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ABSTRACT
The rise of online educational software brings with it the
ability to run experiments on users quickly and at low cost.
However, education is a dual-objective domain: not only do
we want to discover general educational principles, we also
want to teach students as much as possible. In this paper,
we propose an automatic method for allocating experimen-
tal samples, based on multi-armed bandit algorithms, that
balances between learning each experimental condition’s ef-
fectiveness and users’ test performances. Our algorithm,
UCB-Explore, allows the experimenter to explicitly spec-
ify the tradeoff these two objectives. We assess the per-
formance of our algorithm in a simulated experiment with
parameters drawn from a real-world data. In this simula-
tion, our algorithm is better able to navigate this trade off
compared to other multi-armed bandit algorithms such as
UCB1 and ε-greedy. As an example application, we show
how a researcher could use the generated samples to iden-
tify strong and weak interaction effects, and confirm these
findings on a separately-collected dataset.

Keywords
Multi-armed bandits, automatic experimentation, scientific
discovery

1. INTRODUCTION
The rise of online educational software has greatly increased
the amount of data available to researchers in the educa-
tional data mining community. Indeed, both the games and
e-commerce industries have already been transformed by the
introduction of A/B testing to understand how users react to
different software designs and incentives. These tests are tra-
ditionally done in a staged manner: run a test, then choose
the best option to deploy to all users. But why separate the
test phase and the optimized software? Just as systems like
Assistments promise to both educate and assess simulta-
neously [20], we should both educate and experiment at the
same time. With programmatic control of educational mate-
rial and automatic data collection, such systems could pro-
vide ever more effective educational experiences while also

generating scientific knowledge as they collect data about
the comparative effectiveness of different representations of
knowledge or teaching strategies. This knowledge could then
be used to inform educational theories, potentially produc-
ing new and better options to be investigated by the system.

However, this scientific objective is complicated by the fact
that in many educational contexts we are working in a high-
stakes domain: users of educational software should learn
from the system, so testing ineffectual conditions can cause
real harm. We want an approach that allows the experi-
menter to explicitly specify the relative worth of teaching
players (by giving out the best conditions) against the gain
of scientific knowledge (by giving out sub-optimal conditions
to better assess their worth). Then the algorithm can sample
the different experimental conditions, with a bias in favor of
finding and exploring the better ones depending on the spec-
ified weighting. As the algorithm obtains better estimates of
the effects of different conditions, it should eventually con-
verge to placing all students in the most effective condition.
This problem fits nicely into a multi-armed bandit formula-
tion, where the arms are conditions and the reward is user
learning, so we will attack it from this angle.

Our contributions are as follows. First, we formulate a dual-
objective bandit in which we want to optimize a weighted
combination of the 95% confidence interval sizes around the
condition means, and user test performance. We then intro-
duce UCB-Explore, a modification of an existing multi-
armed bandit algorithm that tries to directly optimize for
this user-specified tradeoff. Second, we analyze the perfor-
mance of our algorithm in a 64-condition simulation with
parameters learned from a real-world experiment involving
different ways of displaying number lines. UCB-Explore
better optimizes the weighted objective compared to exist-
ing bandit algorithms, and in our simulation appears fairly
robust to changes in its parameters. Finally, we show how
to use the samples generated from our algorithm to identify
likely and unlikely two-way interactions between factors, and
validate our hypotheses on a separate dataset.

2. RELATED WORK
2.1 Scientific Discovery, Massive Experiments
Researchers in AI have been working for years to develop
systems capable of automatically generating useful scientific
knowledge. This field, known as scientific discovery, has gen-
erated many such systems [14]. For example, Lee et al. used
a feedback loop between the RL rule induction program and



expert knowledge to identify potentially carcinogenic com-
pounds [15]. Perhaps the most comprehensive example of
such a system is Robot Scientist Adam, a fully automated
robot capable of the full loop of hypothesis generation, ex-
perimental design, and data analysis in yeast genomics [10].
These systems are quite general, and try to automate many
aspects of scientific behaviors; we are primarily concerned
with the automation of certain kinds of experimentation in
high-stakes domains.

