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Abstract
Cloth simulations are notoriously difficult to tune due to the many parameters that must be adjusted to achieve
the look of a particular fabric. In this paper, we present an algorithm for estimating the parameters of a cloth
simulation from video data of real fabric. A perceptually motivated metric based on matching between folds is
used to compare video of real cloth with simulation. This metric compares two video sequences of cloth and
returns a number that measures the differences in their folds. Simulated annealing is used to minimize the frame
by frame error between the metric for a given simulation and the real-world footage. To estimate all the cloth
parameters, we identify simple static and dynamic calibration experiments that use small swatches of the fabric.
To demonstrate the power of this approach, we use our algorithm to find the parameters for four different fabrics.
We show the match between the video footage and simulated motion on the calibration experiments, on new video
sequences for the swatches, and on a simulation of a full skirt.

1. Introduction

Several recent major movie releases have demonstrated that
the motion of clothing adds greatly to the appearance of a
virtual character. This effect is particularly compelling for
scenes that include both real and synthetic actors such as
those with Yoda and Anakin Skywalker in Episode II: At-
tack of the Clones. In such scenes, the virtual clothing must
move and be rendered so that it blends in seamlessly with
the motion and appearance of the real clothing in the scene.
Realistic virtual clothing is possible now because of recent
advances in cloth simulation techniques4, 9, 5, 37, 6.

The motion of fabric is determined by resistance to bend-
ing, stretching, shearing, external forces, aerodynamic ef-
fects, friction, and collisions. Although with the right set
of parameters, good simulators produce very realistic look-
ing motion, choosing parameters that will provide a particu-
lar appearance remains a time consuming task that requires
the computation and viewing of many forward simulations.
Some parameters can be chosen based on the animator’s in-
tuition about the fabric—a knit fabric is more stretchy than a
woven fabric such as linen, for example. But not all the pa-
rameters of a cloth simulator are intuitive or map directly
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to measurements that can made by a system such as the
Kawabata system22. In our paper, we address this problem
by using optimization to automatically determine these pa-
rameters from a sequence of video frames of the fabric under
consideration.

The parameters are optimized on a set of static shots and
motion clips of a small swatch of a particular fabric and then
tested on a simulation of a full skirt made from that fabric.
We designed the swatch tests to span the space of behaviors
that we expect to see in the final sequences of motion with
the skirt so that all parameters can be tuned appropriately.
We use simulated annealing for the optimization step with
an optimization function that assesses the extent to which
the folds in the simulated and physical fabric match. This
match is evaluated by means of a shape metric that uses pro-
jected light to detect surface orientation in real and simulated
fabrics. The metric is tuned to be most sensitive along folds
and to discount planar regions.

We use the system to find the parameters for four differ-
ent fabrics. We show the match between the video footage
and the simulated motion on the calibration experiments, on
additional video sequences for the swatches, and on a sim-
ulation of a full skirt as shown in the image on the previous
page.

2. Related Work

Cloth modeling has a long history, dating back to work in the
textile community from the mid-1930s by Peirce27. Work on
cloth modeling in computer graphics has focused on devel-
oping dynamic simulation techniques that are both realis-
tic and fast. Baraff and Witkin describe a cloth model that
uses stiff springs with implicit time integration4. This model
was subsequently adapted to reduce the over-damping due to
implicit integration9. Explicit time integration approaches18

use weaker springs for stretching and shearing, often explic-
itly limiting the amount of stretching29, 6. Choi and Ko in-
troduced a bending energy model that more accurately cap-
tures the fine creases and bends of cloth9. Lahey provides
a comprehensive overview of cloth hysteresis models from
the perspective of computational fabric mechanics23. Exten-
sive work has also been done on modelling collisions and
friction. Cloth self-collision is handled either by untangling
the cloth37, 39, 3 or by preemptively avoiding collisions30, 20, 6.
Various potential field methods have been used for general
collision detection and response33, 32.

Despite this large body of work on cloth simulation mod-
els, little work has appeared in the computer graphics liter-
ature on estimating the parameters of these models so that
they match the behavior of real fabrics. Cloth parameter
estimation has been studied in the textile community (for
an overview, see Breen and colleagues17), but such meth-
ods have not yet enjoyed wide-spread use in the computer
graphics community. An important exception is the work by

Breen5 who used the Kawabata system22 to measure bend-
ing, shearing, and tensile parameters by subjecting a swatch
of fabric to a series of mechanical tests and measuring the
force needed to deform it into a standard set of shapes. Al-
though the Kawabata system can provide accurate measure-
ments, these measurements are problematic for computer
graphics cloth simulation problems for two reasons. First,
there might not be a direct and simple mapping between the
parameters for a particular cloth model and the Kawabata
parameters. Second, the Kawabata system does not measure
dynamic cloth parameters, e.g. air drag or damping, which
are of key importance for moving cloth.

