubseteq C^{\prime}}{C \sqsubseteq C^{\prime}} \quad \text { SC_TRANS }
\end{gathered}
$$

Subtyping combines these two and add a special case for primitives:
$T<: T^{\prime}$ subtyping

[^0]\[

$$
\begin{gathered}
\frac{q<:_{\mathrm{q}} q^{\prime}}{q C<: q^{\prime} C^{\prime}} \quad \text { ST_REFT } \\
\frac{q<:_{\mathrm{q}} q^{\prime}}{q P<: q^{\prime} P} \quad \text { ST_PRIMT1 } \\
\frac{\text { precise } P<: \text { approx } P}{\text { ST_PRIMT2 }}
\end{gathered}
$$
\]

We use the method ordering to express that we can replace a call of the sub-method by a call to the super-method, i.e. for our static method binding:
$m s<: m s^{\prime} \quad$ invocations of method $m s$ can safely be replaced by calls to $m s^{\prime}$

$$
\frac{T^{\prime}<: T \quad \bar{T}_{k}^{k}<:{\overline{T_{k}^{\prime}}}^{k}}{T m\left({\overline{T_{k} p i d}}^{k}\right) \text { precise }<: T^{\prime} m\left({\overline{T_{k}^{\prime} p i d}}^{k}\right) \text { approx }} \quad \text { MST_DEF }
$$

1.2 Adaptation

The context qualifier depends on the context and we need to adapt it, when the receiver changes, i.e. for field accesses and method calls.

We need to be careful and decide whether we can represent the new qualifier. If not, we use lost.
$q \triangleright q^{\prime}=q^{\prime \prime} \quad$ combining two precision qualifiers

$$
\begin{gathered}
\frac{q^{\prime}=\text { context } \wedge(q \in\{\text { approx, precise, context }\})}{q \triangleright q^{\prime}=q} \quad \text { QCQ_CONTEXT } \\
\frac{q^{\prime}=\text { context } \wedge(q \in\{\text { top, lost }\})}{q \triangleright q^{\prime}=\text { lost }} \quad \text { QCQ_LOST } \\
\frac{q^{\prime} \neq \text { context }}{q \triangleright q^{\prime}=q^{\prime}} \quad \text { QCQ_FIXED }
\end{gathered}
$$

To combine whole types, we just need to adapt the qualifiers:
$q \triangleright T=T^{\prime} \quad$ precision qualifier - type combination

$$
\begin{aligned}
q \triangleright q^{\prime} & =q^{\prime \prime} \\
\hline q \triangleright q^{\prime} C & =q^{\prime \prime} C \\
& \quad \text { QCT_REFT } \\
q \triangleright q^{\prime} & =q^{\prime \prime} \\
\hline q \triangleright q^{\prime} P & =q^{\prime \prime} P
\end{aligned} \quad \text { QCT_PRIMT }
$$

Same for methods:
$q \triangleright m s=m s^{\prime} \quad$ precision qualifier - method signature combination

$$
\frac{q \triangleright T=T^{\prime} \quad q \triangleright{\overline{T_{k}}}^{k}={\overline{T_{k}^{\prime}}}^{k}}{q \triangleright T m\left({\overline{T_{k} p i d}}^{k}\right) q^{\prime}=T^{\prime} m\left({\overline{T_{k}^{\prime} p i d}}^{k}\right) q^{\prime}} \quad \text { QCMS_DEF }
$$

1.3 Look-up Functions

The declared type of a field can be looked-up in the class declaration:
FType $(C, f)=T \quad$ look up field f in class C

$$
\frac{\text { class Cid extends }-\left\{-T f ;_{-}\right\} \in \operatorname{Prg}}{\operatorname{FType}(C i d, f)=T} \quad \text { SFTC_DEF }
$$

For a qualified class type, we also need to adapt the type:
$\operatorname{FType}(q C, f)=T$ look up field f in reference type $q C$

$$
\frac{\operatorname{FType}(C, f)=T_{1} \quad q \triangleright T_{1}=T}{\operatorname{FType}(q C, f)=T} \quad \text { SFTT_DEF }
$$

Note that subsumption in the type rule will be used to get to the correct class that declares the field. Same for methods.
$\operatorname{MSig}(C, m, q)=m s \quad$ look up signature of method m in class C

$$
\begin{aligned}
& \text { class Cid extends }-\left\{{ }_{-} m s\{e\}-\right\} \in \operatorname{Prg} \\
& \frac{\operatorname{MName}(m s)=m \wedge \operatorname{MQual}(m s)=q}{\operatorname{MSig}(\operatorname{Cid}, m, q)=m s} \quad \text { SMSC_DEF }
\end{aligned}
$$

$\operatorname{MSig}(q C, m)=m s \quad$ look up signature of method m in reference type $q C$

$$
\frac{\operatorname{MSig}(C, m, q)=m s \quad q \triangleright m s=m s^{\prime}}{\operatorname{MSig}(q C, m)=m s^{\prime}} \quad \text { SMST_DEF }
$$

1.4 Well-formedness

A well-formed expression:
${ }^{s} \Gamma \vdash e: T$ expression typing

$$
\begin{aligned}
& \frac{{ }^{s} \Gamma \vdash e: T_{1} \quad T_{1}<: T}{{ }^{s} \Gamma \vdash e: T} \quad \text { TR_SUBSUM } \\
& \frac{q C \text { OK }}{{ }^{s} \Gamma \vdash \text { null }: q C} \quad \text { TR_NULL } \\
& \overline{{ }^{s} \Gamma \vdash \mathcal{L}: \text { precise } P} \quad \text { TR_LITERAL } \\
& \frac{{ }^{s} \Gamma(x)=T}{{ }^{s} \Gamma \vdash x: T} \quad \text { TR_VAR } \\
& q C \text { OK } \\
& q \in\{\text { precise, approx, context }\} \\
& { }^{s} \Gamma \vdash \text { new } q C(): T \\
& \frac{{ }^{s} \Gamma \vdash e_{0}: q C \quad \operatorname{FType}(q C, f)=T}{{ }^{s} \Gamma \vdash e_{0} \cdot f: T} \\
& \text { TR_READ } \\
& { }^{s} \Gamma \vdash e_{0}: q C \quad \operatorname{FType}(q C, f)=T \\
& \text { lost } \notin T \quad{ }^{s} \Gamma \vdash e_{1}: T \\
& { }^{s} \Gamma \vdash e_{0} \cdot f:=e_{1}: T
\end{aligned}
$$

$$
\begin{aligned}
& { }^{s} \Gamma \vdash e_{0}: q C \quad q \in\{\text { precise, context, top }\} \\
& \operatorname{MSig}(\text { precise } C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { precise } \\
& \frac{\text { lost } \notin \bar{T}_{i}}{}{ }^{i} \Gamma \vdash{\overline{e_{i}}}^{i}:{\overline{T_{i}}}^{i} \quad{ }^{i} \Gamma \vdash e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right): T \quad \text { TR_CALL1 } \\
& { }^{s} \Gamma \vdash e_{0} \text { : approx } C \\
& \operatorname{MSig}(\operatorname{approx} C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { approx } \\
& \frac{\text { lost } \notin{\overline{T_{i}}}^{i}{ }^{s} \Gamma \vdash{\overline{e_{i}}}^{i}:{\overline{T_{i}}}^{i}}{{ }^{s} \Gamma \vdash e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right): T} \quad \text { TR_CALL2 } \\
& { }^{s} \Gamma \vdash e_{0}: \text { approx } C \\
& \operatorname{MSig}(\operatorname{approx} C, m)=\text { None } \\
& \operatorname{MSig}(\text { precise } C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { precise } \\
& \frac{\text { lost } \notin \overline{T i}^{i}}{{ }^{s} \Gamma \vdash e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right): T} \quad \text { TR_CALL3 } \\
& \frac{{ }^{s} \Gamma \vdash e: _\quad q C \text { OK }}{{ }^{s} \Gamma \vdash(q C) e: T} \quad \text { TR_CAST } \\
& \frac{{ }^{s} \Gamma \vdash e_{0}: q P \quad{ }^{s} \Gamma \vdash e_{1}: q P}{{ }^{s} \Gamma \vdash e_{0} \oplus e_{1}: q P} \quad \text { TR_PRIMOP } \\
& \begin{array}{ccc}
{ }^{s} \Gamma \vdash e_{0}: \text { precise } P & { }^{s} \Gamma \vdash e_{1}: T & { }^{s} \Gamma \vdash e_{2}: T \\
{ }^{s} \Gamma \vdash \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\}: T & \text { TR_COND }
\end{array}
\end{aligned}
$$

Note how lost is used to forbid invalid field updates and method calls.
Well-formed types:
T OK well-formed type

$$
\begin{gathered}
\frac{\text { class } C \ldots \in \operatorname{Prg}}{q C \text { OK }} \quad \text { WFT_REFT } \\
\frac{q P \text { OK }}{q F T} \quad \text { wrimT }
\end{gathered}
$$

Well-formed classes just propagate the checks and ensure the superclass is valid:
$C l s$ OK well-formed class declaration

$$
\begin{aligned}
& { }^{s} \Gamma=\{\text { this } \mapsto \text { context Cid }\} \\
& { }^{s} \Gamma \vdash \overline{f d} \text { OK }{ }^{s} \Gamma, \text { Cid } \vdash \overline{m d} \text { OK } \\
& \text { class } C \ldots \in \operatorname{Prg} \\
& \hline \text { class Cid extends } C\{\overline{f d} \overline{m d}\} \quad \text { OK } \quad \text { WFC_DEF } \\
& \quad \overline{\text { class Object }\} \quad \text { OK }} \quad \text { WFC_OBJECT }
\end{aligned}
$$

Fields just check their types:
${ }^{s} \Gamma \vdash T f$; OK well-formed field declaration

$$
\frac{T \text { OK }}{{ }^{s} \Gamma \vdash T f ; \text { OK } \quad \text { WFFD_DEF }}
$$

Methods check their type, the body expression, overriding, and the method qualifier:
${ }^{s} \Gamma, C \vdash m d$ OK well-formed method declaration

$$
\begin{aligned}
& { }^{s} \Gamma=\{\text { this } \mapsto \text { context } C\} \\
& { }^{s} \Gamma^{\prime}=\left\{\text { this } \mapsto \text { context } C,{\overline{\text { pid } \mapsto T_{i}}}^{i}\right\} \\
& T, \bar{T}_{i}{ }^{i} \text { OK } \quad{ }^{s} \Gamma^{\prime} \vdash e: T \quad C \vdash m \text { OK } \\
& \frac{q \in\{\text { precise, approx }\}}{s \Gamma C \vdash T m\left(\overline{T i p i d}^{i}\right) q\{e\} \text { OK }} \text { WFMD_DEF }
\end{aligned}
$$

Overriding checks for all supertypes C^{\prime} that a helper judgment holds:
$C \vdash m$ OK method overriding OK

$$
\frac{C \sqsubseteq C^{\prime} \Longrightarrow C, C^{\prime} \vdash m \quad \text { OK }}{C \vdash m \text { OK }} \quad \text { OVR_DEF }
$$