We can also be considered related to massive (educational)
testing, made possible in recent years through web-based
software. As noted by Stamper et al., online experiments
can be considered a new source of data with fundamentally
different properties than ones conducted at the lab or school
district level [24]. Experiments run online can have many
more users, and better measure true task engagement; how-
ever, it may be difficult or impossible to collect rich data
such as interview data. As examples, Lomas et al. con-
ducted two large-scale experiments with many conditions
on the effect of challenge on motivation and learning in an
educational game [18]. Lindsey et al. used Gaussian pro-
cess regression and an active learning framework to reduce
the number of samples required to learn functions of user
responses [16]. And in previous work, we proposed a greedy,
hierarchical algorithm that ran sequences of multivariate
tests in multi-factor settings [17]. In this work, however, we
want an algorithm that adapts incoming samples to maxi-
mize an experimenter-specified weighted sum user learning
and confidence in the estimated condition means.

2.2 Adaptive Trials
Clinical trials are another example of high-stakes domains
where it may be undesirable or unethical to assign pa-
tients to certain experimental conditions. Over the years,
researchers have developed different methods for minimiz-
ing patient harm while trying to identify the best treat-
ments. Some examples include play-the-winner, drop-
the-losers, sample size re-estimation, adaptive treatment-
switching, and so on; for a review, see [8] or [4]. The adaptive
randomization designs are closest in spirit to our work: they
bias the randomization in favor of successful conditions and
away from failed ones [29] [26].

These strategies are often heuristic and offer no guarantees.
However, clinical trials can also be formulated as multi-
armed bandit problems, for which algorithms with theoreti-
cal performance guarantees are known. The closest work in
this space is perhaps by Kuleshov et al., who propose the use
of existing multi-armed bandit algorithms for the allocation
of users to experimental conditions and show simulations
suggesting that more patients are successfully treated [12].
Similar empirical investigations of bandits have been under-
taken in the domain of web content retrieval by Vermorel
et al. [25]. They focus on the standard bandit formulation
in which the only objective is to maximize reward; in this
paper, we also care about scientific knowledge.

3. MULTI-ARMED BANDITS
Throughout this paper, we will be using data drawn from
an experiment carried out in the educational game Treefrog
Treasure, seen in Figure 1. We give out different types of
number lines to players and study how accurately they an-

Figure 1: A screenshot of Treefrog Treasure, our
source of users. Players navigate through a physics-
based world, solving number line problems along the
way. Notice that the number line has full tick marks,
pie chart labels on the line, and a symbolic (ex. a

b
)

target representation. In our experiment, these are
a few of the parameters we allow our system to auto-
matically explore to determine which types of num-
ber lines lead to maximal near-transfer.

swer a randomized test number line; the full experimental
design is described in Section 5.1. Importantly, we have two
competing objectives: teach as much as possible to play-
ers in the game (by only giving out the best number lines),
but identify the effectiveness of different fraction representa-
tions, hinting systems, or other number line properties (by
testing different kinds of number lines). The relative weight
of these two objectives will vary by application, so we will
later allow the experimenter to set the weight explicitly.

If our goal were solely to maximize player learning, then
this problem reduces to a multi-armed bandit (MAB). MAB
problems consist ofK probability distributions, D1, . . . , DK ,
with expected values µ1, . . . , µK . The Di and µi are not
known at the start. These distributions are classically
viewed as wins or losses (1 or 0) from various arms of a
slot machine, but in continuous formulations can be any
(bounded) user-defined function. In our scenario, we can
think of the arms as different types of numberlines to be
given as practice, and the reward as player success on a ran-
domized test number line.

In a bandit problem, the experimenter tries to pull arms in
order to collect as much reward as possible (e.g. assign play-
ers to conditions to maximize test performance). At each
turn, t = 1, 2, ..., we select an arm j(t) and receives some re-
ward from that arm’s reward distribution r(t) ∼ Dj(t). If the
Di were known, the optimal strategy would be to choose the
arm with the highest expected reward, j(t) = arg maxi µi:
that is, pick the most effective number line and give it to
every player. Unfortunately, the Di and µi are hidden.
Successful bandit algorithms must navigate an exploration-
exploitation tradeoff to discover information about the Di

while also generating high reward.

In general, we will not be able to give everyone the best
intervention. Define the total expected regret at some fixed
timestep T as the loss of reward from playing non-optimally,



RT = T maxi µi −
∑T

t=1 µj(t). Lai and Robbins show that
regret must grow at least logarithmically in time [13], devel-
oping a lower bound of RT = Ω(log(T )).