One promising approach for modelling cloth parameters
is to automatically search for parameters that match real,
observed cloth. Jojic and Huang fit parameters of a particle-
based cloth model to fit a range scan of real cloth in a static
rest configuration, draped over a sphere21. More challenging
still, they attacked the problem of measuring the 3D geom-
etry of an object from the resting shape of a piece of cloth
draped over it, a problem that we do not consider in this pa-
per. However, Jojic and Huang did not treat the problem of
measuring dynamic parameters or demonstrate accurate re-
sults across a range of fabric types.

More distantly related are techniques for computing the
geometry of cloth from images. Coarse estimates of the
time-varying geometry of cloth can be computed using tra-
ditional stereo matching techniques by using two or more
cameras and treating each time instant independently (see
Scharstein and Szeliski31 for an overview). More accurate re-
sults may be obtained by projecting structured light patterns
on the cloth (see Zhang et al.40 for an overview). Rather than
computing shape at every time instant independent from the
next, it can be advantageous to integrate images over time to
improve accuracy. Two examples of promising work along
these lines are Carceroni and Kutulakos8 and Torresani et
al.34; both studies demonstrated reconstructions of moving
cloth.

3. Cloth Model

Because our framework for estimating cloth simulation pa-
rameters is independent of the cloth model, we can in prin-
ciple select a specific model that meets a set of criteria
such as accuracy or simulation speed. Our choice of a cloth
model was guided by two goals, realism and practicality.
We wanted to use a model that was sophisticated enough to
capture the detailed dynamic behavior found in real fabrics
but still straightforward to implement. Because our intention
was to apply the learned cloth model parameters to arbitrary
garments with varying triangle resolution, it was also im-
portant that the cloth parameters correctly scale to varying
resolutions of cloth.

We used the model described by Baraff and Witkin as the
basis for our cloth simulator4. This model has sufficient rich-
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ness to produce a wide variety of cloth behaviors. The under-
lying meshing is triangular, making clothing modelling eas-
ier. More importantly, its input parameters are independent
of meshing, so that parameters recovered on one mesh (the
test swatch) can be transferred to another (the skirt). While
nonlinear models such as the buckling behavior of Choi and
Ko9 could potentially capture more realistic details of cloth,
there is no straightforward way to scale the parameters of
these models to meshes of varying resolutions. We expect
that future application of our parameter-estimation frame-
work to other scale-invariant cloth models will provide even
more realistic results.

The model developed by Baraff and Witkin formulates the
energy of a particular triangle in terms of so-called condition
functions C(x) such that the total potential energy associated
with the system is given by

Eu =
ks

2
C(x)CT (x) (1)

where ks is a stiffness coefficient associated with the partic-
ular condition function. Forces are then simply calculated by

F =∇xEu (2)

Damping forces are similarly fomulated in terms of the
C(x),

d =−kd
dC
dx

Ċ(x) (3)

We thus associate a stiffness coefficient ks and a damping
coefficient kd with each of the C(x). In their paper, Baraff
and Witkin describe a set of C(x) consisting of an in-plane
stretch term, an in-plane shear term, and an out-of-plane
bending term, giving a total of six parameters we can use
to tune the internal cloth model. We refer the reader to their
paper for the full details4. We note, however, that (as they
allude to in footnote 5) energy should scale linearly with tri-
angle area to ensure scale independence. Therefore, we need
to be careful when substituting C(x) for stretch and shear
into eq. 1 that the resulting formula is linear in a rather than
quadratic.