This helper judgment ensures that if both methods are of the same precision, the signatures are equal. For a precise method we allow an approximate version that has relaxed types:
$C, C^{\prime} \vdash m$ OK method overriding OK auxiliary

$$
\begin{aligned}
& \operatorname{MSig}(C, m, \operatorname{precise})=m s_{0} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{precise}\right)=m s_{0}^{\prime} \wedge\left(m s_{0}^{\prime}=N o n e \vee m s_{0}=m s_{0}^{\prime}\right) \\
& \operatorname{MSig}(C, m, \text { approx })=m s_{1} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{approx}\right)=m s_{1}^{\prime} \wedge\left(m s_{1}^{\prime}=N o n e \vee m s_{1}=m s_{1}^{\prime}\right) \\
& \operatorname{MSig}(C, m, \operatorname{precise})=m s_{2} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{approx}\right)=m s_{2}^{\prime} \wedge\left(m s_{2}^{\prime}=\text { None } \vee m s_{2}<: m s_{2}^{\prime}\right) \\
& C, C^{\prime} \vdash m \text { OK }
\end{aligned}
$$

An environment simply checks all types:
${ }^{s} \Gamma$ OK well-formed static environment

$$
\begin{aligned}
& { }^{s} \Gamma=\left\{\text { this } \mapsto q C,{\overline{p i d \mapsto T_{i}}}^{i}\right\} \\
& \frac{{ }^{2} C, \bar{T}_{i}}{}{ }^{i} \text { OK } \\
& \text { SWFE_DEF }
\end{aligned}
$$

Finally, a program checks the contained classes, the main expression and type, and ensures that the subtyping hierarchy is a-cyclic:
$\vdash \operatorname{Prg}$ OK well-formed program

$$
\begin{aligned}
& \operatorname{Prg}=\overline{C l s} i^{i}, C, e \\
& \overline{C l s} i^{i}{ }^{i} \quad \text { context } C \text { OK } \\
& \left\{\begin{array}{l}
\text { this } \mapsto \text { context } C\} \vdash e:- \\
\forall C^{\prime}, C^{\prime \prime} .\left(\left(C^{\prime} \sqsubseteq C^{\prime \prime} \wedge C^{\prime \prime} \sqsubseteq C^{\prime}\right) \Longrightarrow C^{\prime}=C^{\prime \prime}\right) \\
\vdash \operatorname{Prg} \mathrm{OK}
\end{array}\right. \text { WFP_DEF }
\end{aligned}
$$

2 Runtime System

2.1 Helper Functions

$h+o=\left(h^{\prime}, \iota\right) \quad$ add object o to heap h resulting in heap h^{\prime} and fresh address ι

$$
\frac{\iota \notin \operatorname{dom}(h) \quad h^{\prime}=h \oplus(\iota \mapsto o)}{h+o=\left(h^{\prime}, \iota\right)} \quad \text { HNEW_DEF }
$$

$h[\iota . f:=v]=h^{\prime}$
field update in heap

$$
\begin{aligned}
& v=\operatorname{null}_{a} \vee\left(v=\iota^{\prime} \wedge \iota^{\prime} \in \operatorname{dom}(h)\right) \\
& h(\iota)=(T, \overline{f v}) \quad f \in \operatorname{dom}(\overline{f v}) \quad \overline{f v}^{\prime}=\overline{f v}[f \mapsto v] \\
& \frac{h^{\prime}=h \oplus\left(\iota \mapsto\left(T, \overline{f v}^{\prime}\right)\right)}{h[\iota . f:=v]=h^{\prime}} \quad \text { HUP_REFT } \\
& \begin{array}{cc}
h(\iota)=(T, \overline{f v}) & \overline{f v}(f)=\left(q^{\prime},{ }^{r} \mathcal{L}^{\prime}\right) \\
\overline{f v}^{\prime}=\overline{f v}\left[f \mapsto\left(q^{\prime},{ }^{r} \mathcal{L}\right)\right] & h^{\prime}=h \oplus(\iota \mapsto(T, \overline{f v})) \\
h\left[\iota . f:=\left(q,^{r} \mathcal{L}\right)\right]=h^{\prime} & \text { HUP_PRIMT }
\end{array}
\end{aligned}
$$

2.2 Runtime Typing

In the runtime system we only have precise and approx. The context qualifier is substituted by the correct concrete qualifiers. The top and lost qualifiers are not needed at runtime.

This function replaces context qualifier by the correct qualifier from the environment:
$\mathrm{s} \operatorname{Tr} \mathrm{T}(h, \iota, T)=T^{\prime} \quad$ convert type T to its runtime equivalent T^{\prime}

$$
\begin{aligned}
& q=\text { context } \Longrightarrow q^{\prime}=\operatorname{TQual}\left(h(\iota) \downarrow_{1}\right) \\
& \frac{q \neq \text { context } \Longrightarrow q^{\prime}=q}{\operatorname{sTrT}(h, \iota, q C)=q^{\prime} C} \quad \text { STRT_REFT } \\
& q=\text { context } \Longrightarrow q^{\prime}=\operatorname{TQual}\left(h(\iota) \downarrow_{1}\right) \\
& \frac{q \neq \text { context } \Longrightarrow q^{\prime}=q}{\operatorname{sTrT}(h, \iota, q P)=q^{\prime} P} \quad \text { STRT_PRIMT }
\end{aligned}
$$

We can assign a type to a value, relative to a current object ι. For a reference type, we look up the concrete type in the heap, determine the runtime representation of the static type, and ensure that the latter is a subtype of the former. The null value can be assigned an arbitrary type. And for primitive values we ensure that the runtime version of the static type is a supertype of the concrete type.
$h, \iota \vdash v: T$ type T assignable to value v

$$
\begin{aligned}
& \operatorname{sTrT}\left(h, \iota_{0}, q C\right)=q^{\prime} C \\
& \frac{h(\iota) \downarrow_{1}=T_{1} \quad T_{1}<: q^{\prime} C}{h, \iota_{0} \vdash \iota: q C} \quad \text { RTT_ADDR } \\
& \overline{h, \iota_{0} \vdash \mathrm{null}_{a}: q C} \quad \text { RTT_NULL } \\
& \operatorname{sTrT}\left(h, \iota_{0}, q^{\prime} P\right)=q^{\prime \prime} P \\
& \frac{{ }^{r} \mathcal{L} \in P \quad q P<: q^{\prime \prime} P}{h, \iota_{0} \vdash\left(q,{ }^{r} \mathcal{L}\right): q^{\prime} P} \quad \text { RTT_PRIMT }
\end{aligned}
$$

2.3 Look-up Functions

Look-up a field of an object at a given address. Note that subtyping allows us to go to the class that declares the field:
$\operatorname{FType}(h, \iota, f)=T \quad$ look up type of field in heap

$$
\frac{h, \iota \vdash \iota: q C \quad \operatorname{FType}(q C, f)=T}{\operatorname{FType}(h, \iota, f)=T} \quad \text { RFT_DEF }
$$

Look-up the method signature of a method at a given address. Subtyping again allows us to go to any one of the possible multiple definitions of the methods. In a well-formed class, all these methods are equal:
$\operatorname{MSig}(h, \iota, m)=m s \quad$ look up method signature of method m at ι

$$
\frac{h, \iota \vdash \iota: q C \quad \operatorname{MSig}(q C, m)=m s}{\operatorname{MSig}(h, \iota, m)=m s} \quad \text { RMS_DEF }
$$

For the method body, we need the most concrete implementation. This first function looks for a method with the given name and qualifier in the given class and in sequence in all super classes:
$\operatorname{MBody}(C, m, q)=e$ look up most-concrete body of m, q in class C or a superclass

$$
\begin{aligned}
& \text { class Cid extends _ }\left\{{ }_{-} m s\{e\}{ }_{-}\right\} \in \operatorname{Prg} \\
& \operatorname{MName}(m s)=m \wedge \operatorname{MQual}(m s)=q \\
& \operatorname{MBody}(\text { Cid }, m, q)=e \\
& \text { class Cid extends } C_{1}\left\{-{\overline{m s_{n}}\left\{e_{n}\right\}}^{n}\right\} \in \operatorname{Prg} \\
& \frac{{\overline{\operatorname{MName}}\left(m s_{n}\right) \neq m}^{n} \quad \operatorname{MBody}\left(C_{1}, m, q\right)=e}{\operatorname{MBody}(\operatorname{Cid}, m, q)=e} \quad \text { SMBC_INH }
\end{aligned}
$$

To look up the most concrete implementation for a method at a given address, we have three cases to consider. If it's a precise method, look it up. If it's an approximate method, try to find an approximate method. If you are looking for an approximate method, but couldn't find one, try to look for a precise methods:
$\operatorname{MBody}(h, \iota, m)=e \quad$ look up most-concrete body of method m at ι

$$
\begin{array}{cc}
\frac{h(\iota) \downarrow_{1}=\text { precise } C \quad \operatorname{MBody}(C, m, \text { precise })=e}{\operatorname{MBody}(h, \iota, m)=e} & \text { RMB_CALL1 } \\
\frac{h(\iota) \downarrow_{1}=\operatorname{approx} C \quad \operatorname{MBody}(C, m, \text { approx })=e}{\operatorname{MBody}(h, \iota, m)=e} & \text { RMB_CALL2 } \\
h(\iota) \downarrow_{1}=\operatorname{approx} C \quad \operatorname{MBody}(C, m, \text { approx })=\text { None } \\
\operatorname{MBody}(C, m, \text { precise })=e & \operatorname{MBody}(h, \iota, m)=e
\end{array} \text { RMB_CALL3 } \quad l
$$

Get the field values corresponding to a given reference type. For fields of reference type, just use the null value. For fields of a primitive type, we need to look up the declared type of the field in order to determine the correct qualifier for the value.

$$
\begin{aligned}
\hline \operatorname{FVsInit}(q C)=\overline{f v} & \text { initialize the fields for reference type } q C \\
& \begin{array}{l}
q \in\{\operatorname{precise}, \operatorname{approx}\} \\
\\
\forall f \in \operatorname{refFields}(C) \cdot \overline{f v}(f)=\operatorname{null}_{a} \\
\forall f \in \operatorname{primFields}(C) \cdot\left(\operatorname{FType}(q C, f)=q^{\prime} P \wedge \overline{f v}(f)=\left(q^{\prime}, 0\right)\right) \\
\operatorname{FVsInit}(q C)=\overline{f v}
\end{array} \text { FVSI_DEF }
\end{aligned}
$$

