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ABSTRACT
Regular expressions are used to match and extract text. It is easy for
developers to make syntactic mistakes when writing regular expres-
sions, because regular expressions are often complex and different
across programming languages. Such errors result in exceptions
at run time, and there is currently no static support for preventing
them.

This paper describes practical experience designing and using
a type system for regular expressions. This type system validates
regular expression syntax and capturing group usage at compile time
instead of at run time — ensuring the absence of PatternSyntaxEx-
ceptions from invalid syntax and IndexOutOfBoundsExceptions
from accessing invalid capturing groups.

Our implementation is publicly available and supports the full
Java language. In an evaluation on five open-source Java applica-
tions (480kLOC), the type system was easy to use, required less
than one annotation per two thousand lines, and found 56 previously-
unknown bugs.

Categories and Subject Descriptors
D.2.4 [SOFTWARE ENGINEERING]: Software/Program Ver-
ification—Reliability; D.3 [PROGRAMMING LANGUAGES]:
Language Constructs and Features—Data types and structures

General Terms
Verification, Languages, Documentation

Keywords
Regular expressions, regex, regexp, type system, Checker Frame-
work, case studies

1. INTRODUCTION
A regular expression is a pattern for matching certain strings of

text. In Java, regular expressions are used as follows:
Pattern p = Pattern.compile("(.*) ([0-9]+)");
Matcher m = p.match("number 447");
if (m.matches()) {
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System.out.println(m.group(2)); // output: 447
}

This code first creates a regular expression with two capturing
groups. A capturing group is delimited by parentheses and indicates
a subpart of a regular expression. The code then prints the text
matched by the second capturing group.

It is easy to make mistakes when using regular expressions. One
type of error is a regular expression with invalid syntax. For example,
the following code compiles correctly, but it throws a PatternSyn-
taxException at run time because of the unclosed parenthesis at
the end of the regular expression:
Pattern p = Pattern.compile("(.*) ([0-9]+)(");

Invalid regular expressions are a real, serious problem for users of
software written in Java. We performed a Google search that yielded
over 80,000 bug reports mentioning PatternSyntaxException.

Another type of error is the use of an incorrect capturing group
number. The following code throws an IndexOutOfBoundsExcep-
tion, because group 3 does not exist in the regular expression:
Pattern p = Pattern.compile("(.*) ([0-9]+)");
Matcher m = p.match("number 447");
if (m.matches()) {

System.out.println(m.group(3)); // exception!
}

This paper presents a type system that checks the validity of
regular expressions and regular expression capturing group access at
compile time rather than at run time. This approach helps developers
find bugs in syntax and capturing group usage of regular expressions
earlier and more effectively than the previous method of relying on
run-time errors.

This paper is organized as follows. Section 2 describes the type
system for regular expressions. Section 3 describes implementation
details of the type system. Section 4 presents results of using this
type system on five Java applications. Section 5 discusses related
work. Section 6 concludes.

2. TYPE SYSTEM
The regular expression type system expresses two varieties of

information. First, the type system distinguishes between Strings
that are syntactically valid regular expressions and Strings that
might not be. This enables the type system to verify that a syn-
tactically valid regular expression is used where required (see Sec-
tion 2.1). Second, the type system tracks the number of capturing
groups in each regular expression. This enables the type system to
verify correct parameter usage for method calls that take a capturing
group number (see Section 2.2).

The type system is conservative: it issues a warning whenever it
cannot guarantee correct usage. Most warnings indicate a regular-
expression-related bug (see Section 4.2), but some are false positives
(see Section 4.3).

{espishak,wmdietl,mernst}@cs.washington.edu


Figure 1: The basic subtyping relationship of the type system’s
qualifiers.

2.1 Expressing valid regular expression syn-
tax

The type system uses a @Regex type qualifier to qualify a type that
is a syntactically valid regular expression. In Java 8, a type qualifier
is expressed as a “type annotation” [12], which begins with @ and
appears before a type name, as in “@Regex String”. Most Strings
in an application are (implicitly) annotated with @Unqualified,
which indicates no knowledge about whether the value is or is not
a syntactically valid regular expression. The @Regex qualifier is a
subtype of the @Unqualified qualifier (Figure 1).

