
Learning to Identify Student Preconceptions from Text
�

Adam Carlson
Department of Computer Science

and Engineering
Box 352350

University of Washington
Seattle, WA 98195

carlson@cs.washington.edu

Steven L. Tanimoto
Department of Computer Science

and Engineering
Box 352350

University of Washington
Seattle, WA 98195

tanimoto@cs.washington.edu

Abstract

Automatic classification of short textual an-
swers by students to questions about topics in
physics, computing, etc., is an attractive ap-
proach to diagnostic assessment of learning.
We present a language for expressing rules that
can classify text based on the presence and rel-
ative positions of words, lists of synonyms and
other abstractions of a single word. We also
describe a system, based on Mitchell’s version
spaces algorithm, that learns rules in this lan-
guage. These rules can be used to catego-
rize student responses to short-answer ques-
tions. The system is trained on written re-
sponses captured by an online assessment sys-
tem that poses multiple choice questions and
asks the student to justify their answers with
textual explanations of their reasoning. Several
experiments are described that examine the ef-
fects of the use of negative data and tagging
students explanations with their answer to the
original multiple choice question.

1 Introduction

We are building INFACT, a software system to support
teachers in performing diagnostic assessment of their stu-
dents’ learning. Our work is guided by the principle that
assessment should be a ubiquitous and unobtrusive part
of the learning process. Since many learning experiences
involve writing, we focus on the analysis of free natural
language text and certain other representations of student
expression and behavior. We also believe that rich assess-
ment, which informs teachers about the belief states of
their students, is a valuable addition to tests with a single
numeric grade.

�

Research supported in part by the National Science Foun-
dation on Grant ITR/PE 0121345.

There are several parts to our system, including an on-
line textual forum for class discussions, an annotation in-
terface for teachers, and tools for displaying assessment
data in various formats. The philosophy behind the sys-
tem is described in (Tanimoto et al., 2000). The system
facilitates small-group discussions which the teacher can
monitor and intervene if there is an obvious impasse. An
astute teacher with enough time can follow the discus-
sions closely and observe as students make conceptual
transitions.

A major motivation for the work described in this pa-
per is to find a way to reduce the burden on teachers who
want such diagnostic information but who cannot afford
the time needed to follow each discussion closely. Our
system analyzes small selections of student writing, on
the order of one or two sentences, and learns rules that
can be used to identify common student preconceptions.
Our approach to partially-automated analysis uses text
markup rules consisting of patterns in a “rule language”
and classifications that may be as general as “may be of
interest” to “suggests preconception P17.”

In addition to learning text markup rules for identifying
preconceptions in online discussions, we are also learn-
ing rules for assessing short textual answers in an online
diagnostic testing environment. This system poses ques-
tions to the student and uses the results to report student
preconceptions to teachers and recommend resources to
the student. The system asks multiple choice or numeric
content questions and then, based on the response asks a
short-answer follow-up question allowing the student to
explain their reasoning. In this paper, we describe the re-
sults of applying our rule learning system to classifying
the responses to these follow-up questions.

In the following sections we discuss other work on au-
tomated essay grading, we then describe the language
with which rules are represented in our system, followed
by a description of the version space learning technique
and our specific adaptations to allow it to learn text clas-

S T
In Burstein, J., and Leacock, C. (eds.), HLT-NAACL 2003 Workshop: Building Educational Applications Using Natural Language Processing, Edmonton, Alberta, Canada; Association for Computational Linguistics, pp.9-16.

sification rules. Finally, we describe the empirical results
of our experiments with this technique.

2 Related Work

There have been a number of approaches to essay and
free-response grading. Burstein et al. (1999) developed
a system that uses a per-question lexicon and broad-
coverage parser to analyze free-response answers on a
sentence-by-sentence basis. It determines whether the re-
sponses contain items from a rubric describing specific
points a student must touch upon in their answer. This
system uses a deeper semantic analysis than does ours
and makes explicit use of syntactic structure. On the
other hand, it requires the semi-automated construction
of a lexicon for each question. Our system only requires
labeled responses as training data.

The LSA group at the University of Colorado at Boul-
der has developed a system based on Latent Semantic
Analysis (Landauer and Dumais, 1997). It uses a text
similarity metric and a corpus of essays of known quality.
The system is primarily intended to identify a student’s
general level of understanding of a topic and recommend
an appropriate text for the student to learn from, but has
also been used for essay grading (Wolfe et al., 1998).
They use the similarity metric to determine whether es-
says have enough detail in various subtopics that the es-
say is expected to cover. Because of the statistical proper-
ties of the singular value decomposition underlying LSA,
this system requires relatively large amounts of data to be
trained, and works best on long essay questions, rather
than short-answer responses.