2.4 Semantics

The standard semantics of our programming language:
${ }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \quad$ big-step operational semantics

$$
\begin{gathered}
\frac{r^{r} \Gamma \vdash h, \text { null } \rightsquigarrow h, \text { null }}{a}
\end{gathered} \text { OS_NULL } \quad \begin{gathered}
{ }^{r} \Gamma \vdash h, \mathcal{L} \rightsquigarrow h,\left(\text { precise },{ }^{r} \mathcal{L}\right) \\
\text { OS_LITERAL } \\
\frac{{ }^{r} \Gamma(x)=v}{{ }^{r} \Gamma \vdash h, x \rightsquigarrow h, v} \quad \text { OS_VAR }
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{s} \operatorname{Tr} \mathrm{~T}\left(h,{ }^{r} \Gamma \text { (this) }, q C\right)=q^{\prime} C \\
& \text { FVsInit }\left(q^{\prime} C\right)=\overline{f v} \\
& \frac{h+\left(q^{\prime} C, \overline{f v}\right)=\left(h^{\prime}, \iota\right)}{r \Gamma \vdash h, \text { new } q C() \rightsquigarrow h^{\prime}, \iota} \quad \text { OS_NEW } \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h^{\prime}, \iota_{0} \quad h^{\prime}\left(\iota_{0} \cdot f\right)=v}{{ }^{r} \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow h^{\prime}, v} \quad \text { OS_READ } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0}, \iota_{0} \quad{ }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h_{1}, v \\
& \frac{h_{1}\left[\iota_{0} \cdot f:=v\right]=h^{\prime}}{r^{\prime} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow h^{\prime}, v} \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0}, \iota_{0} \quad{ }^{r} \Gamma \vdash h_{0},{\overline{e_{i}}}^{i} \rightsquigarrow h_{1},{\overline{v_{i}}}^{i} \\
& \operatorname{MBody}\left(h_{0}, \iota_{0}, m\right)=e \quad \operatorname{MSig}\left(h_{0}, \iota_{0}, m\right)={ }_{-} m\left({\left.\overline{-} \overline{p i d}^{i}\right)}^{i} q\right. \\
& { }^{r} \Gamma^{\prime}=\left\{\text { precise } ; \text { this } \mapsto \iota_{0},{\overline{\text { pid } \mapsto v_{i}}}^{i}\right\} \\
& \begin{aligned}
{ }^{r} \Gamma^{\prime} \vdash h_{1}, e \rightsquigarrow & h^{\prime}, v \\
& { }^{r} \Gamma \vdash h, e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right) \rightsquigarrow h^{\prime}, v
\end{aligned} \\
& { }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \\
& \frac{h^{\prime},{ }^{r} \Gamma(\text { this }) \vdash v: q C}{r^{r} \Gamma \vdash h,(q C) e \rightsquigarrow h^{\prime}, v} \quad \text { OS_CAST } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},\left(q,{ }^{r} \mathcal{L}_{0}\right) \\
& \frac{{ }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{1}\right)}{{ }^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right)} \quad \text { OS_PRIMOP } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L} \neq 0 \\
& \frac{{ }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h^{\prime}, v}{r^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow h^{\prime}, v} \quad \text { OS_COND_T } \\
& \begin{array}{c}
r^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},(q, 0) \quad{ }^{r} \Gamma \vdash h_{0}, e_{2} \rightsquigarrow h^{\prime}, v \\
{ }^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow h^{\prime}, v
\end{array} \text { OS_COND_F } \\
& \frac{{ }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \quad h^{\prime} \cong \tilde{h}^{\prime} \quad v \cong \tilde{v}}{{ }^{r} \Gamma \vdash h, e \rightsquigarrow \tilde{h}^{\prime}, \tilde{v}} \quad \text { OS_APPROX } \\
& \text { OS_CALL } \\
& \text { ? } \\
& \text { } \\
& \text { } \\
& \text { OS_WRITE } \\
& \text { - } \\
& { }^{r} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow h^{\prime}, v \quad \text { OS_WRITE }
\end{aligned}
$$

A program is executed by instantiating the main class and then evaluating the main expression in a suitable heap and environment:
$\vdash \operatorname{Prg} \rightsquigarrow h, v \quad$ big-step operational semantics of a program

$$
\begin{aligned}
& \text { FVsInit(precise } C)=\overline{f v} \\
& \emptyset+(\text { precise } C, \overline{f v})=\left(h_{0}, \iota_{0}\right) \\
& \frac{{ }^{r} \Gamma_{0}=\left\{\text { precise; this } \mapsto \iota_{0}\right\} \quad{ }^{r} \Gamma_{0} \vdash h_{0}, e \rightsquigarrow h, v}{\vdash \overline{C l s}, C, e \rightsquigarrow h, v} \quad \text { OSP_DEF }
\end{aligned}
$$

We provide a checked version of the semantics that ensures that we do not have an interference between approximate and precise parts:
${ }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h^{\prime}, v \quad$ checked big-step operational semantics

$$
\begin{gathered}
\frac{{ }^{r} \Gamma \vdash h, \text { null } \rightsquigarrow h, \text { null }_{a}}{{ }^{r} \Gamma \vdash h, \text { null } \rightsquigarrow_{c} h, \text { null }_{a}} \quad \text { COS_NULL } \\
\frac{{ }^{r} \Gamma \vdash h, \mathcal{L} \rightsquigarrow h,\left(\text { precise },{ }^{r} \mathcal{L}\right)}{{ }^{r} \Gamma \vdash h, \mathcal{L} \rightsquigarrow_{c} h,\left(\text { precise }{ }^{r} \mathcal{L}\right)} \quad \text { COS_LITERAL }
\end{gathered}
$$

$$
\begin{aligned}
& \frac{{ }^{r} \Gamma \vdash h, x \rightsquigarrow h, v}{{ }^{r} \Gamma \vdash h, x \rightsquigarrow c \quad h, v} \quad \text { COS_VAR } \\
& \frac{{ }^{r} \Gamma \vdash h \text {, new } q C() \rightsquigarrow h^{\prime}, \iota}{{ }^{r} \Gamma \vdash h, \text { new } q C()} \rightsquigarrow_{c} h^{\prime}, \iota \quad \text { COS_NEW } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h^{\prime}, \iota_{0} \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow h^{\prime}, v}{r^{r} \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_READ } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0}, \iota_{0} \quad h\left(\iota_{0}\right) \downarrow_{1}=q C \\
& { }^{r} \Gamma \downarrow_{1}=q^{\prime} \quad\left(q=q^{\prime} \vee q^{\prime}=\text { precise }\right) \\
& { }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow_{c} h_{1}, v \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow h^{\prime}, v}{{ }^{r} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_WRITE } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0}, \iota_{0} \quad{ }^{r} \Gamma \vdash h_{0},{\overline{e_{i}}}^{i} \rightsquigarrow_{c} h_{1},{\overline{v_{i}}}^{i} \\
& \operatorname{MBody}\left(h_{0}, \iota_{0}, m\right)=e \quad \operatorname{MSig}\left(h_{0}, \iota_{0}, m\right)={ }_{-} m\left({\overline{-} \overline{p i d}^{2}}^{i}\right) q \\
& { }^{r} \Gamma^{\prime}=\left\{\text { precise; this } \mapsto \iota_{0},{\overline{\text { pid } \mapsto v_{i}}}^{i}\right\} \\
& { }^{r} \Gamma^{\prime} \vdash h_{1}, e \rightsquigarrow_{c} h^{\prime}, v \\
& { }^{r} \Gamma \vdash h, e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right) \rightsquigarrow h^{\prime}, v \\
& r+h, e_{0} \cdot m\left(\bar{e}_{i}{ }^{i}\right) \rightsquigarrow_{c} h^{\prime}, v \\
& { }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h,(q C) e \rightsquigarrow h^{\prime}, v}{{ }^{r} \Gamma \vdash h,(q C) e \rightsquigarrow c \quad h^{\prime}, v} \quad \text { COS_CAST } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0},\left(q,{ }^{r} \mathcal{L}_{0}\right) \\
& { }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow_{c} h^{\prime},\left(q,{ }^{r} \mathcal{L}_{1}\right) \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right)}{r^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow h_{c} h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right)} \quad \text { COS_PRIMOP } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow{ }_{c} h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L} \neq 0 \\
& { }^{r} \Gamma^{\prime}={ }^{r} \Gamma(q) \quad{ }^{r} \Gamma^{\prime} \vdash h_{0}, e_{1} \rightsquigarrow_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h, \text { if }\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \not h^{\prime}, v}{{ }^{r} \Gamma \vdash h, \text { if }\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_COND_T } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L}=0 \\
& { }^{r} \Gamma^{\prime}={ }^{r} \Gamma(q) \quad{ }^{r} \Gamma^{\prime} \vdash h_{0}, e_{2} \rightsquigarrow{ }_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \not \rightsquigarrow^{\prime}, v}{r^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_COND_F }
\end{aligned}
$$

2.5 Well-formedness

A heap is well formed if all field values are correctly typed and all types are valid:
h OK well-formed heap

$$
\begin{aligned}
& \forall \iota \in \operatorname{dom}(h), f \in h(\iota) \downarrow_{2} \cdot(\operatorname{FType}(h, \iota, f)=T \wedge h, \iota \vdash h(\iota \cdot f): T) \\
& \forall \iota \in \operatorname{dom}(h) \cdot\left(h(\iota) \downarrow_{1} \operatorname{OK} \wedge \operatorname{TQual}\left(h(\iota) \downarrow_{1}\right) \in\{\text { precise, approx\})}\right. \\
& h \text { OK }
\end{aligned}
$$

This final judgment ensures that the heap and runtime environment correspond to a static environment. It makes sure that all pieces match up:
$h,{ }^{r} \Gamma:{ }^{s} \Gamma$ OK runtime and static environments correspond

$$
\begin{aligned}
& { }^{r} \Gamma=\left\{\text { precise; this } \mapsto \iota,{\overline{\text { pid } \mapsto v_{i}}}^{i}\right\} \\
& { }^{s} \Gamma=\left\{\begin{array}{c}
\text { this } \mapsto \text { context } C,{\overline{p i d ~} \mapsto T_{i}}^{i} \\
h \text { OK }
\end{array}\right\} \\
& h, \iota \vdash \iota \text { : context } C \\
& \frac{h, \iota \vdash{\overline{v_{i}}}^{i}:{\overline{T_{i}}}^{i}}{h,^{r} \Gamma:{ }^{s} \Gamma \mathrm{OK}} \\
& \text { WFRSE_DEF }
\end{aligned}
$$

3 Proofs

The principal goal of formalizing EnerJ is to prove a non-interference property (Theorem 3.3). The other properties listed in this section support that proof.

3.1 Type Safety

Theorem 3.1 (Type Safety)

$\left.\begin{array}{ll}\text { 1. } & \vdash \operatorname{Prg} \text { OK } \\ \text { 2. } & h, r^{r} \Gamma:{ }^{s} \Gamma \text { OK } \\ 3 . & { }^{s} \Gamma \vdash e: T \\ \text { 4. } & { }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v\end{array}\right\} \Longrightarrow \begin{cases}I . & h^{\prime},{ }^{r} \Gamma:{ }^{s} \Gamma \text { OK } \\ I I . & h^{\prime},{ }^{r} \Gamma(\text { this }) \vdash v: T\end{cases}$

We prove this by rule induction on the operational semantics.
Case 1: $e=$ null
The heap is not modified so I. trivially holds.
The null literal statically gets assigned an arbitrary reference type. The null value can be assigned an arbitrary reference type.

Case 2: $e=\mathcal{L}$
The heap is not modified so I. trivially holds.
A primitive literal statically gets assigned type precise or a supertype. The evaluation of a literal gives a precise value which can be assigned any primitive type.

Case 3: $e=x$

The heap is not modified so I. trivially holds.
We know that 2. that the environments correspond and therefore that the static type of the variable can be assigned to the value of the variable.

