Sensing with Camera Networks

Aman Kansal
Microsoft Research
The Sensors

Digital Cameras

Webcams

Camera-phones
1MP- 8MP

Low Power Cameras

Surveillance Cameras

Cameras are on the network
Goal

Understand image and video data from camera networks to generate application specific metrics
Increase Resolution

- Use controlled motion to create a virtual hi-res view
- Methods to reduce motion delay

1 MP coverage 761 MP equivalent

```
Motion Delay (s)  Log10(Coverage Gain)
Zoom  Motion Delay (s)

15000
```
Data Transformation

- Pixel values to people count
 - Indoor scene with people seated close together

Scene: Lunchtime

Background Extraction, Frame Differencing and Blobbing

People count and location

16kP CMOS imager on AVR
Research Challenges I

• Extracting semantics from camera data

 – **Hard Problems**: object identification, event detection, face recognition

 – **Moderately hard**: key feature point extraction, counting people, quality assessment, key frame extraction

 – **Tractable**: motion detection, change detection
Research Challenges II

• Aggregating across multiple sensors on the network
 – Content acquisition
 • All data is not live: cell-phone cameras, digital cameras
 • Communication and storage scaling
 – Combining transformed outputs from multiple cameras
 • Distributed calibration
 – Sensing Uncertainty
 • Application: Can I use data from this camera?
 – Privacy sensitive sharing
Discussion