Environmental Macroscope Observatories

William J. Kaiser

UCLA Electrical Engineering Department

Center for Embedded Networked Sensing
Components of the Macroscope

- Application objectives
 - Field variable sampling, event detection, sensing fidelity
- Macroscope sensor systems
 - Static and actuated
- Deployment design
 - Transducers, locations, orientations, sampling protocols
- Adaptation and reconfiguration
 - Autonomous or externally supported
- Verification
 - Audit methods, detailed calibration, physical sampling,
- Demonstrate with example
- Summarize with Macroscope research questions
Environmental Macroscopes

CENS Team
Tom Harmon - UC Merced
Paul Davis - UCLA
Macroscope Objective

• Example: San Joaquin Valley
 – Irrigation leads to salt contamination
• Fundamental, international problem
 – Must solve salt “circuit” problem
 – Salt contamination nonuniform
• Requires Macroscope solution
 – Properly located
 – Select river “plane”
 – Measure
 • Spatially and angular resolved velocity
 • Concentration of salt contaminant
 – Compute mass flux
Macroscope Components: Static Sensors

- Javelin
 - Subsurface soil characteristics
 - Groundwater - river interaction
- Sonar depth profiling
 - River subsurface structure
 - Human actuated
- Deployed in advance
 - Guides actuated sensor placement
Macroscope Components:
Actuated Sensors

- Sensor Node
 - Conductivity
 - Nitrate
 - Ammonium
 - pH
 - Temperature
 - Depth
 - Attitude (pitch/roll/yaw)
 - Compass Heading
 - 3 Axis Velocity
Macroscope Research

• Scaling the Macroscope
 – Near term opportunity (2007)
 – Convergence of science, technology, public policy
 – Entire San Joaquin River map

• Macroscope design problem
 – Given user measurement objectives determine:
 • Sensor selection, sensor operating protocols

• Macroscope deployment design
 – Given application-specific phenomena model:
 • Develop methods for sampling at multiple scales and multiple rates to determine optimal deployment to best benefit objectives
Macroscope Research

- Macroscope run time systems
 - Adapting to dynamic phenomena:
 - Develop static and actuated sensor networks that autonomously reconfigure to adapt to time evolution or discrete events

- Physical sampling problem
 - Recognize limitation of sensor systems
 - Add ability to Macroscope to sample material water, atmosphere

- Verification problem
 - For an operating Macroscope system develop:
 - Audit methods that determine optimal locations for verification of system design selections
 - Audit methods that introduce diverse sensors and physical sampling
 - Audit methods that use sparse resources to verify over wide regions
• Multitasking Macroscope Observatory
 – Recognize that Macroscope supports many users
 • Contrast with astronomical observatory
 • Macroscope inherently is subject to unexpected events
 – Recognize that meeting schedules may be mission-critical for multiple users with competing requirements.
 • Consider example of water resource management where flow, salt, and pesticide detection must occur
 • Consider sudden flooding conditions
• Immediate next steps
 – Public health, economic, and environmental impact questions are in the near future
Comparison of Macroscope with Prior Methods

- High resolution profile of flow and contaminants
 - Flow verified to be accurate - two flow conditions
 - Each agree within less than 1% tolerance of downstream government gauging measurement
 - Enables first high resolution direct measurements of mass flow of contaminants
 - Now possible to track input/output of contaminant sources

- Prior methods
 - Manual:
 - 15m stream
 - 350 sample points and one variable
 - Two weeks
 - Macroscope
 - 50m stream
 - 6,000 sample points with 8 simultaneous variables
 - 100 min
 - Over 1000x improvement
Water Velocity Magnitude

![Graph showing water velocity magnitude with depth and width axes.]
pH

Depth (mm)

Width (m/10)

[Graph showing pH distribution with color scale from 7.4 to 8.0]
Nitrate

Depth (mm)

Width (m/10)

mg/l-N

Nitrate concentration distribution map.