Case 4: $e=$ new $q C$ ()
For I. we only have to show that the newly created object is valid. The initialization with the null or zero values ensures that all fields are correctly typed.

The type of the new object is the result of $\mathrm{s} \operatorname{Tr} \mathrm{T}$ on the static type.
Case 5: $e=e_{0} . f$
The heap is not modified so I. trivially holds.
We know from 2. that the heap is well formed. In particular, we know that the values stored for fields are subtypes of the field types.

We perform induction on e_{0} and then use Lemma 3.4 to adapt the declared field, which is checked by the well-formed heap, to the adapted field type T.

Case 6: $e=e_{0} \cdot f:=e_{1}$

We perform induction on e_{0} and e_{1}. We know from 3. that the static type of e_{1} is a subtype of the adapted field type. We use Lemma 3.5 to adapt the type to the declaring class to re-establish that the heap is well formed.

Case 7: $e=e_{0} \cdot m(\bar{e})$
A combination of cases 6 and 7 .
Case 8: $e=(q C) e$
By induction we know that the heap is still well formed.
4. performs a runtime check to ensure that the value has the correct type.

Case 9: $e=e_{0} \oplus e_{1}$
By induction we know that the heap is still well formed.
The type matches trivially.
Case 10: $e=\operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\}$ else $\left\{e_{2}\right\}$
By induction we know that the heap is still well formed.
The type matches by induction.

3.2 Equivalence of Checked Semantics

We prove that an execution under the unchecked operational semantics has an equivalent execution under the checked semantics.

Theorem 3.2 (Equivalence of Checked Semantics)

We prove this by rule induction on the operational semantics.
The checked operational semantics is only different from the unchecked semantics for the field write, method call, and conditional cases. The other cases trivially hold.

Case 1: $e=\operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\}$ else $\left\{e_{2}\right\}$
We know from 3. that the static type of the condition is always precise. Therefore, ${ }^{r} \Gamma^{\prime}$ is well formed and we can apply the induction hypothesis on e_{1} and e_{2}.

Case 2: $e=e_{0} \cdot m(\bar{e})$
From the proof of type safety we know that the values in ${ }^{r} \Gamma^{\prime}$ are well formed. We are using precise as the approximate environment. Therefore, ${ }^{r} \Gamma^{\prime}$ is well formed and we can apply the induction hypothesis on e.

Case 3: $e=e_{0} \cdot f:=e_{1}$
We know from 2. that $q^{\prime}=$ precise. Therefore, the additional check passes.

3.3 Non-Interference

The express a non-interference property, we first define a relation \cong on values, heaps, and environments. Intuitively, \cong denotes an equality that disregards approximate values. The relation only holds for values, heaps, and environments with identical types.

Where v and \tilde{v} are primitive values, $v \cong \tilde{v}$ iff the values have the same type $q P$ and either $q=\operatorname{approx}$ or $v=\tilde{v}$. For objects, $\iota \cong \tilde{\iota}$ iff $\iota=\tilde{\iota}$. For heaps, $h \cong \tilde{h}$ iff the two heaps contain the same set of addresses ι and, for each such ι and each respective field $f, h(\iota . f) \cong \tilde{h})(\iota . f)$. Similarly, for environments, ${ }^{r} \Gamma \cong \tilde{\Gamma}$ iff ${ }^{r} \Gamma($ this $) \cong \tilde{\Gamma}($ this $)$ and, for every parameter identifier pid, ${ }^{r} \Gamma($ pid $) \cong r \tilde{\Gamma}($ pid $)$.

We can now state our desired non-interference property.

Theorem 3.3 (Non-Interference)

The non-interference property follows from the definition of the checked semantics, which are shown to hold in Theorem 3.2 given premises 1,2 , and 3. That is, via Theorem 3.2 , we know that ${ }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h^{\prime}, v$. The proof proceeds by rule induction on the checked semantics.

Case 1: $e=$ null
The heap is unmodified, so $h=h^{\prime}$ and $\tilde{h}^{\prime}=\tilde{h}$. Because $h \cong \tilde{h}$, trivially $h^{\prime} \cong \tilde{h}^{\prime}$ (satisfying $I I$.).
Both $v=$ null and $\tilde{v}=$ null, so $I I I$. also holds.
Case 2: $e=\mathcal{L}$
As above, the heap is unmodified and $v=\tilde{v}$ because literals are assigned precise types.
Case 3: $e=x$
Again, the heap is unmodified. If x has precise type, then $v=\tilde{v}$ and $I I I$. holds. Otherwise, both v and \tilde{v} have approximate type so $v \cong \tilde{v}$ vacuously. (That is, $v \cong \tilde{v}$ holds for any such pair of values when their type is approximate.)

Case 4: $e=$ new $q C$ ()

In this case, a new object o is created with address v and $h_{\tilde{n}}^{\prime}=h \oplus(v \mapsto o)$. Because v has a reference type and \tilde{v} has the same type, $v \cong \tilde{v}$. Furthermore, $\tilde{h^{\prime}}=h \oplus(\tilde{v} \mapsto o)$, so $h \cong \tilde{h}$.

Case 5: $e=e_{0} \cdot f$
The heap is unmodified in field lookup, so $I I$. holds by induction. Also by induction, e_{0} resolves to the same address ι under h as under \tilde{h} due to premise 4. If $h(\iota . f)$ has approximate type, then $I I I$. holds vacuously; otherwise $v=\tilde{v}$.

Case 6: $e=e_{0} \cdot f:=e_{1}$
Apply induction to both subexpressions (e_{0} and e_{1}). Under either heap h or \tilde{h}, the first expression e_{0} resolves to the same object o. By type safety, e_{1} resolves to a value with a dynamic type compatible with the static type of o 's field f.

If the value is approximate, then the field must have approximate type and the conclusions hold vacuously. If the value is precise, then induction implies that the value produced by e_{1} must be $v=\tilde{v}$, satisfying $I I I$. Similarly, the heap update to h is identical to the one to \tilde{h}, so $\tilde{h} \cong \tilde{h}^{\prime}$.

Case 7: $e=e_{0} \cdot m(\bar{e})$
As in Case 5 , let e_{0} map to o in both h and \tilde{h}. The same method body is therefore looked up by MBody and, by induction on the evaluation of the method body, the conclusions all hold.

Case 8: $e=(q C) e$
Induction applies directly; the expression changes neither the output heap nor the value produced.
Case 9: $e=e_{0} \oplus e_{1}$
The expression does not change the heap. If the type of $e_{0} \oplus e_{1}$ is approximate, then $I I I$. hold vacuously. If it is precise, then both $e 0$ and $e 1$ also have precise type, and, via induction, each expression produces the same literal under h and ${ }^{r} \Gamma$ as under \tilde{h} and $\tilde{r} \Gamma$. Therefore, $v=\tilde{v}$, satisfying $I I I$.

Case 10: $e=\operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\}$ else $\left\{e_{2}\right\}$
By type safety, e_{0} resolves to a value with precise type. Therefore, by induction, the expression produces the same value under heap h and environment ${ }^{r} \Gamma$ as under the equivalent structures \tilde{h} and $\tilde{r} \tilde{\Gamma}$. The rule applied for ${ }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v$ (either COS_COND_T or COS_COND_F) also applies for $\widetilde{r} \check{\Gamma} \vdash \tilde{h}, e \rightarrow \tilde{h^{\prime}}, \tilde{v}$ because the value in the condition is the same in either case. That is, either e_{1} is evaluated in bot settings or else e_{2} is; induction applies in either case.

3.4 Adaptation from a Viewpoint

Lemma 3.4 (Adaptation from a Viewpoint)

$\left.\begin{array}{ll}\text { 1. } & h, \iota_{0} \vdash \iota: q C \\ \text { 2. } & h, \iota \vdash v: T\end{array}\right\} \Longrightarrow \begin{gathered}\exists T^{\prime} . \underset{T}{ } q \triangleright T=T^{\prime} \wedge \\ h, \iota_{0} \vdash v: T^{\prime}\end{gathered}$
This lemma justifies the type rule TR_READ and the method result in Tr_CALL.
Case analysis of T :
Case 1: $T=q^{\prime} C^{\prime}$ or $T=q^{\prime} P$ where $q^{\prime} \in\{$ precise, approx, top $\}$
In this case we have that $T^{\prime}=T$ and the viewpoint is irrelevant.
Case 2: $T=$ context C^{\prime} or $T=$ context P
Case 2a: $q \in\{$ precise, approx $\}$
We have that $T^{\prime}=q C^{\prime}$ or $T^{\prime}=q P$, respectively.
2. uses the precision of ι to substitute context. 1. gives us the type for ι. Together, they give us the type of v relative to ι_{0}.

Case 2b: $q \in\{$ lost, top $\}$
We have that $T^{\prime}=$ lost C^{\prime} or $T^{\prime}=$ lost P, respectively.
Such a T^{\prime} is a valid type for any value.

3.5 Adaptation to a Viewpoint

Lemma 3.5 (Adaptation to a Viewpoint)

$\left.\begin{array}{lll}\text { 1. } & h, \iota_{0} \vdash \iota: & q C \\ \text { 2. } & q \triangleright T= \\ \text { 3. } & \text { lost } \notin T^{\prime} \\ \text { 4. } & h, \iota_{0} \vdash v: & T^{\prime}\end{array}\right\} \Longrightarrow h, \iota \vdash v: T$

This lemma justifies the type rule TR_WRITE and the requirements for the types of the parameters in TR_CALL. Case analysis of T :

Case 1: $T=q^{\prime} C^{\prime}$ or $T=q^{\prime} P$ where $q^{\prime} \in\{$ precise, approx, top $\}$
In this case we have that $T^{\prime}=T$ and the viewpoint is irrelevant.
Case 2: $T=$ context C^{\prime} or $T=$ context P
We have that $T^{\prime}=q C^{\prime}$ or $T^{\prime}=q P$, respectively. 3. forbids lost from occurring.

1. gives us the precision for ι and 4 . for v, both relative to ι_{0}. From 2. and 3 . we get the conclusion.