Not all strategies that work well in practice meet this
bound. One such heuristic strategy is ε-greedy, which for
any 0 < ε < 1 plays a random arm with ε probability and
otherwise plays the arm with the highest empirical mean.
This strategy has linear regret because it has a constant
chance to play suboptimal arms. One could consider allow-
ing ε to decrease over time to eliminate this linear regret
term; however, this adds another parameter and does not
always help in practice [25].

A different, popular class of theoretically-motivated strate-
gies which meet the logarithmic regret bound are the Upper
Confidence Bound strategies (UCB) [3]. These algorithms
exemplify the principle of optimism under uncertainty by
pulling the arm which has the highest estimated upper con-
fidence bound on its mean. The simplest, UCB1, works in
the following way. Assume that all rewards are in the range
[0, 1]. To initialize, pull each arm once. Then at each sub-
sequent timestep, if the number of times an arm i has been

pulled is ni, choose the arm j(t) = arg maxi µ̂i
t + c

√
2 ln t
nt
i

.

In this formula, the exploitative first term is the estimate
of the arm mean, while the exploratory second term rep-
resents an uncertainty that grows slowly as other arms are
pulled but decreases sharply when this arm is pulled. UCB1
provably incurs logarithmic regret when c = 1.0, though c is
often set to be smaller for better empirical performance.

In this paper, we will focus on ε-greedy and UCB; for other
algorithms, see [6]. Note,however, that all of these algo-
rithms are focused on maximizing reward: bandit strategies
will try to only allocate enough samples to sub-optimal arms
to tell that they are indeed sub-optimal. Unfortunately, this
may leave uncertainty about the exact values of each arm,
which was our second goal. Furthermore, algorithms such
as ε-greedy and UCB can be quite sensitive to the settings
of their parameters.

On the opposite extreme, researchers have also studied the
case where the only goal is to learn something about the arm
distributions Di, such as their means, the µi. Antos et al.
introduce an algorithm for this problem, GAFS-MAX, which
attempts to minimize squared error of the worst estimated
µi by sampling the “most under-sampled” arm or the arm
with greatest empirical variance [2].

Our definition of “scientific knowledge” is similar: we wish
to minimize the sizes of our estimates of the 95% confidence
intervals around the arm means. To the best of our knowl-
edge, algorithms exist only for the extreme cases where we
maximize only for reward or only for estimation of arm prop-
erties. In this paper, we propose allowing the experimenter
to set a tradeoff between these goals, and introduce an algo-
rithm which smoothly interpolates between these extremes
by maximizing for the specified tradeoff.

4. UCB-EXPLORE
Our algorithm, called UCB-Explore, is a variant of UCB1.
As noted earlier, changing the scaling factor c on UCB1’s

confidence bounds often leads to improved performance in
practice: thus, the key idea behind UCB-Explore is to
self-adjust c in response to mistakes. Our algorithm takes
as input a set of arms with unknown reward distributions
Di, a function CI to calculate confidence interval sizes, a
weight w controlling the tradeoff between reward and confi-
dence interval sizes around the arm means, and a multiplier
m that controls how quickly c changes. Good choices of CI
in general depend on the shape of the reward distributions
Di, though methods such as the centered percentile boot-
strap [23] allow reasonable estimates in most situations. In
our example, the arms are Bernoulli processes generating
“success” or “failure” depending on whether the student an-
swers a test question correctly, so a reasonable choice for CI
is the Wilson score interval [27].

Let N be the number of arms, rt be the reward received
on pull t, and ∆t

j be the size of the 95% confidence inter-
val of arm j on round t. For any timestep T, our goal is
to maximize the expression w

∑T
t=1 r

t − (1 − w)
∑N

j=1 ∆t
j .

That is, we want to maximize the total reward received,
but minimize the sizes of the 95% confidence intervals sizes,
with some weight w between both goals. This type of goal
makes sense if the experimenter is able to assign “worth”
to confidence interval sizes, in terms of reward. For exam-
ple, an educational institution might be given funding based
on students’ standardized test scores, and be willing to pay
a certain amount of money for smaller confidence intervals
about certain educational interventions. As an alternative
interpretation, note that reward grows without bound while
the confidence interval sizes cannot go below 0, so w can be
thought of as a rough “switching point” after which the al-
gorithm will aim primarily to gather more reward. Say that
the experimenter knows a reasonable reward is 0.6, would
roughly like the reward term to dominate after n pulls, and
calculates that after this many pulls the confidence intervals
can be expected to decrease by about 0.3 per pull. Then
setting w = 0.33 causes the reward term to overtake the
confidence intervals after about n pulls.