As an example of use, the first argument to String’s replaceAll
method must be a valid regular expression. To signify this, the first
argument’s type is @Regex String:
public String replaceAll(@Regex String regex, String replacement)

Following are additional examples of use of the @Regex qualifier:
@Regex String regex2 = "(reg)(ex)*"; // regex literal
@Regex String regex3 = regex2 + "(re)"; // concatenation
@Regex String nonRegex = "non ("; // compile-time error

The third line shows an example of a compile-time error. The
String literal is not a valid regular expression, therefore its type
is @Unqualified String and it cannot be assigned to a @Regex
String.

2.2 Expressing valid capturing group usage
The @Regex type qualifier takes an optional parameter, indicating

that the given regular expression has at least that many capturing
groups (Figure 2).

Here is an example of the @Regex qualifier used with the capturing
groups parameter:
@Regex(2) String regex2 = "(reg)(ex)*";
@Regex(3) String regex3 = regex2 + "(re)";
// legal declaration, though the type is not as precise as possible
@Regex(1) String regex1 = regex3;
// compile-time error, @Regex(2) is not a subtype of @Regex(4)
@Regex(4) String regex4 = regex2;

The @Regex qualifier with capturing groups can also be used on
Pattern and Matcher types to indicate the number of capturing
groups in the type.

2.2.1 @Regex(groups) Type Hierarchy
Moving down the qualifier hierarchy of Figure 2 are @Regex

annotations with increasing group counts. Any regular expression
that has at least 3 groups also has at least 1 group, so the regular
expression has both the types @Regex(3) and @Regex(1).

As a concrete example, consider this code from Lucene/solr/src/-
java/org/apache/solr/core/Config.java:

parsedMatchVersion.replaceFirst("^(\\d)\\.(\\d)\$",
"LUCENE_\$1\$2");

The signature of String.replaceFirst is replaceFirst(@Regex
String regex, String replacement). In the above call, the
first argument has type @Regex(2). The call is permitted because
@Regex(2) is a subtype of @Regex.

Figure 2: The full subtyping relationship of the type system’s
qualifiers. Because the parameter to a @Regex qualifier is a
lower bound on the number of capturing groups in a regular
expression, @Regex qualifiers with more capturing groups are
subtypes of @Regex annotations with fewer capturing groups.
@Regex(0) and @Regex are synonyms, because every regular
expression has at least zero capturing groups.

2.2.2 @RegexBottom Qualifier
The @RegexBottom qualifier is used only for the null literal and

is a subtype of all other qualifiers in the type system; this allows
the null literal to be assigned to any variable whose type has any
qualifier. Therefore, a NullPointerException is possible when in-
voking Pattern.compile — our type system verifies only correct
use of regular expression syntax. A programmer can use it in con-
junction with a type system for detecting null pointer exceptions [27,
11].

3. REGEX CHECKER
The type system described in Section 2 is implemented as a plug-

gable type system called the Regex Checker. It is built on and
distributed with the Checker Framework [27, 11, 7]. The implemen-
tation consists of 605 non-comment, non-blank lines of Java code,
of which 263 lines contain only an import statement, annotation
(@Override, etc.), or curly brace ({, }).

This section describes additional features that are provided by the
implementation.

3.1 Defaulting
As a convenience to developers, the Regex Checker adds default

qualifiers to types, preventing the need to explicitly qualify each
type. Except as described in this section, all unannotated types are
treated as @Unqualified.

The Regex Checker implicitly adds a @Regex annotation with
the correct capturing group count to any String literal that is a
syntactically valid regular expression. It does so by analyzing the
literal string at compile time.

The Regex Checker also implicitly adds a @Regex annotation
with the correct capturing group count to a concatenation of syn-
tactically valid regular expressions. When two @Regex Strings
are concatenated, the result is a @Regex String with a group count



that is the sum of the initial two group counts.
The @Regex annotation on a String is propagated from the

String to the Pattern produced by compiling the String and
to the Matcher produced by matching the Pattern. Because the
@Regex annotation is propagated to the Matcher, the Regex Checker
can verify that calls to the group method are passed valid capturing
group numbers.

Here is an example that illustrates these features. The commented
type annotations are implicitly added by the Regex Checker and
need not be written by a programmer.