In the course of running our experiments, we discov-
ered that a linear drag model such as that used in previous
cloth work4, 9 was not able to capture dynamic aspects of
cloth. In order to add additional air-drag degrees of free-
dom to our cloth model without resorting to fully modeling
aerodynamics25, we developed a simple nonlinear alterna-
tive. To calculate the drag force on a triangle, we decom-
pose the average velocity on the face into two components,
one normal to the surface (vN ) and one tangential (vT ). Total
drag force is then a linear function of tangential velocity and
a quadratic function of normal velocity, with an additional
term k f that controls the degree of nonlinearity,

fdrag =−a

(
kN |vN |2

1 + k f |vN |2
vN

|vN |
+ kT vT

)

where a is the area of the given triangle. The linear term
is merely Stokes’s law1; the quadratic term matches bet-
ter the experimental behavior of macroscopic bodies in low
Reynold’s number flow14. The addition of the |vN |2 term in
the denominator which makes the force asymptotic as vN →
∞ was partially motivated by the observed phenomenon of
drag crisis14, where under certain circumstances the drag co-
efficient can actually drop at the onset of turbulence1. The
optimizer is free to eliminate this behavior or other terms
of this equation by setting the corresponding parameters to
zero.

Initially, we used a first-order implicit Euler time inte-
gration scheme similar to the one described by Baraff and
Witkin4. Unfortunately, we found that implicit integration
introduced damping which could not be eliminated by op-
timizing cloth parameters. We had more success in match-
ing realistic cloth motions by using higher-order explicit
methods. The results in this paper all use an adaptive 4th-
order accurate Runge-Kutta methods with embedded error
estimation2. While this method offers the advantages of fa-
miliarity and automatic bounding of error, it is rather slow,
and recent work suggests that using 2nd-order backward
differences9 or Newmark schemes7 may be a better choice.

For collision handling, we use a model similar to Brid-
son and colleagues6 which combines repulsion forces with
impulses to robustly prevent all collisions before they occur.
However, separating repulsion forces from the cloth inter-
nal dynamics and applying them outside the Runge-Kutta
solver affected stability and resulted in visible artifacts. In-
stead, we apply repulsion forces inside the solver loop, so
that the solver’s own internal error estimation can remove
these artifacts. The drawback of this technique is speed, be-
cause the system must check for collisions every time it eval-
uates the state derivatives (as opposed to once every colli-
sion timestep as in Bridson et al.6). To achieve acceptable
performance, we used a number of collision culling algo-
rithms, including hybrid top-down/bottom-up update24, fast
triangle reject tests26, and a curvature-based criterion for re-
jecting self-collisions that was first introduced by Volino and
Thalmann38 and later refined by Provot30.

4. A Metric for Matching Simulation to Video

We use a perceptually motivated metric to compare the mo-
tion of cloth in simulation with a video sequence of real
fabric motion. Our algorithm compares the two sequences
frame by frame and computes an average error across the
entire sequence. Real fabrics exhibit a wide variety of mo-
tion ranging from soft and flowing (satin) to stiff (linen). Our
metric captures the complex dynamics of cloth motion and
also helps to distinguish between different fabrics.

Researchers in computational neurobiology hypothesize
that the human perceptual system is sensitive to moving
edges in video11, 12, 36. Studies have shown that the receptive
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fields of simple cells in the macaque cortex act as edge or
line detectors, responding to oriented edges or lines in nat-
ural scenes19, 35, 10. In cloth, these edges correspond to folds
and silhouettes, which are regions of high variation in shape.
Hence, our perceptually motivated metric for cloth compares
two video sequences, one from simulation and one from the
real world, and returns a number that measures the differ-
ences in their folds. The metric also penalizes the silhouette
mismatch between the two sequences.

Fold Detection and Representation: Folds appear as soft
edges in video whose appearance is dependent on material
properties and lighting. Haddon and Forsyth15, 16 describe
a learning approach for detecting and grouping folds (and
grooves) in images of fabrics. Their technique can handle
lighting effects caused by diffuse inter-reflections in cloth.
However, most fabrics have very complicated reflectance
properties. In our experiments, we eliminate the effects of
lighting and material reflectance by projecting a structured
light pattern of horizontal stripes onto the fabric.

From the light-striped video sequence, we compute the
dominant orientation for each edge pixel by convolving it
with a steerable filter bank13. In our implementation, we use
the G2/H2 quadrature pair with kernel size 12 as the basis fil-
ters. Details of computing the dominant orientation from the
coefficients of filter bank response are given in Appendix I
of Freeman and Adelson13. We convolve the image with the
filter bank, compute the filter coefficient responses, blur the
coefficients using a gaussian kernel, and compute the domi-
nant orientation from these coefficients. We name the result-
ing orientation image an angle map, shown in Fig. 1. The
angle map, which measures the local orientation of the pro-
jected pattern, has a constant value when the surface is pla-
nar and varies at folds. We threshold the gradient of the angle
map to get a gradient mask Mk for each frame of video (Fig.
1).