Note that this objective is difficult to optimize directly. This
can be seen by considering the case w = 1.0, where we are
focused on reward: it is computationally intractable to op-
timally pull arms to optimize the objective [19]. It must
therefore be similarly intractable to optimize in the general
case. As such, we propose UCB-Explore as a heuristic al-
gorithm which lacks guarantees but seems to work well in
our scenario. Our algorithm is shown in Algorithm 1. Let
c1 = 1.0 be our initial scaling factor, as in UCB1. We first
pull each arm once; at subsequent times t, we choose the

arm j(t) = arg maxi µ̂i
t + ct

√
2 ln t
nt
i

. When ct is very large,

µ̂i
t has little effect, and we will tend to choose arms that

have fewer pulls (more exploratory). When ct is very small,
µ̂i

t dominates, so that we tend to pull only the arms with
highest empirical means (more exploitative). So far, then,
our algorithm is simply a tuned variant of UCB1.

The key change in our algorithm is that we increase or de-
crease c if we choose the wrong arm to pull. Say that arm i
has been pulled at times t1, t2, . . .. Then the rewards of all
pulls of arm i up until this time are Rt

i = rt1i , r
t2
i , . . .. Let

sti = wµ̂i
t + (1 − w)(CI(Rt

i) − Erti
[CI(Rt

i + rti)]): that is,



Algorithm 1 UCB-Explore

Require: a tradeoff w, multiplier m, bandit arms A1,...,N

c = 1.0
for j = 1 to N do

rj = Pull(Aj)
µj = rj
nj = 1
Rj = {rj}

end for
for t = N + 1 to ∞ do

for k = 1 to N do

bk = µk + c
√

2 ln t
nk

cj = CalculateCI(Rj)
ej = CalculateExpectedNextCI(Rj)
sk = wµi + (1− w)(cj − ej)

end for
u = arg maxi bi
v = arg maxi 6=u bi
if sv > su then

if µu > µv then
c = mc

else
c = c

m
end if

end if
rj = Pull(Au)
µj = njµj + rj
nj = nj + 1
Rj = Rj ∪ rj

end for

sti is the weighted combination of the expected reward and
the expected decrease in confidence interval size if we pull
arm i. The calculation of Erti

[CI(Rt
i + rti)] in full general-

ity requires a posterior estimate of Di; since we are working
with Bernoulli trials, we can estimate p(rti = 1) = µ̂i

t and
calculate the expectation directly.

When should we adjust c? In UCB-Explore, we ask
whether we should have picked the arm with the second-

highest upper confidence bound. Let bti = µ̂i
t + c

√
2 lnn
nt
i

for each arm i. Without loss of generality, assume that
bt1 >= bt2 >= bti, i = 3, . . . ,K. If st2 > st1, then our algo-
rithm has made an error: it could have (greedily) obtained
a better tradeoff respecting the researcher’s decision of w
by pulling the second best arm. If µ̂1

t > µ̂2
t, then the al-

gorithm was exploiting too much, so we set ct+1 = mct. If
µ̂2

t ≤ µ̂1
t, then the algorithm was exploring too much, so we

set ct+1 = ct/m. We then pull the arm j(t) and continue.
It is important to note that this algorithm is heuristic in
nature, but seems to work well in our simulation. It may
be possible to develop a more theoretically-motivated algo-
rithm to maximize for this weighted goal, which we leave to
future work. In either case, if the algorithm respects w in
its behavior and seems relatively robust to the choice of m,
then we will have achieved our goal. We will see in Section 6
that this is the case in our scenario.

5. EXAMPLE APPLICATION
We will examine the performance of our algorithm with a
64-arm simulation whose parameters are drawn from real-
world data. This will demonstrate the feasibility of our ap-

proach in a real-world situation. In this simulation, we will
try to identify how the appearance of a “practice” number
line affects player performance on a randomized “test” num-
ber line, a particularly challenging problem since we expect
the effect sizes to be small given that the intervention is
one number line long. We choose number lines as they are
a well-studied and commonly-used pedagogical tool, and a
fair amount of evidence suggests that much whole and ratio-
nal number knowledge is organized around mental number
lines [1], [22]. We will first describe the game from which we
collected our data, as well as the factors that vary between
number lines.