The primary difference between these approaches and
ours is that these systems are intended to determine
whether or not the student has discussed particular con-
cepts and, in the case of the Wolfe et al. paper, the depth
of that discussion. However, neither is aimed at identify-
ing the specific preconceptions held by a student.

3 Text Assessment Rule Language

The language we use to describe assessment rules con-
sists of several types of constraints on the text required to
match the rule. The constraints are applied on a word-by-
word basis to the text being tested.

� The most basic constraint is the term. A term is any
string of alpha-numeric characters (typically a single
word).

� A term abstraction is defined as any regular ex-
pression that can be applied to and match a sin-
gle word (i.e. that contains no whitespace). How-
ever, we primarily use term abstractions to represent
lists of words that will be considered interchange-
able for purposes of the pattern matching. Any term

that matches any of the words in a term abstrac-
tion matches the term abstraction. Term abstrac-
tions are typically used to represent semantic classes
that might usefully be grouped together, synonyms
that students tend to use interchangeably, or words a
teacher might substitute for a keyword in a question.
Term abstractions are created manually.

� An ordering constraint is a requirement that two
terms (or term abstractions) occur in a particular or-
der.

� In addition, an ordering constraint can have an op-
tional distance requirement. The distance require-
ment limits the maximum number of intervening
terms that can occur between the two required terms.

� Finally any number of constraints can be combined
in a conjunction. The conjunction requires all its
constituent constraints to be met.

For example, the requirement that “fall” comes before
a class of words used to indicate a greater speed, such
as “faster”, “quicker”, etc., with at most two interceding
words (e.g. “a lot”), and that the string also contains the
word “gravity” would appear as follows.

fall � 2 TA fast � gravity
where � 2 is an ordering constraint requiring that its

arguments occur in the specified order, with at most two
words separating them and TA fast is a term abstraction
covering the set of words “faster”, “quicker”, etc.

3.1 Relationship to Regular Expressions

The text assessment rule language is a subset of regu-
lar expressions. Terms are translated into regular expres-
sions in a straightforward manner, with the term followed
by one or more non-word separator characters. Term ab-
stractions are simply an alternation of a set of terms. Or-
dering constraints can be achieved by concatenation. If
a distance requirement is present, then that can be rep-
resented with a regular expression for matching a single,
arbitrary word, repeated the appropriate number of times
using the � min,max � convention for constrained repeti-
tion. The conversion of conjunctions requires a potential
exponential expansion in the size of the regular expres-
sion, as each possible ordering must be represented as
a separate possibility in an alternation. The rule shown
above can be represented by the following regular expres-
sion.
(gravity � s+.*fall � s+(� S+ � s+) � 0,2 � (fast � quick)) �
(fall � s+gravity � s+(� S+ � s+) � 0,1 � (fast � quick)) �
(fall � s+(� S+ � s+) � 0,1 � gravity � s+(fast � quick)) �
(fall � s+(� S+ � s+) � 0,2 � (fast � quick) � s+.*gravity)

That is, a regular expression matching strings in which
“falls” appears before either “fast” or “quick” with at
most two intervening words, and “gravity” may appear

... ...

Ø

Term1 <# Term2

Term1 < Term2

Term1 ^ Term2

Most Specific

Most GeneralU

Term1 Term2

Term Abstraction Term Abstraction

Figure 1: Generalization hierarchy for the Text Assess-
ment Rule Language. Note that this represents the rules
that can be obtained by successively generalizing from
an example with just two terms. This is only a portion
of the entire generalization lattice. For example Term1� Term3 is more general than � , and more specific than
Term1 alone, but unordered with respect to all the hy-
potheses shown between those two.

before “falls”, after “fast” or “quick”, or as one of the
words between them.

