Global-scale Reactive Sensing Systems

Ramesh Govindan
University of Southern California

ramesh@usc.edu
Where we are

Complete code for an structural data acquisition system on Tenet
Tenet: An Architecture for Tiered Sensor Networks

Simplify this interface!
- sensor-addressable tasking
- (reliable) data collection
- generic signal processing
 - this can evolve

(Distributed) computing substrate
Application development happens here

Programmable data acquisition

Still need duty cycling, MAC, localization, timesynch, routing, congestion control etc. here

Joint work with Deborah Estrin and Eddie Kohler
How Tenet Works

```c
int main(int argc, char **argv)
{
    unsigned char b[200];
    int l, tid = 0;
    uint16_t r_tid, r_addr;

    /* construct a task packet */
    l = construct_task(b, task_string);
    if (l < 0) {
        printf("task description error!! \n");
        exit(1);
    }

    /* send the task */
    tid = send_task((uint16_t) tid, l, b);
    if (tid > 0) {
        printf("\ntask has been sent with tid %d! \n", tid);
    } else {
        exit(1);
    }

    /* receive response packets */
    while(1) {
        unsigned char *packet = receive_packet(&r_tid, &r_addr, &l);
        if (packet) {
            printf("(tid %d from node %d) >> ", r_tid, r_addr);
            print_sample_data(packet, l);
            free((void *)packet);
        }
    }
}
```

In Tenet, applications run on an upper-tier node. They task lower-tier nodes: linear data-flow tasking language. Application collects and correlates observations.
How Tenet Works

The Task Library

- A simple linear data-flow language and pre-defined processing elements
- Tasks executed on sensors

sampleMDA(...) -> DetectOnset() -> sendStream()
How Tenet Works

Reliable Task Dissemination

- Uses ideas from epidemic propagation and gossiping
- Extraordinarily robust

\[
sampleMDA(...) \rightarrow \text{DetectOnset()} \rightarrow \text{sendStream()}
\]
How Tenet Works

Reliable Data Transport
- Similar to Internet’s TCP
- Retransmits lost data
How Tenet Works

Key Ideas
- Task library, reliable task dissemination and reliable data transport are reusable
- Application writer need only specify (and can dynamically modify) the task installed on the sensors

Reliable Data Transport
- Similar to Internet’s TCP
- Retransmits lost data
Continuous Monitoring of the Vincent Thomas Bridge using Tenet

- Ran successfully for 24 hours
- 100% reliable data transmission
- Deployment time: 2.5 hours
Automated Structural Testing Using Tenet

Tenet can be used to program actuators as well, not just sensors.
Embedded Networks Laboratory

Pursuer-Evader Games using Tenet

Tenet works for other applications as well
Where do we go next?

A technology-centric view
Where do we go next?

Visualize, monitor, control, and manage all activities, in near real-time, in a metropolis

A user-centric view
The Challenge
Infrastructure for Reactive Sensing Systems

• How do we “tie” together disparate sensor nets?
 – What (distributed?) software systems do we put in place to build these large-scale reactive sensing systems?

• Is this a solved problem?
 – “We know how to do search, DHTs, DNS”
 – Reactivity at short-time scales is an important constraint
 – Canonical application: controlling the power-grid
What Abstractions Should We Provide?

• **Search**
 – Flexible, a very natural paradigm
 – … but can it be sufficiently reactive for (partially) automated control?
 • i.e. does the implementation have to be necessarily centralized

• **Structured access**
 – Prior work on data-centric and database methods
 – Amenable to decentralized implementation
 – Real-time

• **Physical access**
 – “Assembler” equivalent: provide direct physical access to sensors or nets

• In reality, will need a combination of these
Roadblocks

• Security
 – But can leverage solutions developed for other distributed infrastructures

• Privacy!
 – This is critical for the kind of federated sensor nets we’re talking about

• Having real applications to play with
Leverage Point

• Intriguing similarity with wide-area network monitoring
• Examples:
 – data-cube queries for Internet traffic records
 – anomaly detection
Multi-Dimensional Range Queries
Monitoring Suspicious Network Traffic

- **Functionality**
 - Supports creation of multi-dimensional indices using an Internet overlay

- **Applications**
 - Traffic monitoring:
 - Finding suspicious flows
 - Performance monitoring
 - Routing problem root-cause analysis
 - More generally, correlating events from different sources

- **Design elements**
 - Hypercube overlay
 - Proximal hashing of data
 - Data-space to hypercube mapping based on data distributions

Joint work with Christophe Diot and Gianluca Iannacone
Anomaly Detection
Looking for Needles

• Goal
 – To detect IP flows that are “anomalous” (unusual traffic volumes, number of ports etc.)

• Approach
 – Dimensionality reduction techniques
 – Apply principal components analysis on a sketch of the traffic seen at a router
 • relies on an empirical observation that most Internet traffic is well-described by a few components
 – Sketches are additive, so the technique is amenable to distribution

Joint work with Mark Crovella, Christophe Diot and Gianluca Iannaccone