5.1 Treefrog Treasure
Treefrog Treasure is a platformer game that involves jump-
ing through a jungle world and solving number line problems
to reach an end goal. Number line problems serve as barri-
ers that the player must solve by hitting the correct target
location, as shown in Figure 1. It has been played by over
10 million players worldwide on various websites; data for
this experiment is drawn from BrainPOP [5], an educational
website aimed at school-aged children. Our dataset consists
of 34,197 players, who played from June 3, 2013 to June 20,
2013.

We consider each player as a sequence of many pairs of num-
ber lines, and treat each pair as an experimental unit. This
gives us 361,738 pairs. This potentially violates indepen-
dence assumptions in classical statistical tests, but greatly
increases the amount of available data we can use to esti-
mate our arm reward distributions. We will strictly adhere
to the correct assumptions when we attempt to generate
hypotheses and validate them on a new dataset, later.

The appearance of the first number line in each pair con-
stitutes the experimental condition - the full set of factors
is specified in Table 1, with illustrations in Figure 2. We
care primarily about Ticks, Animations, Backoff Hints, Tar-
get Representation, and Label Representation; the Fraction
and Initial Labels are randomly chosen, so that our results
are meant to generalize for different settings of these factors.
This gives us 64 separate conditions, one for each combina-
tion of factor settings.

There are additional complexities in the sampling distribu-
tions in this dataset that are not relevant to this work; for
a more thorough explanation, refer to [17]. The important
point is that we can obtain an unbiased estimate, for each
experimental condition, of the probability that a player re-
ceiving a number line with those parameters will reach and
solve the randomized next“test”number line correctly on the
first try. For our simulation we will assign each arm the as-
sociated mean estimated from our data, and draw simulated
samples from the arms by flipping coins with the specified
probability of success. These probabilities range from 0.38
to 0.47, with the vast majority falling in [0.41, 0.45]. Since
the arms are Bernoulli in nature and the probabilities are
close to 0.5, the variance is nearly the maximum possible for
distributions in [0, 1].



Parameter Settings Interpretation

Fraction Any a
b
∈ (0, 1), b ≤ 9 The target fraction the player must hit

Initial Labels [0,1] For target a
b
, the proportion of labels of n

b
fractions shown at the start.

Target Representation Symbolic, Pie How the target fraction is displayed.
Label Representation Symbolic, Pie How fraction labels on the number line are displayed.
Ticks Present, Absent For target a

b
, we can display tick marks for each fraction n

b
.

Animations Present, Absent If the player misses a target a
b
, they might receive an lengthy pie chart

animation showing how to divide up the number line into b parts.
Backoff Hints 1, 2, 3, 4 The number of misses for target a

b
before the progressive hinting system

fills in all labels for n
b

and displays the correct answer.

Table 1: The parameters controlling number lines in our experiment. Bolded parameters are factors we are
interested in studying; non-bolded parameters are selected randomly.

Figure 2: The animation condition on the left shows
the player how to divide up the number line. The
backoff condition in the middle gradually more di-
rection about where to hit. The ticks condition ei-
ther divides up the number line into segments when
ticks are present, or leaves it empty besides the 0
and 1 labels when ticks are absent.

6. SIMULATION
Empirical MAB research such as [12] and [25] indicates that
MAB algorithm performance is very sensitive to the exact
values of parameters, and that tuned simple algorithms, such
as ε-greedy, outperform theoretically-motivated algorithms
such as UCB1. One reason that tuning affects reward is that
different settings of these parameters can result in a tradeoff
between identifying the best mean and exploiting the current
best. Although these parameters do not explicitly optimize
the tradeoff between confidence interval size and reward, it is
often the case that more exploratory parameter settings will
do a better job of minimizing confidence interval size. But
it is not immediately obvious how to set these parameters
for any particular tradeoff - what ε should we choose if we
want to weight confidence interval size and reward equally?
In contrast, UCB-Explore allows us to explicitly set this
trade off and optimize for it more directly. We will compare
how UCB-Explore trades off reward and scientific knowl-
edge compared to MAB algorithms ε-greedy, UCB1, and
UCB1-Tuned, ignoring the fact that the UCB-Explore
parameter is given by the objective while the other param-
eters may be more difficult to choose.