4 Learning Text Assessment Rules

The text assessment rule learner is based on Mitchell’s
version spaces algorithm (Mitchell, 1982). In that frame-
work, the set of all consistent hypotheses is represented
and is updated as new examples are seen. In order to
efficiently represent the potentially large number of con-
sistent hypotheses, the hypothesis space is organized into
a hierarchical lattice. The lattice is a partial ordering over
hypotheses, usually defined in terms of generality. This
allows the set of all consistent hypotheses to be repre-
sented by storing just the boundaries, that is, the most
general and most specific consistent hypotheses. Each
time a new positive example is presented, any hypothesis
in the specific boundary set that is inconsistent with that
example is generalized to the most specific generalization
that covers the new example. Conversely, a negative ex-
ample causes hypotheses in the general boundary set to
be minimally specialized to exclude the example. If the
specific and general boundary sets ever cross, then the
version space is said to collapse. In order to implement
this algorithm, a generalization hierarchy must be defined
over the language being learned.

4.1 Generalization Hierarchy

The version spaces algorithm requires a partial order over
hypotheses. The Text Assessment Rule Language gener-
alization hierarchy is shown in figure 1.

The figure shows the possible generalization steps that
may be taken when an initial example consisting of two
words is presented. If a subsequent example contains
both words at a greater distance, the distance constraint
may be relaxed. If the distance passes a fixed threshold,
the distance constraint is removed completely. An exam-
ple containing both words in the opposite order will cause
the ordering constraint to be replaced by a conjunction.
Given a conjunction, examples containing only some of
the conjuncts will result in the removal of those that don’t
occur. If an example doesn’t contain a term that appears
in a rule, but does contain another term that is covered by
the same term abstraction, the term in the rule is replaced
with the term abstraction.

The initial most specific hypothesis that will match any
example is the conjunction of the pairwise ordering con-
straints over all pairs of words in the example. Start-
ing from that initial hypothesis, the generalization pro-
cess can traverse up the partial lattice shown in figure 1
for each of these pairwise ordering constraints separately.
Generalization of terms to term abstractions can also oc-
cur at any time. For example “A1 B C” results in the
hypothesis A1 � 0 B � A1 � 1 C � B � 0 C. If the next
example is “C A2 D B” and A1 and A2 are both in term
abstraction TA A, then this will result in the hypothesis
C � TA A � 1 B. Thus the conversion of A1 to a term
abstraction, the relaxing of the distance requirement be-
tween A and B and the removal of ordering constraints
on C all happen simultaneously.

4.2 Disjunctions and Negative Examples

The Text Assessment Rule Language is not disjunctive,
but it is reasonable to expect that students may express
the same concept in a variety of ways. For example,
a student with an improper understanding of the law of
gravity might state that a big block will fall faster than a
small block, or that the small block will fall more slowly
than the big block. Merely ignoring the order of “big”
and “small” or creating a term abstraction to match both
fast and slow will not work. The concept is essentially
disjunctive. In order to handle this situation, we use a
technique we call lazy disjunction. We maintain a list of
version spaces, each one essentially representing one dis-
junct. When a new example is encountered, we attempt to
add it to each version space in turn. If any version space
can incorporate the example without collapsing, then that
version space is updated. If no such version space can be
found, then we create a new one and seed it with the ex-
ample. Thus we only create disjunctions when no other
form of generalization is available. This technique is sim-
ilar to one used in (Baltes, 1992). He allows at most three
disjuncts and starts generalizing after the third example.
He uses a similarity metric to determine which disjunct
to generalize for subsequent examples.

One disadvantage of lazy disjunction is that it is order
dependent. If two examples can be generalized, they will
be. That generalization will mean the exclusion from the
resulting hypothesis, H, of terms that do not appear in
both examples. A later example containing one of those
terms may not be generalizable with hypothesis H even
though it contains terms in common with one of the ex-
amples leading to H. This order dependence can be prob-
lematic. Essentially, generalization continues until an ex-
ample with no terms in common with all prior examples
is seen, since shared terms would allow for generaliza-
tion. At that point, a new disjunct is created and the
process continues. This results in learning rules with
disjuncts that contain one or two very common words.
While we eliminate stop words in preprocessing, there re-
main common content words that appear in many exam-
ples but don’t relate to the concept we are trying to learn.
Examples that, conceptually, form separate disjuncts are
united by these red herrings. Furthermore, examples that
might lead to useful generalization can be separated into
different disjuncts by their coincidental similarities and
dissimilarities. Our solution to this involves reducing
over-generalization by using negative examples.