References

[1] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and GJ. TOPLAS, 23(3), 2001. 1
[2] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. EnerJ: Approximate data types for safe and general low-power computation. In PLDI, 2011. 1

4 Complete Grammar

We use the tool Ott to formalize EnerJ and used the generated $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ code throughout this document.
We define the following Ott meta-variables:

i, j, k, n	index variables as arbitrary elements
f	field identifier
mid	method identifier
pid	parameter identifier
Cid	derived class identifier
RAId	raw address identifier
PrimV	primitive value

The grammar of EnerJ is as follows:

terminals		
	:=	
	class	keyword: class declaration
	extends	keyword: super type declaration
	new	keyword: object creation
	if	keyword: if
	else	keyword: else
	this	keyword: current object
	null	keyword: null value
	\oplus	syntax: primitive operation
	\{	syntax: start block
	\}	syntax: end block
	(syntax: start parameters
)	syntax: end parameters
	;	syntax: separator
		syntax: selector
	=	syntax: assignment
	Object	name of root class
	int	name of primitive type
	\mathcal{L}	primitive literal
	$<\mathrm{q}_{\mathrm{q}}$	ordering of precision qualifiers
	<	subtyping
	ϵ	containment judgement
	\notin	non-containment judgement
	\vdash	single element judgement
	\vdash	multiple element judgement
	:	separator
	\mapsto	maps-to
	OK	well-formedness judgement
	=	alias
	$=$	option alias
	\neq	not alias
	$=$	multiple alias

\bar{q}	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\begin{aligned} & q_{1}, . ., q_{n} \\ & \{\bar{q}\} \end{aligned}$
$q C$	$\begin{gathered} ::= \\ \mid \end{gathered}$	$q C$
$q P$	$\begin{gathered} ::= \\ \mid= \end{gathered}$	$q P$
T	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & q C \\ & q P \\ & - \\ & { }^{s} \Gamma(x) \\ & h(\iota) \downarrow_{1} \end{aligned}$
\bar{T}	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & T_{1}, . ., T_{n} \\ & \bar{T}_{1}, \bar{T}_{2} \\ & \emptyset \end{aligned}$
Prg	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\overline{C l s}, C, e$
$C l s$	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	```class Cid extends C { \overline{fd}}\overline{md} class Object {}```
$\overline{C l s}$	$\begin{gathered} ::= \\ \mid \end{gathered}$	$C l s_{1} . . C l s_{n}$
$\overline{f d}$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	$\frac{T}{f d}_{1} f ; \overline{f d}_{n}$
\bar{f}	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & f_{1} . . f_{n} \\ & \text { refFields }(C) \\ & \text { primFields }(C) \end{aligned}$
e	$::=$	null

```
    precision qualfiers
    precision qualifier list
    M notation
    qualified class name
    definition
    qualified primitive type
    definition
    type
        reference type
        primitive type
        some type
        look up parameter type
        look up type in heap
    types
    type list
    two type lists
    no types
    some types
```

program
class declaration class declaration declaration of base class
class declarations class declaration list
field declarations
type T and field name f
field declaration list
some field declarations
list of field identifiers
field identifier list
recursive reference type fields look-up
recursive primitive type fields look-up
expression
null expression

		$\begin{aligned} & \mathcal{L} \\ & x \\ & \text { new } q C() \\ & e . f \\ & e_{0} \cdot f:=e_{1} \\ & e_{0} \cdot m(\bar{e}) \\ & (q C) e \\ & e_{0} \oplus e_{1} \\ & \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \\ & \text { None } \end{aligned}$	M	primitive literal variable read object construction field read field write method call cast primitive operation conditional no expression defined
\bar{e}	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & e_{1}, . ., e_{k} \\ & \emptyset \end{aligned}$		expressions list of expressions empty list
$m d$	$\begin{aligned} & ::= \\ & \mid \end{aligned}$	$m s\{e\}$		method declaration method signature and method body
$\overline{m d}$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	$\frac{m d}{m d}_{1} . . \overline{m d}_{n}$	M	method declarations method declaration method declaration list some method declarations
$m s$		$T m(\overline{m p d}) q$ None	M	method signature method signature definition no method signature defined
m	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & \text { mid } \\ & \text { MName(} m s) \end{aligned}$	M	method name method identifier extract method name from signature
$\overline{m p d}$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	$\frac{T p i d}{m p d}_{1}, . ., \overline{m p d}_{n}$	M	method parameter declarations type and parameter name list some method parameter declarations
x	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	pid this		parameter name parameter identifier name of current object
${ }^{s} \Gamma$	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\left\{{ }^{s} \delta\right\}$		static environment composition
${ }^{s} \delta_{p}$	$\begin{gathered} ::= \\ \mid= \end{gathered}$	$\text { pid } \mapsto T$		static variable parameter environment variable pid has type T

	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\text { this } \mapsto T$		static variable environment for this variable this has type T
${ }^{s} \delta$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & { }^{s} \delta_{t} \\ & { }^{s} \delta_{t},- \\ & { }^{s} \delta_{t},{ }^{s} \delta_{p_{1}}, . .,{ }^{s} \delta_{p_{i}} \end{aligned}$		static variable environment mapping for this mapping for this and some others mappings list
$\bar{s} \mathrm{fml}$	$\begin{aligned} & ::= \\ & \mid \end{aligned}$	$\begin{aligned} & \operatorname{Prg}=P r g^{\prime} \\ & C=C^{\prime} \\ & T=T^{\prime} \\ & T=T^{\prime} \\ & q=q^{\prime} \\ & q \neq q^{\prime} \\ & q \in \bar{q} \\ & q \notin \bar{T} \\ & m=m^{\prime} \\ & m \neq m^{\prime} \\ & m s=m s^{\prime} \\ & { }^{s} \Gamma==^{s} \Gamma^{\prime} \\ & e=e^{\prime} \\ & C l s \in \operatorname{Prg} \\ & \text { class } C \ldots \in \operatorname{Prg} \end{aligned}$		static formulas program alias class alias type alias option type alias qualifier alias qualifier not alias qualifier in set of qualifiers qualifier in set of types method name alias method name not alias method signature alias static environment alias expression alias class definition in program partial class definition in program
ι	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & R A I d \\ & { }^{R} \Gamma(\text { this }) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	address identifier raw address identifier currently active object look-up some address identifier
${ }^{r} \mathcal{L}$	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & 0 \\ & \operatorname{Prim} V \\ & { }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1} \end{aligned}$	M	primitive value zero value primitive value binary operation
ρ_{q}	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\left(q,{ }^{r} \mathcal{L}\right)$		qualified primitive value qualified primitive value
$\bar{\iota}$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & \iota_{1}, . ., \iota_{n} \\ & \emptyset \\ & - \\ & \operatorname{dom}(h) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	address identifiers address identifier list empty list some address identifier list domain of heap
v	$\begin{gathered} ::= \\ \mid \end{gathered}$			value address identifier

		$\begin{aligned} & \text { null }_{a} \\ & \rho_{q} \\ & - \\ & \tilde{v} \\ & h(\iota . f) \\ & \frac{r}{\Gamma}(x) \\ & f v(f) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	null value qualified primitive value some value similarity field value look-up argument value look-up field value look-up
\bar{v}	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\begin{aligned} & v_{1}, . ., v_{n} \\ & \emptyset \end{aligned}$		values value list empty list
$\overline{f v}$	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & f \mapsto v \\ & \overline{f v}_{1}, . ., \overline{f v}_{n} \\ & \bar{h}^{\prime}(\iota) \downarrow_{2} \\ & \overline{f v}[f \mapsto v] \end{aligned}$	M M M	field values field f has value v field value list some field values look up field values in heap update existing field f to v
o	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\begin{aligned} & (T, \overline{f v}) \\ & h(\iota) \end{aligned}$	M	object type T and field values $\overline{f v}$ look up object in heap
he	$\begin{gathered} ::= \\ \mid= \end{gathered}$	$(\iota \mapsto o)$		heap entry address ι maps to object o
h	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & \emptyset \\ & h \oplus h e \\ & \tilde{h} \end{aligned}$		heap empty heap add $h e$ to h, overwriting existing mappings similarity
${ }^{r} \Gamma$	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & \left\{q ;^{r} \delta\right\} \\ & { }^{r} \Gamma(q) \end{aligned}$	M	runtime environment composition update the precision in environment ${ }^{r} \Gamma$
${ }^{r} \delta_{p}$	$\begin{gathered} ::= \\ \mid= \end{gathered}$	$\text { pid } \mapsto v$		runtime variable environment parameter entry variable pid has value v
${ }^{r} \delta_{t}$	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\text { this } \mapsto \iota$		runtime variable environment entry for this variable this has address ι
${ }^{r} \delta$	$\begin{gathered} ::= \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & { }^{r} \delta_{t} \\ & { }^{r} \delta_{t},- \\ & { }^{r} \delta_{t},{ }^{r} \delta_{p_{1}}, \end{aligned}$		runtime variable environment mapping for this mapping for this and some others mappings list

		$\begin{aligned} & { }^{s} \Gamma, C \vdash m d \text { OK } \\ & { }^{s} \Gamma, C \vdash m d \\ & C \vdash m \text { OK } \\ & C \vdash m \\ & C, C^{\prime} \vdash m \text { OK } \\ & { }^{s} \Gamma \text { OK } \\ & \vdash \operatorname{Prg} \text { OK } \end{aligned}$	well-formed method declaration well-formed method declarations method overriding OK method overriding OK auxiliary well-formed static environment well-formed program
rt_helpers		$\begin{aligned} & h+o=\left(h^{\prime}, \iota\right) \\ & h[\iota \cdot f:=v]=h^{\prime} \\ & \operatorname{sTrT}(h, \iota, T)=T^{\prime} \\ & h, \iota \vdash v: T \\ & h, \iota \vdash \bar{v}: \bar{T} \\ & \operatorname{FType}(h, \iota, f)=T \\ & \operatorname{MSig}(h, \iota, m)=m s \\ & \operatorname{MBody}(C, m, q)=e \\ & \operatorname{MBody}(h, \iota, m)=e \\ & \operatorname{FVsInit}(q C)=\overline{f v} \end{aligned}$	add object o to heap h resulting in heap h^{\prime} and fresh address ι field update in heap convert type T to its runtime equivalent T^{\prime} type T assignable to value v types \bar{T} assignable to values \bar{v} look up type of field in heap look up method signature of method m at ι look up most-concrete body of m, q in class C or a superclass look up most-concrete body of method m at ι initialize the fields for reference type $q C$
semantics	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \\ \mid \end{gathered}$	$\begin{aligned} & { }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \\ & { }^{r} \Gamma \vdash h, \bar{e} \rightsquigarrow h^{\prime}, \bar{v} \\ & \vdash \operatorname{Prg} \rightsquigarrow h, v \\ & { }^{r} \Gamma \vdash h, e \rightsquigarrow c h^{\prime}, v \\ & { }^{r} \Gamma \vdash h, \bar{e} \rightsquigarrow c h^{\prime}, \bar{v} \end{aligned}$	big-step operational semantics sequential big-step operational semantics big-step operational semantics of a program checked big-step operational semantics checked sequential big-step operational semantics
wfruntime	$::=$	$h \mathrm{OK}$ $h,{ }^{r} \Gamma:{ }^{s} \Gamma$ OK	well-formed heap runtime and static environments correspond

5 Complete Definitions

$q<:_{\mathrm{q}} q^{\prime} \quad$ ordering of precision qualifiers

$$
\begin{gathered}
\frac{q \neq \text { top }}{q<:_{\mathrm{q}} \text { lost }} \\
\overline{q<:_{\mathrm{q}} \text { top }} \quad \text { QQ_LOST } \\
\overline{q<:_{\mathrm{q}} q} \quad \text { QQ_TOP }
\end{gathered}
$$

$C \sqsubseteq C^{\prime} \quad$ subclassing

$$
\begin{gathered}
\text { class } C i d \text { extends } C^{\prime}\left\{__{-}\right\} \in \operatorname{Prg} \\
C i d \sqsubseteq C^{\prime} \\
\text { SC_DEF } \\
\frac{\text { class } C \ldots \in P r g}{C \sqsubseteq C} \text { SC_REFL }
\end{gathered}
$$

$$
\frac{C \sqsubseteq C_{1} \quad C_{1} \sqsubseteq C^{\prime}}{C \sqsubseteq C^{\prime}} \quad \text { SC_TRANS }
$$