Mk(i, j) =

{
1, ‖δ(i, j)‖ ≥ τ
0, ‖δ(i, j)‖< τ (4)

where τ is a user defined threshold and ‖δ(i, j)‖ is the mag-
nitude of the gradient of the angle map at (i, j). The gradient
mask is non-zero at regions of high gradients, corresponding
to folds, and zero at planar regions.

Fold Comparison: Our metric computes the frame by
frame sum of squared differences (SSD) between masked
angle maps in simulation with video. We preprocess the in-
put video sequence to compute the angle map at each frame.
Similarly, in simulation, we render the cloth shape using the
current parameter values and project the same striped pat-
tern, to get a striped simulation sequence. We compute the
angle map at every frame in simulation from this sequence.
We then compute the SSD of the angle values for all overlap-
ping points in the two angle maps. We multiply this differ-
ence with the gradient mask, which helps to emphasize the

Figure 1: Top Row: Input light striped image. Bottom Row
(left to right): angle map and gradient mask.

Figure 2: The stages in the metric pipeline. Top row (left to
right): Angle map from video, angle map from simulation.
Bottom row (left to right): angle map difference, final met-
ric value for this frame (angle map difference multiplied by
gradient mask from video).

differences in fold regions over planar regions (Fig. 2). We
sum the error across all frames to compute the overall error
across the entire sequence. The error at any particular frame
k along the sequence is

E f old
k =

Sx

∑
i=0

Sy

∑
j=0

Mk(i, j) · (θreal
k (i, j)−θsim

k (i, j))2 (5)

where (Sx,Sy) is the size of the angle maps and θreal , θsim

are the angle values from real and simulation angle maps
respectively.

Silhouette Comparison: In addition to the angle map error,
we penalize the silhouette mismatch between the simulation
and the video of real cloth. This penalty is proportional to
the difference between the two silhouettes, i.e., the number
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Figure 3: This plot shows angle map error as a function
of bend and stretch stiffness parameters. Dark areas indi-
cate regions of small error and bright areas correspond to
large errors. Note that the space is fairly noisy. The mini-
mum found by the optimizer is contained in the large dark
region in the lower portion of the plot.

of mismatched pixels.

Esilh
k =

Sx

∑
i=0

Sy

∑
j=0
| Areal

k (i, j)−Asim
k (i, j) | (6)

where

Ak(i, j) =

{
1, inside silhouette
0, otherwise

(7)

The total error in frame k is

Ek = E f old
k + αEsilh

k (8)

where α is a user-defined weight that controls the relative
contribution of the two terms. We used a value of 0.1 for α
in our experiments. The error across the entire sequence of
length N frames is given by

E =
N

∑
k=1

Ek (9)

5. Parameter Identification

We use optimization to estimate the parameters of the cloth
simulator from video. Before we describe the details of the
optimizer, we look at the error space of the angle map met-
ric, which gives us useful insight about the parameters of
the system. Fig. 3 shows the variation of error for different
values of bend stiffness and stretch stiffness coefficients for
satin. At each point in the parameter space, we evaluated the
metric error between the first frame of video and a simula-
tion using the parameters. From the figure, it is evident that
the error space is fairly noisy, with many local minima, mo-
tivating the need for a global optimization technique.
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Figure 4: Perturbation analysis at the solution for bend stiff-
ness parameter.

In addition to the parameter values, we estimate the rela-
tive importance of each parameter for a given experiment by
performing a perturbation analysis at the solution point. The
importance or sensitivity of a parameter p depends on its lo-
cal gradient ∂E

∂p ; it relates a small change in parameter value
to a change in the error value. Instead of computing the gra-
dient, we robustly compute the variability of the parameters,
defined as ∂p

∂E . To compute the variability, we perturb each
parameter of the simulator individually up to ±0.20% of its
value, compute the error and fit a quadratic curve to the data
(Fig. 4). From the quadratic, the variability is computed as
the change in parameter values that results in a 1% change in
the error. Parameters with low variability have high sensitiv-
ity and are estimated more reliably for a given experiment.