ε-greedy is a simple and straightforward method for bal-
ancing the dual goal of learning about the arm means and
also maximizing reward. It has the additional advantage
of ε being easy to interpret: the proportion of players who
will be devoted to exploring the non-optimal arms. UCB1
is also capable of trading off between learning and reward
by scaling the bounds: making them very large causes the
algorithm to prefer exploration, while making them small
causes the algorithm to focus on the highest empirical mean
and prefer exploitation. UCB1-Tuned replaces the loose
bounds of UCB1 with ones that depend on empirical vari-
ance of the arms, which usually works better in practice [3].
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Figure 3: Reward vs confidence interval sizes. Up
and to the right is ideal; we see that UCB-Explore is
typically better at generating high reward and learn-
ing the various arm means than other algorithms.
ε-greedy performs poorly overall.

Parameter Values (right to left)

ε-greedy, ε 0.3, 0.03, 0.01, 0.001, 0.0001
UCB1, c 1.0, 0.2, 0.15, 0.1, 0.03, 0.01
UCB1-Tuned, c 1.0, 0.2, 0.15, 0.1, 0.03, 0.01
UCB1-Explore, w 0, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1

Table 2: The parameter settings generating the
tradeoff graphs in Figure 3. All UCB1-Explore vari-
ants in the graph, which have different values of the
scaling multiplier m, are generated from the same
group of w.

We generate a tradeoff curve between average reward per
pull and the sum of the sizes of the 95% confidence inter-
vals around each estimated arm mean, shown in Figure 3.
Each point for each algorithm is the average reward and
interval size for 1000 trials of 10,000 pulls, for the parame-
ters shown in Table 2. Points that are up and to the right
are better. We see both that UCB-Explore tends to have
superior performance, especially when one does not care en-
tirely about reward, and also that ε-greedy appears much
worse than both strategies once we scale the bounds calcu-
lated by UCB1. In addition, the different UCB-Explore
curves are generated by different values of m - in our prob-
lem, it appears that the choice of m has little impact within
a wide range, with perhaps the exception of m = 1.01.

To gain some intuition about how UCB-Explore behaves
and how one should choose w, it is useful to examine the
behavior of the scaling factor c that controls the size of the
bounds. This is shown in Figure 4. As w → 0, the algorithm
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Figure 4: The value of the scale factor on the confi-
dence bounds in UCB-Explore as the algorithm pulls
more arms. When w = 0, c increases quickly and
does not stop, reflecting the fact that the algorithm
cares only about exploration.

cares less and less about generating reward, so we expect it
to explore more: as expected, c increases. Furthermore,
the gains from reward are constant over time, but the gains
from reducing estimated confidence interval sizes shrink as
we continue to sample. Thus as time passes we expect UCB-
Explore to focus more and more on reward as long as w >
0, and indeed this is the behavior we observe by the shrinking
values of c. In the case of w = 1.0, c actually shrinks so fast
that the algorithm exploits too quickly, explaining the small
dips in performance of both UCB-Explore and UCB1 when
tuned to be very exploitative.

7. VALIDATION
7.1 Interaction testing
Our algorithm is a method of allocating samples that re-
spects the tradeoff between encouraging player learning and
getting more accurate estimates of experimental condition
means. Had this experiment been run online, a researcher
could directly analyze the data gathered. However, we have
been running our algorithm in a simulated environment with
parameters drawn from real-world data, leaving us vulnera-
ble to overfitting. To demonstrate how one might use data
gathered from our algorithm, we will instead use these sam-
ples to generate hypotheses to validate on a separate dataset:
this is similar in principle to how a researcher might run mul-
tifactorial experiments in an online setting to find promising
hypotheses to test in a more focused setting, as suggested
by Stamper et al. [24].

