Privacy and Multi-modal Sensing

John Heidemann
USC/Information Sciences Institute
8 August 2006
Sensornet Privacy Needs Grow

• military surveillance
 – the bad guys
• habitat monitoring
 – plants and animals
• elder-care and urban sensing
 – you and your family
=> apps increasingly require privacy
Threat Models and Tools

• possible threat models
 – external
 • sophisticated malicious attacker
 • naïve malicious attacker
 • casual browser
 – internal
 • sophisticated
 • opportunist
 • browser

• what tools do we have?
 – technical
 – process and policy
 – legal
Threat Models and Tools

• possible threat models
 – external
 • sophisticated malicious attacker
 • naïve malicious attacker
 • casual browser
 – internal
 • sophisticated
 • opportunist
 • browser

• what tools do we have?
 – technical
 – process and policy
 – legal
One Technical Approach

• can we balance privacy and security?
 – limit use of cameras
 – but correlate events with images when necessary

• use multi-modal sensing and intelligence
Principles

• match sensor invasiveness to environment
 – cameras only in *public areas* (lobbies)
 • often already have cameras or guards
 – PIR sensors in private areas (halls, offices)
• what happens at the sensor stays at the sensor
 – queries are explicit
 – only when required
System Architecture

- example office deployment
 - camera in lobby
 - PIR sensors in halls
 - at each office door
- each sensor records events (image or detection) to local flash memory
- queries happen only on demand
 - easy to audit
 - can be visible to office occupants
 - queries could trigger light at sensor

Motion sensors
Camera
theft detected in office A. who?

security officer initiates spatio-temporal query to establish chain of events from A to camera

Query

Negative response

Positive response

relate theft at location A and given time with detections in hall and to image taken in lobby
Observations

- not perfect!
- definite limitations
 - abuse possible (e.g., repeated queries)
 - requires dense PIR sensors
 - spatio-temporal search can be confused by crossed targets
- but combination of techniques help
 - no cameras in offices
 - pervasive watching impossible, even if office nodes compromised or reprogrammed
 - no central database
 - reduces ability to browse or mine data
Do People Really Care?

- survey 60 people to verify assumption
 - rate privacy from 0 to 5, not to very concerned
 - 30 men and 30 women
 - mix of 20 questions about privacy issues (for perspective)

<table>
<thead>
<tr>
<th></th>
<th>motion sensors</th>
<th>cameras</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>2.1 (1.7-2.5)</td>
<td>3.1 (2.6-3.5)</td>
</tr>
<tr>
<td>men</td>
<td>2.5 (1.9-3.1)</td>
<td>2.8 (2.1-2.5)</td>
</tr>
<tr>
<td>women</td>
<td>1.7 (1.1-2.3)</td>
<td>3.3 (2.7-3.8)</td>
</tr>
</tbody>
</table>

yes, but there is a significant difference by gender
Generalizations

• simple, physically obvious evidence of privacy is important (not just software)
 – door on the camera
 – physical switch on WiFi
 – sleeve over RFID badge

• distinguish public from private areas

• decentralized data

• augment technical solutions with policy and legal