/*@Regex(2)*/ String regex2 = "(.*) ([0-9]+)";
/*@Regex(3)*/ String regex3 = regex2 + "(.*)";
/*@Regex(3)*/ Pattern p = Pattern.compile(regex3);
/*@Regex(3)*/ Matcher m = p.match("number 447a");
if (m.matches()) {

System.out.println(m.group(3)); // output: a
// compile-time error, m has type @Regex(3)
System.out.println(m.group(4));

}

3.2 Validating User Input
An application that reads a regular expression from an external

source (such as user input or a file) must validate it before using it.
The Regex Checker supports this use case, and in fact ensures that
the developer does not forget it, preventing potential run-time errors.
For example, consider this code:

String s = getInputFromUser();
Pattern p = Pattern.compile(s);

If the user input is not a valid regular expression, this code throws
a run-time exception, which may terminate the application with a
confusing and unprofessional stack trace. If the user input happens
to be a valid regular expression (say, it is a string that contains a
period “.”), then the application will not crash, but will produce
different results than the user may have intended.

The Regex Checker issues a compile-time error for this code,
because s cannot be guaranteed to be a regular expression.

The Regex Checker supplies helper routines to aid the devel-
oper in doing the necessary input checking. The most relevant is
RegexUtil.isRegex(String), which returns true if its argument
is a valid regular expression. There are also versions of the helper
routines that take an additional capturing group count parameter.
The Regex Checker flow-sensitively refines a variable’s type when
isRegex is used in a conditional [27]. See the Regex Checker
documentation for details [7].

Depending on the programmer’s intention, two better ways to
write the above code are:

String s = getInputFromUser();
// At this point, the type of s is "@Unqualified String".
if (!RegexUtil.isRegex(s)) {

... issue user-friendly message about invalid input
} else {

// At this point, the type of s is "@Regex String",
// so there is no compile-time error.
Pattern p = Pattern.compile(s);

}

and:

String s = getInputFromUser();
// At this point, the type of s is "@Unqualified String".
if (!RegexUtil.isRegex(s)) {

... issue user-friendly message about invalid input
and terminate

}
// At this point, the type of s is "@Regex String",
// so there is no compile-time error.
Pattern p = Pattern.compile(s);

3.3 Partial Regular Expressions
When two regular expressions are concatenated, the result is

a regular expression, and the Regex Checker supports this case.
Sometimes, concatenation of non-regular-expression strings yields
a regular expression. The most common case is embedding a legal
regular expression between string literals that are not themselves
regular expressions. The Regex Checker also supports this case.
This is illustrated by the following example, taken from Lucene/sol-
r/src/java/org/apache/solr/spelling/SpellingQueryConverter.java:
final static @Regex String NMTOKEN;

... // NMTOKEN assigned here

final static @Regex String PATTERN =
"(?:(?!(" + NMTOKEN + ":|\\d+)))[\\p{L}_\\-0-9]+";

The Regex Checker handles this concatenation pattern by substi-
tuting an arbitrary regular expression (say, "e") for the @Regex
String variable, then analyzing the resulting string. The string
literals balance one another’s parentheses (and NMTOKEN does not
introduce further unbalanced parentheses), so variable PATTERN is a
valid regular expression.

In general, for a string literal that is not a valid regular expression
(for example, a string literal that has unbalanced parentheses) the
Regex Checker stores the value of the string literal in a qualifier
on the type. The Regex Checker can then use this stored value
to determine if a concatenation results in a string that is a valid
regular expression. If the concatenation does result in a valid regular
expression a @Regex qualifier is added to the type. Otherwise, the
value stored in the qualifier is updated to reflect the concatenation.

3.4 Pattern.LITERAL Flag
So far, we have assumed that Pattern.compile requires a regu-

lar expression as its argument. But, when invoked with Pattern.-
LITERAL as its second argument, as in:
Pattern.compile(anyString, Pattern.LITERAL);

the first argument does not have to be a syntactically valid regu-
lar expression, because the Pattern.compile method escapes it
before it is compiled.

The dependent type [34] of Pattern.compile is not expressible
in our type system, so the Regex Checker has a special case for
the Pattern.compile method when called with the Pattern.-
LITERAL flag allowing the Pattern.compile method to take any
String.