UCBExplore can be thought of as a biased method of
drawing samples from different experimental conditions.
One natural analysis would be to ask if one condition is
significantly better than another. Many of our factors are
specific implementation choices in our game, so such com-
parisons may not lead to very generalizable insights. In-
stead, we will attempt to identify likely interactions using
the samples generated by our proposed method. In particu-
lar, we will search for two-way interactions which seem rel-
atively large or small; we study interactions instead of main
effects because we already examined main effects in previous
work [17]. Then we will use the likelihood ratio test to deter-
mine if models learned with these interaction terms fit our
validation data significantly better than models where these

Target: Pie Target: Symbolic
Label: Pie 0.431 0.410
Label: Symbolic 0.388 0.422

Table 3: Proportion of players in the validation set
able to reach and answer the randomized test num-
ber line correctly on the first try. Our simulation
results suggested that these parameters might in-
teract; in fact, they interact very strongly.

terms are set to zero. We stress that samples generated from
ε-greedy and UCB1 could also be used in the same way and
would likely lead to the same results, though in light of our
simulation results either more samples would be required or
more damage would be done to players in that case.

To do this, we run UCB-Explore with m=1.1, w=0.001,
and 100,000 pulls. We then calculate all main effects
and two-way factor interactions as is done in the ANOVA
test [28]. Our data is not normally distributed and the vari-
ances are unequal, violating ANOVA assumptions, but we
can still consider which interaction effects seem relatively
large or small. In our case, for each pair of factors, we can
calculate the average magnitude of the interaction effects
between all combinations of settings for those factors. We
see that Target and Label have the largest average magni-
tude at 0.007, while Animation and Ticks have the smallest
average magnitude at 0.0003. Thus, we suspect that Target
and Label are much more likely to interact than Animation
and Ticks.

To test these hypotheses, we will use a held-out validation
dataset. This dataset consists of 9,675 players of Treefrog
Treasure from June 20, 2013 to July 9, 2013. Unlike the
dataset used to estimate parameters of our simulation in
the previous section, we will consider only the first three
number lines for each player: the first two are treated as the
intervention, and the independently and randomly chosen
third as the assessment of learning. For any given pair of
factors, we can attempt to fit a model with only main effects,
or a model with main effects and two-way interaction effects.
Since these models are nested, we can use the likelihood ratio
test if the interaction model is a significantly better fit, given
the increase in degrees of freedom.

For Target and Label, we have that χ2(1, N = 9675) =
7.555, p < 0.006. For Animation and Ticks, we have that
χ2(3, N = 9675) = 0.204, p = 0.977. Thus, it is very likely
that the effects of Target and Label representation on num-
berlines should not be considered separately, while we have
no evidence that our Animation and Ticks hinting systems
need to be modeled simultaneously.

7.2 Target/Label representation
In this paper, our goal is to advocate the creation of algo-
rithms which allow experimenters to trade off user learning
and scientific knowledge, and the introduction of such an al-
gorithm. The validation is meant to show that this approach
generates samples that can lead to interesting hypotheses,
so we do not claim them to be mature educational results.
We will, however discuss them briefly.

The presence of significant interaction terms means that the
factors involved should only be interpreted together. As a



reminder, the Target factor refers to the representation of
the fraction the player is asked to hit on the number line,
while the Label factor refers to the representation of the
fractions on the number line itself. The proportions of suc-
cessful players for the different representation combinations
can be seen in Table 3. The nature of the interaction is
immediately apparent: players are more likely to reach and
answer the next number line correctly if the target and la-
bel have the same representation, and Pie chart targets and
Symbolic labels are much worse than other conditions. Even
when we ignore players who quit before reaching the second
number line, these effects persist.

We do not know why this is the case. In our game, player
ability to answer number line questions correctly is mostly
a function of knowing where to hit, as the game informs
the player where they will intersect the number line before
they click to jump. In addition, the representation has no
effect on game mechanics. Thus, the difference is most likely
due to how players perceive the different fraction represen-
tations. One possibility is that number lines in classrooms
are generally presented with symbolic labels only, so that
the mix of familiar and new combinations of representations
is particularly confusing to players. As with nearly all on-
line experiments, we do not have access to players’ thought
processes, only their actions, so a more carefully designed
study or a think-aloud in a classroom might be profitable.
Regardless, our algorithm was able to generate samples that
we could analyze for interesting factor interactions, suggest-
ing that it is a viable method of adaptively randomizing
experimental conditions.