6. Optimization Framework

We use simulated annealing to find the parameters that min-
imize the error function given in eq. 9. Simulated anneal-
ing initially explores the space in a semi-random fashion
and eventually takes downhill steps. The likelihood that it
will take a step in a direction that is not locally optimal is
a function of the temperature (Fig. 5). We use the continu-
ous simulated annealing method presented in Press et al.28,
which combines the Metropolis algorithm with the downhill
simplex method for continuous n-variable optimization. We
find it useful to reset the simplex with the current best so-
lution when the temperature reduces by a factor of 3. Prior
to optimization, we perform an exhaustive search for each
fabric, where we choose four values for each cloth parame-
ter across its entire range. This corresponds to a very coarse
sampling of the parameter space. We simulate the fabric for
all points in this coarse set and compute the error for each
point by comparing against the real fabric. We initialize the
optimizer with the point corresponding to the minimum er-
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Figure 5: Progress of the simulated annealing optimizer as
measured by error. The temperature decrease is governed by
a geometric cooling schedule.

ror. We have found that this strategy allows the optimizer to
locate a good minimum of the space.

7. Experiments

We designed simple experiments to capture the dynamics of
the different types of fabrics and the air/cloth interaction.
The experiments are easy to perform, capture, and repeat;
yet they demonstrate the complex dynamics of cloth motion.
The parameters obtained from the simple experiments were
used to simulate skirts and other complex fabric motions. In
essence, our experiments were designed to be a calibration
setup for estimating the static and dynamic parameters of a
cloth simulator.

We perform two estimation experiments for each fabric, a
static test and waving test. We used four types of fabrics:
linen, fleece, satin and knit. These fabrics exhibit a wide
range of static and dynamic behavior and span a large range
of real fabrics.

We perform the static and waving tests on a small swatch
of each fabric. In the static test, the two top corners of the
fabric are held stationary, and the fabric is allowed to sag
under gravity. For a fixed separation between the top cor-
ners, different fabrics attain different static shapes as shown
in Fig. 6. The static test gives a good estimate for the static
stiffness and bend parameters. In the waving test, one of
the top corners of the fabric is fixed and the other corner is
moved back and forth (Fig. 7). The waving motion of fab-
rics in simulation is affected by their dynamic parameters.
We see from the accompanying videos that real fabrics ex-
hibit a wide range of interesting motions even with the same
input excitation. We designed the waving motion to roughly
match the types of motion occurring in real garments such

Figure 6: The static test with four real fabrics. Top row (left
to right): linen and fleece. Bottom row: satin and knit. Top
corner separation is identical across all four fabrics.

Figure 7: Three frames from the waving test for satin.

as skirts. This gives reasonable estimates for cloth parame-
ters while avoiding the need to optimize directly on complex
fabric geometries (e.g. skirts) involving many collisions.

8. Results

In this section, we report the results of simulation param-
eters obtained using our technique applied to four fabrics:
linen, fleece, satin and knit. We measured the mass and di-
mensions of the fabrics. We also accurately measure the po-
sition of the two top corners using a Vicon motion capture
system. We compute the projection matrices for the camera
and projector using a calibration grid comprising of several
motion capture markers. We performed two trials per experi-
ment, each with slightly different initial conditions and opti-
mized on the first 50 frames of video in each trial. Each trial
took approximately 50 hours to converge on a 2.8GHz In-
tel Pentium 4 Xeon processor (approximately 600 iterations
of simulated annealing). For this reason, we started the opti-
mizations on the two trials (per fabric) with the same initial
guess and chose optimized parameters that minimized the
total error on the two trials.

Static test. We performed optimization on two trials for
each fabric; the results are shown in Fig. 8 and Fig. 9. The
two trials have different separation distances between the
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Figure 8: Results of optimization for the static test, trial 1. Top row: real fabrics (left to right) linen, fleece, satin and knit.
Bottom row: Corresponding fabrics in simulation.

Figure 9: Results of optimization for the static test, trial 2. Top row: real fabrics. Bottom row: Corresponding fabrics in
simulation.

Linen Fleece Satin Knit
Pars Start Exp 1 Exp2 Start Exp 1 Exp 2 Start Exp 1 Exp 2 Start Exp 1 Exp 2

1 1e-3 0.009 0.0045 1e-4 0.0001 0.0001 1e-5 1.106e-5 6.94e-6 1e-6 1.52e-6 1.51e-6
2 4000 404.9 3682.1 50 129.2 200.04 50 19.58 19.38 50 27.97 28.36
3 215.44 175.37 208.15 215.44 103.96 31.39 50 76.81 69.65 50 1226.44 2693.07
4 1e-7 9.92e-7 3.22e-7 2.15e-6 2.13e-7 4.11e-7 1e-7 2.49e-7 3.98e-7 1e-7 1.01e-7 2.27e-7
5 10 12.16 10.17 10 4.78 0.064 10 14.42 3.68 10 10.12 11.83
6 10 2.19 13.17 10 13.86 3.75 10 4.11 4.56 10 0.13 4.04