Typically, the version space algorithm maintains spe-
cific and general boundary sets and updates the appro-
priate one depending on the class of the training exam-
ple. However, because the open-ended text domain is
essentially infinite, and our rule language doesn’t allow
directly for either disjunction or negation, the general
boundary set is unrepresentable (Hirsh, 1991). Instead,
we use a variant of a method proposed by Hirsh (1992)
and Hirsch et al. (1997) for maintaining a list of nega-
tive examples instead of a general boundary set. Nega-
tive examples are stored explicitly. Members of the spe-
cific boundary set that match any negative example are
discarded. If no members remain in the specific bound-
ary set, then the version space has collapsed. Without
negative examples, we often see rules containing a single
frequently occurring word. This precludes more useful
generalization over disparate disjuncts. However, since
common words are likely to appear in negative exam-
ples as well as positive ones, such red herring rules are
ruled out. Essentially, by lowering the bar before a ver-
sion space would collapse, negative examples help reduce
over-generalization.

In order to classify a new example, it is first tested
against the specific boundary set. If all the hypotheses
classify it as positive then the example is classified as
positive. Otherwise, an attempt is made to add the ex-
ample to the version space, on the assumption that it is
positive. If that causes the version space to collapse, then
the assumption is false and the example is classified as
being negative. Otherwise, the version space is unable to
classify the example with certainty.

5 Experiments

We use data from Diagnoser, a web-based system for
diagnosing student preconceptions (Hunt and Minstrell,
1994) to test our rule learner. This assessment system has
two types of questions, domain-specific base questions,
which can be multiple choice or numeric, and secondary
follow-up questions, which can be multiple choice or free
text. The answers to the base questions are designed to
correlate with common student preconceptions and the
secondary questions are used to confirm the system’s di-
agnosis. The system includes a database of common
preconceptions that has been developed over a period of
years (Hunt and Minstrell, 1996). The system primar-
ily uses multiple choice follow-up questions, with just a
handful of text-based ones. The developers would like to
use more textual questions, but don’t currently do so due
to a lack of automatic analysis tools.

Our data consist of student answers to one of these
short-answer questions. The base question is shown in
figure 2. The follow-up question just asks the student to
explain their reasoning. We used the students’ answers to
the base question to classify the responses into three cat-
egories, one for each of the three possible answers to the
base question. According to the system documentation,
the first answer is predictive of students who fail to dis-
tinguish position and speed (Ppos-speed). Presumably,
these students reported that the motion represented by
the top line had a higher speed because the line is phys-
ically higher. The second answer indicates that students
haven’t understood the notion of average speed and are
just reporting a comparison of the final speeds (Pfinal-
avg). The third answer corresponds to the correct analysis
of the question (Pcorrect). Both objects travel the same
total distance in the same time, and neither ever moves
backwards, so they have the same average speed.

We analyzed the text of responses to confirm that the
students’ descriptions of their reasoning matched the pre-
conception predicted by system based on their multiple
choice answer. We found that it was necessary to cre-
ate two additional classes. One class was added for
students who wrote that they had guessed their answer
or otherwise gave an irrelevant answer in the free text
(Pmisc). Another class corresponded to a preconcep-
tion that wasn’t explicitly being tested for but which was
clearly indicated by some students’ responses. The ex-
planations of several students who chose answer A in-
dicate that they didn’t confuse position and speed. In-
stead, they tried to compute the average speed of each
object, but ignored the initial conditions of the system, in
which object A is already 3 units ahead of object B (Pini-
tial). Thus simply relying on the multiple choice answers
may lead to incorrect attribution of preconceptions to stu-
dents. Furthermore, although it is true that students who

Figure 2: Students were asked to explain their reasoning
in answering this question �����
Compare the average speeds of the two objects shown in
the graph above.
a) The average speed of A is greater.
b) The average speed of B is greater.
c) They have the same average speed.

answered B tended to be confused about the notion of
average speed, few of them specifically reported consid-
ering the final speeds. Rather, many of them commented
that object A’s motion was smooth, while object B moved
in fits and starts. The system explictly predicts a confu-
sion of average speed with final speed. This shows that
the vocabulary of the textual description of the precon-
ception (e.g. “final speed”) isn’t necessarily a good indi-
cator of the way student’s will express their beliefs.

There were 88 responses to the secondary question.
Based solely on the answers to the base question, there
were 61 answers classified as Ppos-speed, 15 were
Pfinal-avg and 12 were Pcorrect. After our manual anal-
ysis, the breakdown was 43 Ppos-speed answers, 10
Pfinal-avg answers, 5 Pinitial answers, 9 Pcorrect an-
swers and 21 Pmisc answers.