3.5 @Regex char

The Regex Checker also supports the use of chars as regular
expressions. For example, the char ’c’ is a syntactically valid
regular expression and will be implicitly annotated as such by the
Regex Checker. Concatenation works the same way with chars as
it does with Strings.

3.6 Library Annotations
We added 18 @Regex annotations to library methods that take or

return regular expressions. The library annotations are trusted, not
checked.

Some of the more interesting annotated library methods are shown
below.
class Pattern {

public static Pattern compile(@Regex String regex);
// escapes and returns argument
public static @Regex String quote(String s);

}

class String {
public boolean matches(@Regex String regex);
public String replaceAll(@Regex String regex,



NCNB @Regex False
Application LOC annotations Bugs positives
Apache Chukwa 37k 45 7 3
Apache Lucene 154k 11 6 5
Daikon 166k 8 6 1
Plume-lib 13k 40 2 9
YaCy 112k 71 35 7
TOTALS 482k 175 56 25

Figure 3: Case study statistics. NCNB LOC is non-comment,
non-blank lines of code. @Regex annotations is the num-
ber of annotations we added to each application. Bugs is
the number of bugs we found in each application by us-
ing the Regex Checker (see Section 4.2). False positives are
caused by a weakness in either the type system or the Regex
Checker implementation; we suppressed these by writing a
@SuppressWarnings annotation (see Section 4.3).

String replacement);
public String[] split(@Regex String regex);

}

The annotations permit the Regex Checker to verify correct usage
of these methods.

4. CASE STUDIES

4.1 Methodology
We evaluated the Regex Checker using the applications of Fig-

ure 3, all of which are mature and under active maintenance. Apache
Chukwa [1] monitors distributed systems. Apache Lucene [2] is a
search engine library. Daikon [10, 13, 14] is a dynamic invariant de-
tector. Plume-lib [28] is a utility library. YaCy [35] is a peer-to-peer
search engine.

Our methodology was to repeatedly run the Regex Checker, ex-
amine its warnings, and add @Regex annotations where necessary,
until the Regex Checker issued no more warnings. Along the way,
we sometimes had to correct errors that the Regex Checker had
discovered in the subject applications (Section 4.2), or suppress
false positive warnings (Section 4.3).

4.2 Bugs
Overall we found 56 previously-unknown bugs in the five appli-

cations. We found two types of bugs: bugs caused by failure to
validate or escape input before using it as a regular expression (see
Section 4.2.1) and bugs for incorrect quoting of input that is used in
a regular expression (see Section 4.2.2).

We found no bugs due to string literals that were syntactically
invalid regular expressions, nor from invalid use of capturing groups
(see Figure 4 for statistics about use of capturing groups). We hy-
pothesize that this is because such bugs would be revealed during
testing. However, the Regex Checker would be useful during devel-
opment in finding these bugs at compile time, instead of waiting for
tests to find these bugs at run time.

4.2.1 Non-validated Input
50 of the 56 total bugs were caused by failure to validate or

escape input before using it as a regular expression. These bugs
could lead to run-time errors from invalid regular expression syntax,
or to silently incorrect behavior.

Here is an example bug, from class Lookup in Plume-lib:
for (String keyword : keywords) { // command-line arguments

...

// embed argument in regular expression
keyword = "\\b" + keyword + "\\b";
// compile regular expression
if (Pattern.compile(keyword).matcher(search).find())

...
}

The Regex Checker reports an error at Pattern.compile(key-
word), since keyword, which was extracted from the command-line
arguments, cannot be guaranteed to be a syntactically valid regular
expression. When informed of the bug, the developer changed the
code to quote keyword (by calling the Pattern.quote method to
escape all special regular expression characters) before embedding
it in a regular expression.

Here is another example, from class TsProcessor in Chukwa:
datePattern = jobConf.get("TsProcessor.time.regex." +

chunk.getDataType(), datePattern);
...
Pattern pattern = datePattern != null ?

Pattern.compile(datePattern) : null;

In this example, a regular expression is retrieved from a configu-
ration file. Its syntax needs to be verified before use. Additionally,
after this regular expression is compiled the first capturing group is
extracted from text that matches this regular expression. That shows
that this input does need to be a valid regular expression and should
not be quoted. The problem can be eliminated as follows:
datePattern = jobConf.get("TsProcessor.time.regex." +

chunk.getDataType(), datePattern);
// Verify datePattern is a legal regular expression
// with at least 1 capturing group.
if (!RegexUtil.isRegex(datePattern, 1)) {

... inform user of invalid value in configuration file
}
...
Pattern pattern = datePattern != null ?