E1 75.0 62.8 136.8 121.5 115.5 92.5 253.1 172.8
E2 81.2 67.0 207.3 98.7 194.7 104.7 179.7 136.1

Table 1: Tabulation of the static parameters from two experiments. Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping,
5=stretch damping, 6=shear damping, E1=error from experiment 1, E2=error from experiment 2.
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Figure 10: Waving results for satin. The top picture in each block shows the real fabric and the bottom shows the corresponding
frame from simulation.

c© The Eurographics Association 2003.



Bhat et al. / Estimating Cloth Simulation Parameters from Video

Bend Stretch Shear Bend Damp Stretch Damp Shear Damp Error
Initial Values 1.0e-05 50 50 2e-07 10 10 179.026

Optimization 1 6.93766e-06 19.3832 69.653 3.98337e-07 3.67932 4.56238 104.747
Optimization 2 7.77204e-06 20.2884 32.6492 2.08755e-07 1.95807 10.6535 104.502
Optimization 3 8.75613e-06 19.8365 50.8304 2.56854e-07 7.08276 9.25576 103.501
Optimization 4 9.55647e-06 19.2745 74.7429 3.14821e-07 5.47909 1.06559 103.243
Optimization 5 8.47762e-06 20.1119 36.762 2.3997e-07 8.38981 11.9167 103.849

Variability (in %) 9.18 8.10 23.01 21.11 >100 >100

Table 2: Performance of simulated annealing on several optimizations. All the optimizations start with values which are within
±5% of the initial values given in the first row. Parameters with high variability (e.g., stretch damping) are estimated poorly
and vary significantly across the different optimizations. However, parameters with low variability (e.g., bend) are consistent
across multiple optimizations.

Linen Fleece Satin Knit
Pars Start Exp 1 Exp2 Start Exp 1 Exp 2 Start Exp 1 Exp 2 Start Exp 1 Exp 2

1 1e-3 0.001 0.0008 1e-4 1.1e-5 0.0001 1e-5 6.4e-6 5.6e-6 1e-6 1.1e-6 1.2e-6
2 4000 2016.8 2935.3 50 82.6 89.3 50 26.4 32.4 50 69.7 12.7
3 215.4 167.8 465.7 215.4 255.2 296.9 50 97.7 74.2 50 37.5 60.0
4 1e-7 3.1e-7 4.7e-7 2.2e-6 1.4e-6 1.3e-6 1e-7 1.5e-6 1.2e-7 1e-7 1.0e-7 5.4e-7
5 10 2.7 5.2 10 2.4 5.9 10 0.6 4.5 10 4.5 3.9
6 10 3.9 5.5 10 1.6 9.8 10 6.6 4.7 10 4.9 2.6
7 2 8.7 2.2 2 2.4 1.6 2 4.8 0.8 2 1.5 1.0
8 2 5.6 2.0 2 3.1 0.3 2 1.8 1.5 2 0.5 1.8
9 2 0.4 1.3 2 4.3 1.2 2 0.9 0.8 2 1.2 0.3

E1 94.2 85.9 93.1 208.8 179.6 222.2 124.0 106.4 114.1 230.7 208.8 246.3
E2 115.7 113.0 100.9 233.2 230.2 180.2 280.8 272.8 178.6 255.1 261.8 225.3