As a baseline for comparison with the performance
of our learned rules, we computed precision, recall and
F-score measures for simply labeling each textual re-
sponse with the preconception predicted by the student’s
answer to the base question. Precision is correct posi-
tives over correct positives plus incorrect negatives (i.e.
false positives). Recall is correct positives over all pos-
itives (correct + incorrect.) The F-score is 2*preci-
sion*recall/(precision+recall). These results are shown in
table 1. Note that each row of the table shows the break-
down of all 88 examples with respect to the classification
of a particular preconception. Thus each row represents
the performance of a single binary classifier on the entire

dataset. The recall is always 1.000 or 0.000 because of
the way the data are generated. The predictions implied
by the students’ answers to the base question are used
and only when their explanation indicated otherwise are
they reassigned to a different preconception class. Thus
for those classes that were contemplated by the creator
of the base question, all positive examples were correctly
labeled. Conversely, for preconceptions that weren’t in-
cluded in the base question formulation, no positive ex-
amples are correctly identified.

Because we have very little data in some categories —
as few as five examples for one class and nine for another
— we use a leave-one-out training and testing regime.
For each class, we construct a data set in which exam-
ples from that class are labeled positive and all other ex-
amples are labeled negative. We then cycle through ev-
ery example, training on all but that example and testing
that example. Since our goal is to identify answers that
indicate a particular preconception, we’re primarily con-
cerned with true and false positives. We report the num-
ber of examples correctly and incorrectly labeled as well
as the number of examples that the version space was un-
able to classify. Precision is calculated the same way, but
recall is now calculated as correct positives over the sum
of correct, incorrect and unclassified positive examples.

Our initial results, shown in table 2, show that the algo-
rithm is able to correctly label 48 of the 88 examples and
mislabeled none. While the precision of the algorithm is
excellent, the recall needs improvement. The results also
show that the behavior varies widely from one class to
another. Clearly, for some preconceptions, the algorithm
isn’t generalizing enough.

Examining the rules produced by the algorithm, we
found that part of the problem is the existence of very
similar answers in different classes. In particular, the
Pinitial class consists of answers where the student
claimed that Object A had a higher average speed, but
not because they confused position and speed, as the au-
tomated diagnostic system had inferred. These students
not only understood the difference between position and
speed, but knew that the formula for speed was change in
position over elapsed time, though they misapplied that
formula due to a different misconception. It was their ex-
planations of their reasoning that led us to separate them
into a different class. However, those explanations are
extremely similar to those students who knew the for-
mula and applied it correctly. Since the answers were
very similar, any generalization in one class would likely
be restricted by negative examples from the other class.
In order to test this hypothesis, we reran the trials for
these two without including Pcorrect examples as neg-
ative evidence for Pinitial, and vice versa. These results
are shown in table 3. For the Pinitial class, the number
of correctly labeled positive examples jumps from zero

Class Positive examples Negative examples
Correct Incorrect Correct Incorrect Precision Recall F-score

Pcorrect 9 0 76 3 0.750 1.000 0.857
Pinitial 0 5 83 0 - 0.000 0.000
Ppos-speed 44 0 27 17 0.721 1.000 0.838
Pfinal-avg 9 0 73 6 0.600 1.000 0.750
Pmisc 0 21 67 0 - 0.000 0.000
Total 62 26 326 26 0.705 0.705 0.705

Table 1: Results obtained by only using the students’ answer on the base question to label their short answer question.
The first two columns show the number of positive examples that are correctly and incorrectly labeled, the second two
columns show the number of negative examples that are correctly and incorrectly labeled.

Class Positive examples Negative examples
Correct Incorrect Unclassified Correct Incorrect Unclassified Precision Recall F-score

Pcorrect 1 0 8 77 0 2 1.000 0.111 0.2
Pinitial 0 0 5 82 0 1 - 0 0
Ppos-speed 26 0 17 40 0 5 1.000 0.606 0.754
Pfinal-avg 0 0 10 75 0 3 - 0 0
Pmisc 21 0 0 0 0 67 1.000 1.000 1.000
Total 48 0 40 274 0 78 1.000 0.545 0.706

Table 2: Results from the first leave-one-out experiment. The first three columns are the number of correctly and
incorrectly classified and unclassifiable positive examples, the next three columns are the same for negative examples.
The final columns show the precision, recall and F-score of the system on the positive examples only.

to three, which, while not much in absolute terms, repre-
sents a recall of 60% with no reduction in precision. The
Pcorrect class had more limited gains, going from one
to two correctly labeled examples, again with no loss of
precision.