$T<: T^{\prime}$ subtyping

$$
\begin{gathered}
\frac{q<:_{\mathrm{q}} q^{\prime}}{q C<: q^{\prime} C^{\prime}} \\
\text { ST_REFT } \\
\frac{q<:_{\mathrm{q}} q^{\prime}}{q P<: q^{\prime} P} \quad \text { ST_PRIMT1 } \\
\frac{\text { precise } P<: \text { approx } P}{} \quad \text { ST_PRIMT2 }
\end{gathered}
$$

$\bar{T}<: \bar{T}^{\prime} \quad$ subtypings

$$
\frac{{\overline{T_{i}<: T_{i}^{\prime}}}^{i}}{{\overline{T_{i}}}^{i}<:{\overline{T_{i}^{\prime}}}^{i}} \quad \text { STS_DEF }
$$

$m s<: m s^{\prime} \quad$ invocations of method $m s$ can safely be replaced by calls to $m s^{\prime}$

$$
\frac{T^{\prime}<: T \quad \bar{T}_{k}^{k}<:{\overline{T_{k}^{\prime}}}^{k}}{T m\left({\overline{T_{k} p i d}}^{k}\right) \text { precise }<: T^{\prime} m\left({\overline{T_{k}^{\prime} p i d}}^{k}\right) \text { approx }} \quad \text { MST_DEF }
$$

$q \triangleright q^{\prime}=q^{\prime \prime} \quad$ combining two precision qualifiers

$$
\begin{gathered}
\frac{q^{\prime}=\text { context } \wedge(q \in\{\text { approx, precise, context }\})}{q \triangleright q^{\prime}=q} \quad \text { QCQ_CONTEXT } \\
\frac{q^{\prime}=\text { context } \wedge(q \in\{\text { top, lost }\})}{q \triangleright q^{\prime}=\text { lost }} \quad \text { QCQ_LOST } \\
\frac{q^{\prime} \neq \text { context }}{q \triangleright q^{\prime}=q^{\prime}} \quad \text { QCQ_FIXED }
\end{gathered}
$$

$q \triangleright T=T^{\prime} \quad$ precision qualifier - type combination

$$
\begin{aligned}
q \triangleright q^{\prime} & =q^{\prime \prime} \\
\hline q \triangleright q^{\prime} C & =q^{\prime \prime} C \\
q \triangleright q^{\prime} & =q^{\prime \prime} \\
\hline q \triangleright q^{\prime} P & =q^{\prime \prime} P
\end{aligned} \quad \text { QCT_REFT_PRIMT }
$$

$q \triangleright \bar{T}=\bar{T}^{\prime} \quad$ precision qualifier - types combination

$$
\frac{\overline{q \triangleright T_{k}=T_{k}^{\prime}}}{}{ }^{k}{\overline{T_{k}}}^{k}={\overline{T_{k}^{\prime}}}^{k} \quad \text { QCTS_DEF }
$$

$q \triangleright m s=m s^{\prime} \quad$ precision qualifier - method signature combination

$$
\frac{q \triangleright T=T^{\prime} \quad q \triangleright{\overline{T_{k}}}^{k}={\overline{T_{k}^{\prime}}}^{k}}{q \triangleright T m\left({\overline{T_{k} p i d}}^{k}\right) q^{\prime}=T^{\prime} m\left({\overline{T_{k}^{\prime} p i d}}^{k}\right) q^{\prime}} \quad \text { QCMS_DEF }
$$

FType $(C, f)=T \quad$ look up field f in class C

$$
\frac{\text { class Cid extends }-\left\{-T f ;_{--}\right\} \in \operatorname{Prg}}{\text { FType }(\operatorname{Cid}, f)=T} \quad \text { SFTC_DEF }
$$

FType $(q C, f)=T \quad$ look up field f in reference type $q C$

$$
\frac{\operatorname{FType}(C, f)=T_{1} \quad q \triangleright T_{1}=T}{\operatorname{FType}(q C, f)=T} \quad \text { SFTT_DEF }
$$

$\operatorname{MSig}(C, m, q)=m s \quad$ look up signature of method m in class C

$$
\begin{aligned}
& \text { class Cid extends }-\left\{_-m s\{e\} _\right\} \in \operatorname{Prg} \\
& \operatorname{MName}(m s)=m \wedge \operatorname{MQual}(m s)=q
\end{aligned} \operatorname{MSig}(\operatorname{Cid}, m, q)=m s \quad \text { SMSC_DEF } \quad l
$$

$\operatorname{MSig}(q C, m)=m s \quad$ look up signature of method m in reference type $q C$

$$
\frac{\operatorname{MSig}(C, m, q)=m s \quad q \triangleright m s=m s^{\prime}}{\operatorname{MSig}(q C, m)=m s^{\prime}} \quad \text { SMST_DEF }
$$

${ }^{s} \Gamma \vdash e: T \quad$ expression typing

$$
\begin{aligned}
& \frac{{ }^{s} \Gamma \vdash e: T_{1} \quad T_{1}<: T}{{ }^{s} \Gamma \vdash e: T} \quad \text { TR_SUBSUM } \\
& \frac{q C \text { OK }}{s_{\Gamma} \vdash \text { null }: q C} \quad \text { TR_NULL } \\
& \bar{s} \Gamma \vdash \mathcal{L} \text { : precise } P \quad \text { TR_LITERAL } \\
& \frac{{ }^{s} \Gamma(x)=T}{{ }^{s} \Gamma \vdash x: T} \quad \text { TR_VAR } \\
& q C \text { OK } \\
& q \in\{\text { precise, approx, context }\} \\
& { }^{s} \Gamma \vdash \text { new } q C(): T \quad \text { TR_NEW } \\
& \frac{{ }^{s} \Gamma \vdash e_{0}: q C \quad \operatorname{FType}(q C, f)=T}{{ }^{s} \Gamma \vdash e_{0} \cdot f: T} \quad \text { TR_READ } \\
& { }^{s} \Gamma \vdash e_{0}: q C \quad \operatorname{FType}(q C, f)=T \\
& \frac{\text { lost } \notin T}{{ }^{s} \Gamma \vdash e_{0} \cdot f:=e_{1}: T} \quad{ }^{s} \Gamma \vdash e_{1}: T \quad \text { TR_WRITE } \\
& { }^{s} \Gamma \vdash e_{0}: q C \quad q \in\{\text { precise, context, top }\} \\
& \operatorname{MSig}(\text { precise } C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { precise } \\
& \frac{\text { lost } \notin{\overline{T_{i}}}^{i}}{{ }^{s} \Gamma \vdash e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right): T} \quad \text { TR_CALL1 } \\
& { }^{s} \Gamma \vdash e_{0} \text { : approx } C \\
& \operatorname{MSig}(\text { approx } C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { approx } \\
& \left.\frac{\text { lost } \notin{\overline{T_{i}}}^{i}{ }^{s} \Gamma \vdash{\overline{e_{i}}}^{i}:{\overline{T_{i}}}^{i}}{{ }^{s} \Gamma \vdash e_{0} \cdot m\left(\bar{e}_{i}\right.}{ }^{i}\right): T \quad \text { TR_CALL2 }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{s} \Gamma \vdash e_{0} \text { : approx } C \\
& \operatorname{MSig}(\operatorname{approx} C, m)=\text { None } \\
& \operatorname{MSig}(\text { precise } C, m)=T m\left({\overline{T_{i} p i d}}^{i}\right) \text { precise } \\
& \frac{\text { lost } \notin{\overline{T_{i}}}^{i}{ }^{s} \Gamma \vdash{\overline{e_{i}}}^{i}:{\overline{T_{i}}}^{i}}{{ }^{s} \Gamma \vdash e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right): T} \quad \text { TR_CALL3 } \\
& \frac{{ }^{s} \Gamma \vdash e:{ }^{s} \quad q C \text { OK }}{{ }^{s} \Gamma \vdash(q C) e: T} \quad \text { TR_CAST } \\
& \frac{{ }^{s} \Gamma \vdash e_{0}: q P \quad{ }^{s} \Gamma \vdash e_{1}: q P}{{ }^{s} \Gamma \vdash e_{0} \oplus e_{1}: q P} \quad \text { TR_PRIMOP } \\
& \frac{{ }^{s} \Gamma \vdash e_{0}: \text { precise } P \quad{ }^{s} \Gamma \vdash e_{1}: T \quad{ }^{s} \Gamma \vdash e_{2}: T}{{ }^{s} \Gamma \vdash \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\}: T} \quad \text { TR_COND }
\end{aligned}
$$

${ }^{s} \Gamma \vdash \bar{e}: \bar{T}$ expression typings

$$
\frac{{\bar{s} \Gamma \vdash e_{k}: T_{k}}^{k}}{s^{\Gamma} \Gamma{\overline{e_{k}}}^{k}:{\overline{T_{k}}}^{k} \quad \text { TRM_DEF }}
$$

T OK well-formed type

$$
\begin{gathered}
\frac{\text { class } C \ldots \in \operatorname{Prg}}{q C \text { OK }} \text { WFT_REFT } \\
\frac{q P \text { OK }}{} \quad \text { WFT_PRIMT }
\end{gathered}
$$

\bar{T} OK well-formed types

$$
\frac{{\overline{T_{k} \mathrm{OK}^{k}}}_{{\overline{T_{k}}}^{k} \text { OK }} \quad \text { WFTS_DEF }}{}
$$

Cls OK well-formed class declaration

$$
\begin{aligned}
& { }^{s} \Gamma=\{\text { this } \mapsto \text { context Cid }\} \\
& { }^{s} \Gamma \vdash \overline{f d} \text { OK }{ }^{s} \Gamma, \text { Cid } \vdash \overline{m d} \text { OK } \\
& \text { class } C \ldots \in \operatorname{Prg} \\
& \hline \text { class Cid extends } C\{\overline{f d} \overline{m d}\} \text { OK } \quad \text { WFC_DEF } \\
& \quad \overline{\text { class Object }\} \quad \text { OK }} \quad \text { WFC_OBJECT }
\end{aligned}
$$

${ }^{s} \Gamma \vdash T f$; OK well-formed field declaration

$$
\frac{T \text { OK }}{{ }^{s} \Gamma \vdash T f ; \text { OK } \quad \text { WFFD_DEF }}
$$

${ }^{s} \Gamma \vdash \overline{f d}$ OK well-formed field declarations

$$
\frac{\bar{s}^{s} \Gamma \vdash T_{i} f_{i} ; \mathrm{OK}^{i}}{{ }^{s} \Gamma \vdash{\overline{T_{i} f_{i} ;}}^{i} \text { OK }} \quad \text { WFFDS_DEF }
$$

${ }^{s} \Gamma, C \vdash m d$ OK well-formed method declaration

$$
\begin{aligned}
& { }^{s} \Gamma=\{\text { this } \mapsto \text { context } C\} \\
& { }^{s} \Gamma^{\prime}=\left\{\text { this } \mapsto \text { context } C,{\overline{p i d \mapsto T_{i}}}^{i}\right\} \\
& T, \bar{T}_{i}
\end{aligned}
$$