Pattern.compile(datePattern) : null;

In all of these 50 bugs, if the application was supplied with invalid
regular expression input, the application would throw a Pattern-
SyntaxException and eventually print a stack trace. This is not
very helpful to a user of the application. Requiring the developer
to validate input also encourages the developer to produce a useful
diagnostic message highlighting the specific value in a configuration
file that is an invalid regular expression. This clarifies that the user
has mis-used the application, and makes it much easier for the user
to fix the error in the regular expression.

4.2.2 Incorrect Quoting
The remaining 6 bugs (all in YaCy) were when input was in-

correctly quoted before being used as a regular expression. The
following example is from class Load_RSS_p:
String messageurl;
...
messageurl = row.get("url", "");
if (r == null || !r.get("comment", "").matches(

".*\\Q" + messageurl + "\\E.*")) {
...

In a regular expression, any text between “\Q” and “\E” is quoted.1

However, if the messageurl variable itself contained a "\E" the
quoting would stop earlier than the developer intended, the regu-
lar expression would then have an extra "\E", and the application
would terminate with a PatternSyntaxException. This type of
bug appeared six times in YaCy. Instead of using the "\Q" and "\E"
constructs to quote the input, the Pattern.quote method should
be called:
String messageurl;

1The String representation of a backslash is two backslashes;
"\\Q" is a two-character string containing one backslash and one
Q.



Number of calls
With int

Method Total literal parameter
group 172 171
start 3 1
end 8 6
Total 183 178

Figure 4: Use of int literals in calls to Matcher’s methods.
For the Regex Checker to verify the correct parameter to a
method that takes a capturing group number, the parameter
must be a compile-time constant. Of the 183 total calls, only
5 are not passed int literals. 3 of the 5 calls that received a
non-int-literal were in deprecated code and were handled by
a single warning suppression (see Figure 5).

Category Reason No.
Type Substring operation 3
system Variable group count 2

String represents a character class 1
Subject Tests whether s is a regex 8
application Deprecated code 1
Regex StringBuilder, StringBuffer, char[] 8
Checker flow-sensitivity bug 1
implementation line.separator property is a legal regex 1

Total 25

Figure 5: False positives. Those in the top part are weaknesses
of our type system (Section 4.3.1). Those in the middle part
could be eliminated by improving the code of the subject appli-
cations (Section 4.3.2). Those in the bottom part are weaknesses
of our implementation (Section 4.3.3).

...
messageurl = row.get("url", "");
if (r == null || !r.get("comment", "").matches(

".*" + Pattern.quote(messageurl) + ".*")) {
...

4.2.3 Bug Reports
The Daikon, Plume-lib, and YaCy developers have fixed all the

bugs in their applications, added our annotations to their source code,
and are now regularly running the Regex Checker to prevent similar
problems in the future. The Chukwa developers have acknowledged
and fixed the first bug we reported. The Lucene developers have not
yet responded to our bug reports.

4.3 False Positives
The Regex Checker issued 25 false positive warnings in our case

studies (Figure 5). In each of these cases, we manually confirmed
that the code will never throw an exception at run time, but the
Regex Checker was unable to verify that fact. We now discuss
the false positives, categorized according to whether the fault lies
with our type system (Section 4.3.1), programming paradigms used
in the subject application (Section 4.3.2), or the Regex Checker
implementation of the type system (Section 4.3.3).

4.3.1 Type system false positives
Like every type system, ours reasons about only certain abstrac-

tions. This section gives examples of code whose correctness cannot
be represented in our type system.

Even if a string is known to be a regular expression, its substrings
may not be, and nothing is known about substrings of arbitrary

strings. Consider the following substring operation in Chukwa/trunk-
/src/main/java/org/apache/hadoop/chukwa/database/Macro.java:

public String computeMacro(@Regex String macro) {
...
// first arg to findTableName must have type @Regex String
table = dbc.findTableName(
macro.substring(macro.indexOf("(") + 1,

macro.indexOf(")")),
...);

The computeMacro method is always called with a String such as
"group_avg(user_util)", which is a valid regular expression.
Furthermore, the substring call (which extracts the text in the paren-
theses of the input) always returns a regular expression. The Regex
Checker is unable to establish this fact and issues a warning that the
the developer must suppress.