These improvements led us to ask whether negative
examples were limiting generalization in other cases as
well. In order to test this, we ran the same leave-one-out
experiment using only positive examples to test the recall
of the rules we were producing and then used all the pos-
itive examples with no negative examples to learn a set of
rules and tested those rules on all the negative examples.
The results of this experiment are shown in table 4. The
performance of the algorithm has improved significantly.
The recall on positive examples for this trial is 89% and
there are still no false positives.

While these results are promising, we would like to
be able to make use of negative examples in our sys-
tem. In the process of analyzing student response data by
hand, we found that it was often helpful to look at the stu-
dent’s answer to the base question associated with a given
follow-up question. It seemed likely that this information
would also be useful to the rule learner. We added to each
text response a pseudo-word indicating the student’s base
question response and reran the algorithm using negative
examples. We included Pcorrect data as negative exam-
ples for Pinitial and vice versa because our hope was

that the use of the base response tags would allow the
algorithm to create rules that wouldn’t conflict with neg-
ative examples from another class because the examples
would have different tags. The results are shown in ta-
ble 5. For most classes, the addition of the tags improved
the performance over untagged data. This is even true
in Pinitial, where all the tags were wrong (since those
data came from students whose base response indicated
Ppos-speed.) In this class, the addition of tags allowed
the same number of positive answers to be identified as
the removal of negative evidence from the Pcorrect class
did, implying that the tags served to avoid the trap of
generalization-quashing negative evidence. However, in
both these classes, the addition of tags led to some exam-
ples being incorrectly classified instead of just remaining
unclassified.

The only class where tag data posed a problem was the
Pmisc class. This is not surprising as this class contains
data with a variety of tags. In some cases responses that
were exactly the same (e.g. two students who wrote “I
guessed.”) were associated with different base question
answers. This meant the addition of different tags re-
sulting in non-matching answers. However, this doesn’t
pose a great problem for the system. The Pmisc class
is unusual in that it doesn’t really correspond to a spe-
cific misconception and the examples in that class come
from students responding to the base question in many

Class Positive examples Negative examples
Correct Incorrect Unclassified Correct Incorrect Unclassified Precision Recall F-score

Pcorrect 2 0 7 73 0 1 1.000 0.222 0.364
Pinitial 3 0 2 74 0 0 1.000 0.600 0.750
Total 52 0 36 262 0 76 1.000 0.591 0.743

Table 3: Retest of Pcorrect and Pinitial without conflicting negative evidence. Totals are carried over and revised from
Table 2.

Class Positive examples Negative examples
Correct Incorrect Unclassified Correct Incorrect Unclassified Precision Recall F-score

Pcorrect 7 0 2 73 0 6 1.000 0.778 0.875
Pinitial 3 2 0 78 0 5 1.000 0.600 0.750
Ppos-speed 43 0 0 0 0 45 1.000 1.000 1.000
Pfinal-avg 5 0 5 63 0 15 1.000 0.500 0.667
Pmisc 21 0 0 0 0 67 1.000 1.000 1.000
Total 79 2 7 214 0 138 1.000 0.898 0.946

Table 4: The learner is trained using only positive examples. Positive examples are tested with the leave-one-out
methodology. Negative examples are tested on rules learned with all positive examples.

different ways. Classes of this type are easy to spot and
can easily be trained on untagged data. This was, in fact,
the class that did the best when trained on untagged data.
Had this been done, the total number of correctly classi-
fied positive examples would have been 66, for a recall of
75%. The use of tag data also increases the performance
of the system on negative examples to over 99%.

6 Remarks

Currently, the only processing of the student text done by
the system is the removal of stopwords and stemming. It
would be interesting to preprocess the text with part-of-
speech tagging and syntactic and grammatical analysis,
such as identification of passive or active voice or even
full parsing. Because of the broad range of ways in which
students express their ideas, the system may be severely
hampered by limited exposure to syntactic variation. Tra-
ditional NLP analyses might allow for the creation of rule
analogues. For example, a rule that matched “subtract the
initial position from the final position” might be mapped
to another rule that could match “take the final position
and subtract the initial position.” The application of such
methods might be complicated by the fact that student
writing is often highly ungrammatical and short-answer
responses may well be more so.