8. LIMITATIONS
While our results seem promising, there are some limita-
tions. It is extremely unlikely that UCB-Explore is ideal
for all bandit arm configurations; it seems to perform well on
many-arm Bernoulli distributions with similar means, but
some simulations suggest that it may not perform as fa-
vorably in very different cases. One example where our ap-
proach fails outright, as do ε-greedy and UCB1, is in the case
that there are more arms than subjects - the algorithm ex-
pends all its subjects on the initialization phase when pulling
each arm once. This problem occurs most obviously in the
presence of continuous factors, in which case there are an
infinite number of arms. It is less likely to occur in standard
categorical experimental designs, though the limit can still
be reached if researchers want to study something like the
exponential space of all possible problem sequences.

Furthermore, while the reward portion of our dual objec-
tives can be any measurable function of subject behavior,
there may be other ways to define “scientific knowledge” or
navigate the tradeoff between the two. For example, “scien-
tific knowledge” might be the probability that the ordering
of arms is correct. Or instead of assigning some weighting
between reward and knowledge, an experimenter might have
constraints of the form “maximize reward subject to at least
x knowledge.” Some of these are relatively easy to incor-
porate into our framework. The example constraint might
be handled by forcing the scale factor to stay at 1.0 until
enough information has been collected, for instance. Other
types of constraints or tradeoffs may require entirely differ-
ent algorithms: knowing the number of subjects in advance,

for example, leads to very different bandit algorithms than
the infinite horizon variant we have presented here.

9. FUTURE WORK
UCB-Explore appears to outperform UCB1, UCB1-
Tuned, and ε-greedy in our problem for most tradeoffs be-
tween reward and knowledge. However, our modifications
remove any theoretical performance guarantees. It may be
possible to alter the algorithm in a principled way to main-
tain its good performance and guarantee logarithmic regret.
Extensive simulation on other problems with more or fewer
arms and different reward variances would also be useful to
understand when it or another method of allocating samples
is preferable. We would also like to test if this algorithm is
robust to unusual continuous reward distributions.

In addition, there are other problem formulations that would
be interesting to investigate. In many practical cases (such
as delayed rewards), fully online learning is infeasible; for
these, we could adapt Bayesian techniques such as proba-
bility matching [21], which do not depend on online per-
formance. Also, in cases where there is a finite budget of
users, the algorithm will need to be modified based on work
in mortal bandits to exploit more as the experiment draws
to a close [7]. Lastly, in reality the arm distributions may
be nonstationary, which might require adaptation of work
in dynamically changing bandits [9].

More generally, UCB-Explore only makes sense in situa-
tions where we have enough users to get substantial infor-
mation about each condition. If we have many factors, we
may not be able to get information about each specific con-
dition, but may still be able to determine the best settings of
the most important factors. A similar problem arises when
we want to explore sequences of interventions, in which case
techniques from Monte Carlo Tree Search may be most ap-
plicable. And if one of the factors is continuous, the algo-
rithm will not be able to make progress: here, it could be
useful to adapt work on bandits in general metric spaces [11],
or modifying a function approximation scheme as in [16] to
incorporate the reward-knowledge tradeoff.

10. CONCLUSION
The rise of online educational software with massive num-
bers of users promises to change the experimental paradigm
in educational research. With access to so many users and
individualized control over what educational experiences
they receive, it is now possible to automatically run com-
plicated, multi-factor experiments quickly and at relatively
low cost. However, education is a high-stakes domain: in
many situations we have the ability to cause harm by plac-
ing students in sub-optimal conditions. Because of this we
want to automatically put less students into harmful con-
ditions while simultaneously discovering which are harmful
and which are beneficial.

In this paper, we propose allowing researchers to explicitly
weight subject welfare against the amount of generalizable
knowledge gained from the experiment. We show how the
problem of allocating subjects to experimental conditions
can be thought of as a multi-armed bandit problem with a
dual objective of gaining maximum reward and minimizing
the sizes of 95% confidence intervals around the arm means.



We propose a new algorithm, UCB-Explore, which takes
a user-specified weight on the relative value of reward and
confidence interval size, and adaptively adjusts its optimistic
bound estimates to explore or exploit more when it makes
a mistake with regards to this weight function. We analyze
the behavior of our algorithm and compare it to tuned ver-
sions of other common bandit algorithms in a 64-arm simu-
lation with parameters drawn from real-world data, showing
that our algorithm is able to interpolate between these two
goals much more effectively than standard algorithms. We
use the simulated results of running our algorithm to gener-
ate some hypotheses about factor interactions, and confirm
these results on a separate validation dataset, showing that
the generated samples are useful from a research perspective.
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