E1+E2 198.9 194.0 409.8 402.4 379.2 292.7 470.6 471.6

Table 3: Parameters from two waving experiments. Line E1 shows the error for Experiment 1 with the initial conditions and
after optimization. It also shows the error for experiment 2 when run with the parameters found for experiment 1 without further
optimization. Similarly line E2 shows the initial error for experiment 2, the error after optimization, and the unoptimized result
with those parameters on experiment 1. The parameter set from the experiment shown in bold is selected as the final estimate for
each experiment because this parameter set minimizes the sum of the error from the two trials, E1 + E2. Satin has very different
starting errors for the two experiments although the initial conditions are the same and the error values after optimization also
differ significantly. Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping, 5=stretch damping, 6=shear damping, 7=linear
drag, 8=quadratic drag, 9=drag degradation, E1=error per frame from experiment 1, E2=error per frame from experiment 2.
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Figure 11: Bar charts showing the variability analysis results for the waving test. From left to right: linen, fleece, satin and knit.
Legend: 1=bend, 2=stretch, 3=shear, 4=bend damping, 5=stretch damping, 6=shear damping, 7=linear drag, 8=quadratic
drag, 9=drag degradation.
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top corners. For each fabric, we optimized for six param-
eters: stiffness and damping parameters for stretch, shear,
and bend. The air drag parameters were fixed for this ex-
periment to the mid point of their range of values. The initial
values for the two trials were obtained from a coarse exhaus-
tive search (four values per parameter). The initial values
and final values of the estimated parameters are summarized
in Table 1. Figs. 8 and 9 show a very good visual match
between the simulations with their counterpart real fabrics.
However, there is a significant disparity in the optimized pa-
rameter values from the two trials. In order to understand
this disparity, we performed a set of optimizations (on a sin-
gle fabric) with very similar initial values. Table 2 shows the
parameter values for satin from five optimizations where the
initial conditions were randomly varied by ±5%. From the
table, we see that the final error values are very close. We
get consistent estimates for parameters that have lower vari-
ability (e.g., bend, stretch). Parameters with high variability
are estimated poorly, because their values do not contribute
sufficiently to the error. This result is consistent with our in-
tuition that static tests cannot be used to estimate dynamic
parameters like stretch and shear damping or air drag and
motivates the waving test, which exercises both the static
and dynamic parameters.

Waving test. We optimized for nine parameters in the wav-
ing test: the six cloth stiffness and damping parameters and
three air drag parameters (Fig. 10). As with the static test,
we initialized the static parameters in this test from a coarse
exhaustive search. The dynamic parameters were initialized
using a random guess. We optimized on the first 50 frames
of the sequence. The initial values and final values of the
optimized parameters for two trials are reported in Table 3.
The final values of the parameters from the two trials differ
in part because the variability of the parameters is still fairly
high (Fig. 11). Different motions or longer sequences might
further reduce the variability of the parameters. We choose
the parameter set that minimizes the sum of the error from
the two trials. For instance, in the following example of
satin waving, we choose the parameters from experiment 2.

Error: Exp 1 Error: Exp 2 Total Error
Pars: Exp 1 106.4 272.8 379.2
Pars: Exp 2 114.1 178.6 292.7

This approach seems to produce plausible results with
skirts and other validation experiments. However, we
believe that a more general solution for parameter identi-
fication using our framework would be to simultaneously
optimize across multiple trials of different experiments.

Optimization progress. Fig. 12 shows the static shape of
the simulation before and after optimization. Fig. 13 shows
the corresponding angle map comparison. These two figures
show the progress of the optimization and indicate that the
minimum corresponds to a visually compelling match.

Figure 12: Showing the improvement in shape match after
optimization. The top row compares a video frame of fleece
with simulation before optimization. The bottom row shows
the corresponding video/simulation pair after optimization.

Figure 13: Comparison of angle maps for the shapes shown
in Fig. 12 before and after optimization. Top Row (Before
Optimization, from left to right): Angle map from video, an-
gle map from simulation, angle map SSD. Bottom Row: The
corresponding angle maps after optimization.

Metric validation. We compare each of the four optimized
angle maps from simulation (corresponding to the four fab-
rics) with the four angle maps computed from video. In
Fig. 14, each curve shows one fabric (e.g., fleece) compared
with four simulations, corresponding to each fabric type. We
see that each fabric in simulation has a minimum error when
compared to its counterpart in reality. Fig. 14 also demon-
strates that our approach could be potentially useful for rec-
ognizing different types of fabrics in video.

Generalization. We evaluated the parameters obtained
from optimization on longer sequences (150 frames). Fig. 10
and the accompanying videos show a good visual match be-
tween corresponding frames in simulation and video. All
videos are available off the web page and/or included in the
DVD. The videos also show that the parameters obtained
from optimization generalize well on new sequences. We
also validated the estimated parameters on a long sequence
actuated by a robot (Fig. 15). We used a a Mitsubishi PA-10
robot arm to move the corner point along a simple sinusoidal
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trajectory, thereby ensuring that we had the same input mo-
tion across different fabrics. Finally, we used the optimized
parameters to simulate a skipping motion of a human ac-
tor wearing a skirt (Fig. 16). Here, the actor repeats the same
skipping motion (approximately) for the four different skirts.
We used data from a full body optical motion capture of the
actor performing the same skipping motion (in another trial)
to drive the character for the cloth simulation. The results
show that the parameters obtained from our optimization ap-
proach approximately capture the static shape and dynamic
properties of skirts of different materials.