The “variable group count” false positives in Figure 5 are ones
where the capturing-group argument to a Matcher method is a
variable (see Figure 4). The Regex Checker does not currently track
the ranges of variable values. Furthermore, in some cases a method
takes both a regular expression and a group number as an argument.
A dependent type system [34] could express that a variable is a valid
capturing group number for a regular expression, but our current type
system does not. (Our type system also cannot express the precise
type of a function that takes any regular expression, and returns a
regular expression with one more capturing group by concatenating
one more capturing group. No such example came up in our case
studies.)

A final false positive is for a computed string that gets embedded
in a character class (“[. . .]”). It would be possible to define another
type qualifier (orthogonal to @Regex) to express legal character class
constants.

4.3.2 Subject application false positives
Some of the subject applications had their own versions of meth-

ods such as isRegex (see Section 3.2). The Regex Checker cannot
reason about the complex algorithms that quote and test regular
expressions. These false positives could be eliminated by using
the Regex Checker’s own RegexUtil methods, which are already
correctly annotated and need not be checked along with the user
code.

One other false positive was in deprecated code. The developers
acknowledged the bad design in this obsolete code, but declined to
modify the code.

4.3.3 Implementation false positives
The Regex Checker issues some false positives that we intend to

correct by improving its implementation.
The Regex Checker currently supports annotations on String,

char, Pattern, and Matcher types. This should be extended to
char[], StringBuilder, and StringBuffer. For example, here is
the proper annotation for this code from Daikon/asm/Operand.java:
@Regex StringBuilder b = new StringBuilder();
b.append("eax");
b.append("|ebx");
b.append("|ecx");
b.append("|edx");
...
registers32BitRegExp = Pattern.compile(b.toString());

Because the Regex Checker does not support @Regex StringBuil-
der, that annotation must be omitted. As a result, the Regex Checker
is unable to determine that b.toString() returns a @Regex String,
and so the Regex Checker issues an error on the call to Pattern-
.compile.

There is an imprecision in the Checker Framework’s flow-sen-
sitive type refinement [27] that results in one false positive. We
observed the bug when there is an if followed by an else if, the



bodies of both modify program control in some way (for example a
throws or continue statement), and at least one of them includes
a call to the isRegex method (described in Section 3.2) The code
that triggered this bug, from Lucene/solr/src/java/org/apache/solr/-
analysis/PatternTokenizerFactory.java, is shown below.
String regex = args.get( PATTERN );
if( regex == null ) {

throw new SolrException( SolrException.ErrorCode.SERVER_ERROR,
"missing required argument: "+PATTERN );

} else if (!RegexUtil.isRegex(regex, group)) {
throw new SolrException( SolrException.ErrorCode.SERVER_ERROR,

"error parsing regular expression "
+ regex + ": " + RegexUtil.regexError(regex));

}
pattern = Pattern.compile( regex, flags );

The Regex Checker reports a false positive warning at the call
to Pattern.compile because it cannot determine that the regex
variable is a valid regular expression at that location.

The final false positive comes from the fact that the return value
of System.getProperty("line.separator") is always a legal
regular expression (unless the application modifies it). This could
be special-cased in a similar way as for Pattern.LITERAL in Sec-
tion 3.4; other pluggable type-checkers built on the Checker Frame-
work have similar special cases.

4.4 Discussion
The first author performed the annotation and type-checking.

He found the task simple despite his unfamiliarity with the subject
applications. Most parts of the code required no annotations, and the
Regex Checker highlighted the places that did. The only difficulty
was caused by code with poor design, such as embedding regular
expression Strings in other Strings and then extracting them later,
or storing regular expression Strings in the same data structures
as other Strings. If the original programmers had used a regular
expression verification system, they might have been guided to a
cleaner design. We also found use of the isRegex method cleaner
than other mechanisms used in the applications, such as catching
PatternSyntaxException.