${ }^{s} \Gamma, C \vdash \overline{m d}$ OK well-formed method declarations

$$
\frac{\bar{s}^{\bar{s}} \Gamma, C \vdash m d_{k} \mathrm{OK}^{k}}{{ }^{s} \Gamma, C \vdash{\overline{m d_{k}}}^{k} \mathrm{OK}} \quad \text { WFMDS_DEF }
$$

$C \vdash m$ OK method overriding OK

$$
\frac{C \sqsubseteq C^{\prime} \Longrightarrow C, C^{\prime} \vdash m \quad \text { OK }}{C \vdash m \text { OK }} \quad \text { OVR_DEF }
$$

$C, C^{\prime} \vdash m$ OK method overriding OK auxiliary

$$
\begin{aligned}
& \operatorname{MSig}(C, m, \operatorname{precise})=m s_{0} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{precise}\right)=m s_{0}^{\prime} \wedge\left(m s_{0}^{\prime}=\text { None } \vee m s_{0}=m s_{0}^{\prime}\right) \\
& \operatorname{MSig}(C, m, \operatorname{approx})=m s_{1} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{approx}\right)=m s_{1}^{\prime} \wedge\left(m s_{1}^{\prime}=N o n e \vee m s_{1}=m s_{1}^{\prime}\right) \\
& \operatorname{MSig}(C, m, \operatorname{precise})=m s_{2} \wedge \operatorname{MSig}\left(C^{\prime}, m, \operatorname{approx}\right)=m s_{2}^{\prime} \wedge\left(m s_{2}^{\prime}=\text { None } \vee m s_{2}<: m s_{2}^{\prime}\right) \\
& C, C^{\prime} \vdash m \mathrm{OK}
\end{aligned} \text { OVRA_DEF }
$$

${ }^{s} \Gamma$ OK well-formed static environment

$$
\begin{aligned}
& { }^{s} \Gamma=\left\{\text { this } \mapsto q C,{\overline{p i d \mapsto T_{i}}}^{i}\right\} \\
& \frac{{ }^{2} C, \bar{T}_{i}}{}{ }^{i} \text { OK }
\end{aligned}
$$

$\vdash \operatorname{Prg}$ OK well-formed program

$$
\begin{aligned}
& \operatorname{Prg}={\overline{C l s_{i}}}^{i}, C, e \\
& \quad{\overline{C l s_{i} ~ O K}}^{i} \quad \text { context } C \text { OK } \\
& \{\text { this } \mapsto \text { context } C\} \vdash e:- \\
& \forall C^{\prime}, C^{\prime \prime} .\left(\left(C^{\prime} \sqsubseteq C^{\prime \prime} \wedge C^{\prime \prime} \sqsubseteq C^{\prime}\right) \Longrightarrow C^{\prime}=C^{\prime \prime}\right) \\
& \vdash \operatorname{Prg} \text { OK }
\end{aligned} \text { WFP_DEF }
$$

$h+o=\left(h^{\prime}, \iota\right)$ add object o to heap h resulting in heap h^{\prime} and fresh address ι

$$
\frac{\iota \notin \operatorname{dom}(h) \quad h^{\prime}=h \oplus(\iota \mapsto o)}{h+o \quad=\left(h^{\prime}, \iota\right)} \quad \text { HNEW_DEF }
$$

$h[\iota \cdot f:=v]=h^{\prime} \quad$ field update in heap

$$
\begin{aligned}
& v=\operatorname{null}_{a} \quad \vee\left(v=\iota^{\prime} \wedge \iota^{\prime} \in \operatorname{dom}(h)\right) \\
& h(\iota)=(T, \overline{f v}) \quad f \in \operatorname{dom}(\overline{f v}) \quad \overline{f v}^{\prime}=\overline{f v}[f \mapsto v] \\
& \frac{h^{\prime}=h \oplus\left(\iota \mapsto\left(T, \overline{f v}^{\prime}\right)\right)}{h[\iota . f:=v]=h^{\prime}} \quad \text { HUP_REFT } \\
& h(\iota)=(T, \overline{f v}) \quad \overline{f v}(f)=\left(q^{\prime},{ }^{r} \mathcal{L}^{\prime}\right) \\
& \frac{\overline{f v}^{\prime}=\overline{f v}\left[f \mapsto\left(q^{\prime},{ }^{r} \mathcal{L}\right)\right] \quad h^{\prime}=h \oplus\left(\iota \mapsto\left(T, \overline{f v}^{\prime}\right)\right)}{h\left[\iota . f:=\left(q,{ }^{r} \mathcal{L}\right)\right]=h^{\prime}} \quad \text { HUP_PRIMT }
\end{aligned}
$$

$\mathrm{s} \operatorname{Tr} \mathrm{T}(h, \iota, T)=T^{\prime} \quad$ convert type T to its runtime equivalent T^{\prime}

$$
\begin{array}{cl}
\begin{array}{l}
q=\text { context } \Longrightarrow q^{\prime}=\mathrm{TQual}\left(h(\iota) \downarrow_{1}\right) \\
q \neq \mathrm{context} \Longrightarrow q^{\prime}=q
\end{array} & \\
\hline \operatorname{sTrT}(h, \iota, q C)=q^{\prime} C & \text { STRT_REFT } \\
q=\mathrm{context} \Longrightarrow q^{\prime}=\mathrm{TQual}\left(h(\iota) \downarrow_{1}\right) & \\
q \neq \mathrm{context} \Longrightarrow q^{\prime}=q & \text { STRT_PRIMT } \\
\hline \operatorname{sTrT}(h, \iota, q P)=q^{\prime} P &
\end{array}
$$

$h, \iota \vdash v: T \quad$ type T assignable to value v

$$
\begin{aligned}
& \operatorname{sTrT}\left(h, \iota_{0}, q C\right)=q^{\prime} C \\
& \begin{array}{c}
h(\iota) \downarrow_{1}=T_{1} \quad T_{1}<: q^{\prime} C \\
\hline h, \iota_{0} \vdash \iota: q C
\end{array} \quad \text { RTT_ADDR } \\
& \overline{h, \iota_{0} \vdash \mathrm{null}_{a}: q C \quad \text { RTT_NULL }} \\
& \operatorname{sTrT}\left(h, \iota_{0}, q^{\prime} P\right)=q^{\prime \prime} P \\
& \frac{{ }^{r} \mathcal{L} \in P \quad q P<: q^{\prime \prime} P}{h, \iota_{0} \vdash\left(q,{ }^{r} \mathcal{L}\right): q^{\prime} P} \quad \text { RTT_PRIMT }
\end{aligned}
$$

$h, \iota \vdash \bar{v}: \bar{T} \quad$ types \bar{T} assignable to values \bar{v}

$$
\frac{{\overline{h, \iota \vdash v_{i}: T_{i}}}^{i}}{h, \iota \vdash{\overline{v_{i}}}^{i}:{\overline{T_{i}}}^{i}} \quad \text { RTTS_DEF }
$$

$\operatorname{FType}(h, \iota, f)=T \quad$ look up type of field in heap

$$
\frac{h, \iota \vdash \iota: q C \quad \operatorname{FType}(q C, f)=T}{\operatorname{FType}(h, \iota, f)=T} \quad \text { RFT_DEF }
$$

$\operatorname{MSig}(h, \iota, m)=m s \quad$ look up method signature of method m at ι

$$
\frac{h, \iota \vdash \iota: q C \quad \operatorname{MSig}(q C, m)=m s}{\operatorname{MSig}(h, \iota, m)=m s} \quad \text { RMS_DEF }
$$

$\operatorname{MBody}(C, m, q)=e \quad$ look up most-concrete body of m, q in class C or a superclass

$$
\begin{aligned}
& \text { class Cid extends } \left.\text { - }_{-} \text {_ }^{m s}\{e\}-\right\} \in \operatorname{Prg} \\
& \operatorname{MName}(m s)=m \wedge \operatorname{MQual}(m s)=q \\
& \operatorname{MBody}(\operatorname{Cid}, m, q)=e \quad \text { SMBC_FOUND } \\
& \text { class Cid extends } C_{1}\left\{-{\overline{m s_{n}}\left\{e_{n}\right\}^{n}}^{n}\right\} \in \operatorname{Prg} \\
& \frac{\overline{\operatorname{MName}\left(m s_{n}\right) \neq m}{ }^{n} \quad \operatorname{MBody}\left(C_{1}, m, q\right)=e}{\operatorname{MBody}(\operatorname{Cid}, m, q)=e} \quad \text { SMBC_INH }
\end{aligned}
$$

$\operatorname{MBody}(h, \iota, m)=e \quad$ look up most-concrete body of method m at ι

$$
\begin{gathered}
h(\iota) \downarrow_{1}=\operatorname{precise} C \quad \operatorname{MBody}(C, m, \text { precise })=e \\
\operatorname{MBody}(h, \iota, m)=e
\end{gathered} \text { RMB_CALL1 }
$$

$$
\begin{align*}
& h(\iota) \downarrow_{1}=\operatorname{approx} C \quad \operatorname{MBody}(C, m, \text { approx })=\text { None } \\
& \operatorname{MBody}(C, m, \text { precise })=e \\
& \operatorname{MBody}(h, \iota, m)=e \tag{RMB_CALL3}
\end{align*}
$$

$$
\begin{aligned}
\hline \text { FVsInit }(q C)=\overline{f v} & \text { initialize the fields for reference type } q C \\
& \begin{array}{l}
q \in\{\operatorname{precise}, \operatorname{approx}\} \\
\\
\\
\\
\\
\forall f \in \operatorname{refFields}(C) \cdot \overline{f v}(f)=\operatorname{primFields}(C) \cdot\left(\operatorname{FType}(q C, f)=q^{\prime} P \wedge \overline{f v}(f)=\left(q^{\prime}, 0\right)\right) \\
\operatorname{FVSInit}(q C)=\overline{f v}
\end{array}
\end{aligned}
$$