Another way to improve the performance of automatic
text analysis in assessing students is to take some care in
constructing the problems presented to students to ease
analysis of their answers. In the responses that were as-
signed to Pfinal-avg, students described various qualita-
tive comparisons between the two lines. The lines were
labeled as Object A and Object B on the graph. In their

responses, students referred to them as “object A”, “line
A”, “graph A” and just “A”. Since “A” is a common stop-
word, this effected our ability to learn rules for this pre-
conception. We removed “A” from our stopword list,
which allowed for different rules to be learned, but also
allowed other rules to include “A” when it was being used
as an indefinite article. The use of part-of-speech tagging
may improve this situation, but so would changing the
question to label the graph in a way that would be less
confusing to the system.

Key factors in the success or failure of experiments
such as these are the variety of messages that must be
mapped into a single category and degree to which us-
age of various words and patterns of words is consis-
tent in implicating one category rather than another. Ul-
timately, the utility of techniques such as those we are
studying may depend on the careful scoping of these cate-
gories and means to bias student writing towards particu-
lar styles or vocabularies. These techniques offer one ap-
proach to language analysis that lies between the purely
syntactic and the thoroughly semantic ends of the spec-
trum. We are optimistic about their practical potential in
the realm of educational assessment.

Acknowledgements

We would like to thank Earl Hunt and Jim Minstrell for
the use of data from their Diagnoser online assessment
system. We would also like to thank David Akers and
Nick Benson for their work on the INFACT system.

Class Positive examples Negative examples
Correct Incorrect Unclassified Correct Incorrect Unclassified Precision Recall F-score

Pcorrect 6 1 2 79 0 0 1.000 0.667 0.800
Pinitial 3 2 0 83 0 0 1.000 0.600 0.750
Ppos-speed 33 0 11 43 0 1 1.000 0.750 0.857
Pfinal-avg 3 0 6 79 0 0 1.000 0.333 0.500
Pmisc 4 0 17 66 0 1 1.000 0.190 0.320
Total 49 3 36 350 0 2 1.000 0.557 0.715

Table 5: Leave-one-out trial using data tagged with the students’ responses to the corresponding base question.

References
Jacky Baltes. 1992. A symmetric version space algo-

rithm for learning disjunctive string concepts. Techni-
cal Report 92/468/06, University of Calgary, March.

Jill C. Burstein, Susanne Wolff, and Chi Lu. 1999. Using
lexical semantic techniques to classify free-responses.
In Nancy Ide and Jean Veronis, editors, The Depth
and Breadth of Semantic Lexicons. Kluwer Academic
Press.

Haym Hirsh, Nina Mishra, and Leonard Pitt. 1997. Ver-
sion spaces without boundary sets. In Proceedings of
the Fourteenth National Conference on Artificial Intel-
ligence, pages 491–496. Menlo Park, CA: AAAI Press,
July.

Haym Hirsh. 1991. Theoretical underpinnings of version
spaces. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, pages 665–
670. San Francisco, CA: Morgan Kaufmann, July.

Haym Hirsh. 1992. Polynomial-time learning with ver-
sion spaces. In William Swartout, editor, Proceedings
of the 10th National Conference on Artificial Intelli-
gence, pages 117–122, San Jose, CA, July. MIT Press.

Earl Hunt and Jim Minstrell. 1994. A cognitive approach
to the teaching of physics. In Kate McGilly, editor,
Classroom lessons: Integrating cognitive theory and
the classroom. M.I.T. Press.

Earl Hunt and Jim Minstrell. 1996. Effective instruction
in science and mathematics: Psychological principles
and social constraints. Issues in education: contribu-
tions from educational psychology, 2(2):123–162.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to plato’s problem: The latent semantic analysis
theory of the acquisition, induction, and representation
of knowledge. Psychological Review, 104:211–240.

T. Mitchell. 1982. Generalization as search. Artificial
Intelligence, 18:203–226.

Steven L. Tanimoto, Adam Carlson, Earl Hunt, David
Madigan, and Jim Minstrell. 2000. Computer sup-
port for unobtrusive assessment of conceptual knowl-
edge as evidenced by newsgroup postings. In Proc.
ED-MEDIA 2000, June.

M. B. Wolfe, M. E. Schreiner, B. Rehder, D. Laham, P. W.
Foltz, W. Kintsch, and T. K. Landauer. 1998. Learning
from text: Matching readers and text by latent semantic
analysis. Discourse Processes, 25:309–336.