In addition to detecting 56 bugs, the @Regex annotations improve
the code’s documentation. In many cases, the developer-written
documentation had omitted to state the requirement that a given
parameter be a regular expression. By contrast, the @Regex annota-
tions are machine-verified.

Relatively simple ad-hoc checks would have sufficed to detect
many of these bugs. However, a significant benefit of our approach
is that it gives a guarantee that no regular expression syntax errors
exist anywhere in the application (modulo human inspection at each
location where the type checker issues a warning).

5. RELATED WORK
We are not aware of any previous type system nor other formal

analysis that helps programmers to verify regular expression syntax.
A simple way to guarantee correct regular expression syntax is to

force programmers to create objects, rather than strings, represent-
ing the regular expression. Any syntax error is caught at compile
time. However, such a syntax is more verbose and less readable
than a string representation. Even a language like Haskell that en-
courages such a style still contains a Text.Regex.Posix regular
expression library that parses regular expressions at run time. Main-
land [25] proposes an analysis that detects errors by parsing the
regular expression string at compile time. This only works when the
mkRegex function is invoked on a string literal. Other work in the
functional programming community assumes syntactic correctness.
For example, Broberg et al.’s static semantics for “wellformedness
of regular expression patterns” actually confirms variable binding

and types [4]. Likewise, Fisher and Shivers’s static analysis for
syntax objects is proposed to be applied to a known, valid regular ex-
pression by converting it into a FSM rendered in the C programming
language, then analyzing the C program [16].

Regular expression patterns [18] are proposed by the program-
ming language community as an alternative to XPath for specifying
elements and attributes in an XML document. Both can be viewed
as a variety of regular expression. The existing analyses are comple-
mentary to ours, in that they assume correct syntax and try to deter-
mine semantic errors, such as subpatterns that will never match [3,
6]. In Wilk and Drabant’s type system for Xcerpt, if the application
type-checks, it passes a set of test cases; that is, its results are in a
given expected set [33].

A more heavy-weight approach than ours is to analyze an applica-
tion to determine all the strings that it can generate, represented as an
automaton [32] or a grammar [26]. This has been most often applied
to detection (or generation [23]) of SQL injection attacks, and can be
augmented by external string solvers [22]. Regular expressions are
often used by the analysis to describe the legal strings, but none of
this work addresses applications that use regular expressions. String
analysis has also been used to verify sanitization routines, such as
to confirm that every blacklisted character has been removed from a
given string [36, 5, 31]; such work is complementary to ours.

Our type Regex(n) could be expressed as a dependent type [34],
if n can refer to another program variable. Such a feature was not
necessary in our case studies.

5.1 Other practical tools
The FindBugs [15, 19, 20] tool has three bug checks for regu-

lar expressions. (1) It reports invalid regular expression syntax in
compile-time constants that are passed to Pattern.compile. In
our case study, the subject applications contained no errors of this
variety. By contrast, the Regex Checker is a type system that applies
to all Strings. (2) File.separator cannot be used as a regular ex-
pression (on Windows). This special case is not needed in the Regex
Checker. (3) "." may not be used as as regular expression, because
a programmer might have intended to escape the period. The Regex
Checker does not contain such a check. Overall, FindBugs would
find no errors in the subject applications used in our case study.

Spinellis and Louridas [30] extended FindBugs to better verify
API call arguments, and found that FindBugs “contained a number
of tests for the replace methods that were incorrect”.

These other popular Java static checking tools do no checking of
regular expressions: Checkstyle [8], Hammurapi [17], JLint [21],
Macker [24], and PMD [29, 9].

6. CONCLUSION
We believe that formal methods and verification are important

enough to be applied to all aspects of an application. This includes
regular expression syntax, which may seem mundane but is of sig-
nificant importance in practice. Our experience with real-world
code indicated both necessary and unnecessary features in a reg-
ular expression type system, several of which were not obvious
beforehand. Our Checker Framework enables new type systems
to be created easily and succinctly, and to be scaled to arbitrary
power. This satisfies an essential condition of practicality: that new
formal techniques must be easy to implement. Our implementation
is publicly available [7].

In case studies on five Java applications, our regular expression
type system found 56 new bugs. It was easy to use because it requires
low overhead and little understanding of the code being annotated.
The type system improves documentation and encourages good
design.
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