${ }^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \quad$ big-step operational semantics

$$
\begin{aligned}
& \overline{r \Gamma \vdash h, \text { null } \rightsquigarrow h, \text { null }_{a}} \quad \text { OS_NULL } \\
& \overline{r \Gamma \vdash h, \mathcal{L} \rightsquigarrow h,\left(\text { precise },{ }^{r} \mathcal{L}\right)} \quad \text { OS_LITERAL } \\
& \frac{r \Gamma(x)=v}{r \Gamma \vdash h, x \rightsquigarrow h, v} \quad \text { OS_VAR } \\
& \mathrm{sTrT}\left(h,{ }^{r} \Gamma(\text { this }), q C\right)=q^{\prime} C \\
& \text { FVsInit }\left(q^{\prime} C\right)=\overline{f v} \\
& \frac{h+\left(q^{\prime} C, \overline{f v}\right)=\left(h^{\prime}, \iota\right)}{r \Gamma \vdash h, \text { new } q C() \rightsquigarrow h^{\prime}, \iota} \quad \text { OS_NEW } \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h^{\prime}, \iota_{0} \quad h^{\prime}\left(\iota_{0} \cdot f\right)=v}{r \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow h^{\prime}, v} \quad \text { OS_READ } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0}, \iota_{0} \quad{ }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h_{1}, v \\
& h_{1}\left[\iota_{0} \cdot f:=v\right]=h^{\prime} \\
& r \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow h^{\prime}, v \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0}, \iota_{0} \quad r \Gamma \vdash h_{0},{\overline{e_{i}}}^{i} \rightsquigarrow h_{1},{\overline{v_{i}}}^{i} \\
& \operatorname{MBody}\left(h_{0}, \iota_{0}, m\right)=e \quad \operatorname{MSig}\left(h_{0}, \iota_{0}, m\right)={ }_{-} m\left(\overline{-p i d}^{i}\right) q \\
& { }^{r} \Gamma^{\prime}=\left\{\text { precise; this } \mapsto \iota_{0},{\overline{\text { pid } \mapsto v_{i}}}^{i}\right\} \\
& \begin{array}{c}
{ }^{r} \Gamma^{\prime} \vdash h_{1}, e \rightsquigarrow h^{\prime}, v \\
r \Gamma \vdash h, e_{0} \cdot m\left(\bar{e}_{i}{ }^{i}\right) \rightsquigarrow h^{\prime}, v \\
r^{r} \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \\
\frac{h^{\prime}, r}{} \quad \begin{array}{l}
\text { r this }) \vdash v: q C
\end{array} \quad \text { OS_CAST }
\end{array} \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},\left(q,{ }^{r} \mathcal{L}_{0}\right) \\
& \frac{r \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{1}\right)}{{ }^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right)} \quad \text { OS_PRIMOP } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L} \neq 0 \\
& { }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow h^{\prime}, v \\
& \frac{r \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow h^{\prime}, v}{\text { OS_COND_T }} \\
& \frac{r \Gamma \vdash h, e_{0} \rightsquigarrow h_{0},(q, 0) \quad{ }^{r} \Gamma \vdash h_{0}, e_{2} \rightsquigarrow h^{\prime}, v}{r \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \rightsquigarrow h^{\prime}, v} \quad \text { OS_COND_F } \\
& \frac{r \Gamma \vdash h, e \rightsquigarrow h^{\prime}, v \quad h^{\prime} \cong \tilde{h}^{\prime} \quad v \cong \tilde{v}}{r \Gamma \vdash h, e \rightsquigarrow \tilde{h}^{\prime}, \tilde{v}} \quad \text { OS_APPROX }
\end{aligned}
$$

${ }^{r} \Gamma \vdash h, \bar{e} \rightsquigarrow h^{\prime}, \bar{v}$ sequential big-step operational semantics

$$
\begin{aligned}
& \begin{array}{l}
{ }^{r} \Gamma \vdash h, e ~ \\
{ }^{r} \Gamma \vdash h_{0}, \bar{e}_{i}{ }^{i} \rightsquigarrow h_{0}, h^{\prime}, \overline{v i}^{i} \\
\frac{{ }^{r} \Gamma \vdash h, e,{\overline{e_{i}}}^{i} \rightsquigarrow h^{\prime}, v,{\overline{v_{i}}}^{i}}{} \quad \text { OSS_DEF } \\
\bar{r} \Gamma \vdash h, \emptyset \rightsquigarrow h, \emptyset
\end{array} \text { OSS_EMPTY }
\end{aligned}
$$

$\vdash \operatorname{Prg} \rightsquigarrow h, v \quad$ big-step operational semantics of a program

$$
\begin{aligned}
& \text { FVsInit(precise } C)=\overline{f v} \\
& \emptyset+(\text { precise } C, \overline{f v})=\left(h_{0}, \iota_{0}\right) \\
& \frac{{ }^{r} \Gamma_{0}=\left\{\text { precise; this } \mapsto \iota_{0}\right\}}{}{ }^{r} \Gamma_{0} \vdash h_{0}, e \rightsquigarrow h, v \\
& \vdash \overline{C l s}, C, e \rightsquigarrow h, v
\end{aligned} \text { OSP_DEF }
$$

${ }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h^{\prime}, v \quad$ checked big-step operational semantics

$$
\begin{aligned}
& \frac{r \Gamma \vdash h, \text { null } \rightsquigarrow h, \text { null }_{a}}{r \Gamma \vdash h, \text { null } \rightsquigarrow_{c} h, \text { null }_{a}} \quad \text { COS_NULL } \\
& \frac{{ }^{r} \Gamma \vdash h, \mathcal{L} \rightsquigarrow h,\left(\text { precise, }{ }^{r} \mathcal{L}\right)}{{ }^{r} \Gamma \vdash h, \mathcal{L} \rightsquigarrow{ }_{c} h,\left(\text { precise, }{ }^{r} \mathcal{L}\right)} \quad \text { COS_LITERAL } \\
& \frac{{ }^{r} \Gamma \vdash h, x \rightsquigarrow h, v}{{ }^{r} \Gamma \vdash h, x \rightsquigarrow_{c} h, v} \quad \text { COS_VAR } \\
& \frac{{ }^{r} \Gamma \vdash h \text {, new } q C() \rightsquigarrow h^{\prime}, \iota}{r^{r} \Gamma \vdash h, \text { new } q C()} \rightsquigarrow_{c} h^{\prime}, \iota \quad \text { COS_NEW } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h^{\prime}, \iota_{0} \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow h^{\prime}, v}{{ }^{r} \Gamma \vdash h, e_{0} \cdot f \rightsquigarrow c \quad h^{\prime}, v} \quad \text { COS_READ } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0}, \iota_{0} \quad h\left(\iota_{0}\right) \downarrow_{1}=q C \\
& { }^{r} \Gamma \downarrow_{1}=q^{\prime} \quad\left(q=q^{\prime} \vee q^{\prime}=\text { precise }\right) \\
& { }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow_{c} h_{1}, v \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow h^{\prime}, v}{{ }^{r} \Gamma \vdash h, e_{0} \cdot f:=e_{1} \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_WRITE } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0}, \iota_{0} \quad{ }^{r} \Gamma \vdash h_{0},{\overline{e_{i}}}^{i} \rightsquigarrow{ }_{c} h_{1},{\overline{v_{i}}}^{i} \\
& \operatorname{MBody}\left(h_{0}, \iota_{0}, m\right)=e \quad \operatorname{MSig}\left(h_{0}, \iota_{0}, m\right)={ }_{-} m\left({\overline{-}{ }_{-p i d}}^{i}\right) q \\
& { }^{r} \Gamma^{\prime}=\left\{\text { precise; this } \mapsto \iota_{0},{\overline{\text { pid } \mapsto v_{i}}}^{i}\right\} \\
& { }^{r} \Gamma^{\prime} \vdash h_{1}, e \rightsquigarrow_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right) \rightsquigarrow h^{\prime}, v}{r \Gamma \vdash h, e_{0} \cdot m\left({\overline{e_{i}}}^{i}\right) \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_CALL } \\
& { }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h,(q C) e \rightsquigarrow h^{\prime}, v}{{ }^{r} \Gamma \vdash h,(q C) e \rightsquigarrow c h^{\prime}, v} \quad \text { COS_CAST } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0},\left(q,{ }^{r} \mathcal{L}_{0}\right) \\
& { }^{r} \Gamma \vdash h_{0}, e_{1} \rightsquigarrow_{c} h^{\prime},\left(q,{ }^{r} \mathcal{L}_{1}\right) \\
& \frac{{ }^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right)}{{ }^{r} \Gamma \vdash h, e_{0} \oplus e_{1} \rightsquigarrow c} \quad h^{\prime},\left(q,{ }^{r} \mathcal{L}_{0} \oplus{ }^{r} \mathcal{L}_{1}\right) \quad \text { COS_PRIMOP }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow_{c} h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L} \neq 0 \\
& { }^{r} \Gamma^{\prime}={ }^{r} \Gamma(q) \quad{ }^{r} \Gamma^{\prime} \vdash h_{0}, e_{1} \rightsquigarrow_{c} \quad h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h, \text { if }\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \quad \rightsquigarrow \quad h^{\prime}, v}{{ }^{r} \Gamma \vdash h, \text { if }\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \not \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_COND_T } \\
& { }^{r} \Gamma \vdash h, e_{0} \rightsquigarrow{ }_{c} h_{0},\left(q,{ }^{r} \mathcal{L}\right) \quad{ }^{r} \mathcal{L}=0 \\
& { }^{r} \Gamma^{\prime}={ }^{r} \Gamma(q) \quad{ }^{r} \Gamma^{\prime} \vdash h_{0}, e_{2} \rightsquigarrow_{c} h^{\prime}, v \\
& \frac{{ }^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \not h^{\prime}, v}{{ }^{r} \Gamma \vdash h, \operatorname{if}\left(e_{0}\right)\left\{e_{1}\right\} \text { else }\left\{e_{2}\right\} \quad \rightsquigarrow_{c} h^{\prime}, v} \quad \text { COS_COND_F }
\end{aligned}
$$

${ }^{r} \Gamma \vdash h, \bar{e} \rightsquigarrow_{c} h^{\prime}, \bar{v} \quad$ checked sequential big-step operational semantics

$$
\begin{aligned}
& \quad{ }^{r} \Gamma \vdash h, e \rightsquigarrow_{c} h_{0}, v \\
& \frac{{ }^{r} \Gamma \vdash h_{0},{\overline{e_{i}}}^{i} \rightsquigarrow_{c} h^{\prime},{\overline{v_{i}}}^{i}}{{ }^{r} \Gamma \vdash h, e,{\overline{e_{i}}}^{i} \rightsquigarrow_{c} h^{\prime}, v,{\overline{v_{i}}}^{i}} \quad \text { COSS_DEF } \\
& \quad \overline{r_{\Gamma} \vdash h, \emptyset \rightsquigarrow_{c} h, \emptyset} \quad \text { COSS_EMPTY }
\end{aligned}
$$

h OK well-formed heap

$$
\begin{aligned}
& \forall \iota \in \operatorname{dom}(h), f \in h(\iota) \downarrow_{2} \cdot(\operatorname{FType}(h, \iota, f)=T \wedge h, \iota \vdash h(\iota . f): T) \\
& \forall \iota \in \operatorname{dom}(h) \cdot\left(h(\iota) \downarrow_{1} \text { OK } \wedge \operatorname{TQual}\left(h(\iota) \downarrow_{1}\right) \in\{\operatorname{precise}, \operatorname{approx}\}\right) \\
& h \text { OK }
\end{aligned}
$$

$h,{ }^{r} \Gamma:{ }^{s} \Gamma$ OK runtime and static environments correspond

$$
\begin{aligned}
& { }^{r} \Gamma=\left\{\text { precise } \text { this } \mapsto \iota,{\overline{p i d \mapsto v_{i}}}^{i}\right\} \\
& { }^{s} \Gamma=\left\{\text { this } \mapsto \text { context } C,{\overline{\text { pid } \mapsto T_{i}}}^{i}\right\} \\
& \frac{h \text { OK } \quad{ }^{s} \Gamma \text { OK }}{} \\
& \begin{array}{l}
h, \iota \vdash \iota: \text { context } C \\
h, \iota \vdash{\overline{v_{i}}}^{i}:{\overline{T_{i}}}^{i} \\
h,^{r} \Gamma:{ }^{s} \Gamma \text { OK }
\end{array} \text { WFRSE_DEF }
\end{aligned}
$$

[^0]: ${ }^{1}$ Ott: http://www.cl.cam.ac.uk/~pes20/ott/