Linen Sim
Fleece Sim

Satin Sim
Knit Sim

Linen

Fleece

Satin

Knit

Optimized Simulation Parameters

E
rr
o
r

1

2

Figure 14: Comparing the optimized parameters in simula-
tion for each fabric with the four real fabrics. For example,
point 1 in the graph shows the error when a simulation with
fleece parameters is compared with video of satin. Similarly,
point 2 is the error when the satin simulation is compared
with real satin. The four curves have a minimum when they
are compared to their correct counterparts.

9. Discussion

This paper describes an optimization framework for identi-
fying the simulation parameters of cloth from video. We cap-
tured the behavior of small swatches of fabric using a set of
dynamic and static tests and demonstrated that the optimizer
could identify appropriate simulation parameters from those
tests. These parameters produced four distinct and recogniz-
able fabrics when applied to a more complex simulation of a
skirt as it was driven by motion capture data from a human
figure.

The cloth model was not the main focus of this research,
yet in early versions of the system it was often the bottle-
neck in achieving appealing results. To match a video se-
quence accurately, the cloth physics model as well as the
collision algorithms must be chosen carefully. Instabilities
in the collision handling will cause perceptible quivering in
the motion of cloth. Conversely, extra damping introduced

by the integration method makes crisp folds impossible to
match. The parameters must also be independent of the res-
olution of the mesh so that they can be identified on low res-
olution swatches and applied to higher resolution garments.
Progress is being made in these areas, however, and cloth
models are continually improving. For example, Bridson et
al.7 introduces a scale-independent bend model with encour-
aging results.

Our cloth model does not diverge significantly from pre-
vious models discussed in the literature. Our only major ad-
dition was a nonlinearity in the drag model. Our approach
should generalize to any parameterized cloth model that pro-
duces a sufficiently rich set of physically realistic motions.

Although the skirt is far more complex than the swatches
that were used to determine the parameters, it is not as
complex as many garments, for example, a form-fitting
pair of pants or a tailored blazer. For more complex gar-
ments, choosing the parameters via optimization on small,
flat swatches may not be sufficient because the shape of the
garment is determined by darts, pleats and by the interplay
of different fabrics (wool, lining, and interfacing, for ex-
ample). More complex garments may require the hand de-
sign of additional tests that mimic particular behaviors or
elements of the garment in isolation. Moreover, the model
might need extra parameters to handle anisotropic effects,
hysteresis and coupling effects (stretching along one direc-
tion causing shrinking in the other direction), all of which
would need specialized tests.

En route to the metric used in the experiments described
here, we tried a number of other metrics: comparing the
overlap of the silhouettes, the distance function between sil-
houette edges, and using information from internal edges
marked on the fabric. The metric that measures folds and
silhouettes, in concert with the projector for the light stripes,
proved to be a simple and effective metric that far out-
performed our earlier attempts. The space of possible met-
rics is vast, of course, but one class of metrics that we did not
experiment with are statistical metrics that compute a func-
tion of the shape of the fabric across time rather than evalu-
ating the match on a frame-by-frame basis. The experiments
with the swatches were carefully controlled to have initial
conditions for the simulation that matched those seen in the
video. If instead, we were to optimize on more complicated
garments, then such tight control of the initial conditions is
unlikely and a statistical metric might be preferable. Such a
metric might, for example, compute the average number of
folds across a time sequence rather than looking for a fold to
appear at a particular location on the swatch.

Our hope is that this work will promote a more rigorous
evaluation of various cloth models, especially with respect
to how accurately they match reality, and perhaps lead to
creation of a standardized set of benchmarks for cloth simu-
lation models.
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Figure 15: Validating the estimated parameters using the same input excitation. The top right corner of the fabric is actuated
using a Mitsubishi PA-10 robot. Each row shows the match between video (top) and simulation (bottom) at four frames chosen
from a 100 frame sequence. The fabrics, from top to bottom, are linen, fleece, satin and knit respectively.
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Figure 16: Validating the estimated parameters on a more complicated motion and garment. We show (from left to right, top to
bottom) several frames of an actor skipping while wearing a fleece skirt. The corresponding frames of the skirt in simulation
shows that our technique captures the approximate shape and dynamics of the real skirt. These frames were equally spaced
across the entire sequence (0.5 seconds apart). The videos in the web page show the validation results on all four skirts.
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