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Neural circuits in silicon

Chris Diorio and Rajesh P. N. Rao

Studies of neurally inspired silicon circuits are showing how networks of
neurons can multiply and select input signals. They may also provide
aiternative ways to build computers modelled on biology.

nature’s development of information-

processing machines. In attributes such
as adaptability and fault tolerance they are
likely to remain unsurpassed by any human-
built machine in the foreseeable future. But
in terms of numerical computation, digital
computers are the pinnacle of the past quar-
ter-century’s explosion in information tech-
nology and have capabilities that far exceed
those of animal brains. This dichotomy per-
plexes us. How do animal brains compute?
And if silicon technology is so powerful, why
canwe not build thinking machines?

Carver Mead, a pioneer in integrated-cir-
cuittechnology, quipped duringadiscussion
of brains versus computers that “silicon
doesn’t know anything about bits” The
implication is that nothing about silicon
itself requires computers to be digital. On
page 947 of this issue, Hahnloser et al.' take
this reasoning to its logical conclusion: they
have built a cortex-inspired silicon circuit
that multiplies and selects features in its
input, using a network of neuron-like ele-
ments. The theoretical basis for this work is
notnew:in1996, Salinasand Abbott’ report-
ed computer simulations of a network of
model neurons, demonstrating that the net-
work could perform these exact tasks. What
Hahnloser et al. have doneisto reproduce the
behaviour of such a network in silicon.

The networks studied by Salinas and
Abbott and by Hahnloser et al. both use
recurrent (or feedback) connections that are
excitatory for connections between neigh-
bouring neurons and inhibitory at larger dis-
tances (Fig. 1a). This pattern of local excita-
tionand long-range inhibition is common in
contemporary models of the brain’s cor-
tex” . One attribute of this type of network is
that, when a neuron at a given physical loca-
tion receives an input, the network responds
by activating both the stimulated neuron
and a cluster of neurons around it (Fig. 1b).
Moreover, when the background input to all
neurons is increased systematically, this clus-
ter of activity is multiplied by a gain factor
that is a linear function of the background
input (Fig. 1b). These responses are intrigu-
ing from a neurophysiological perspective,
Say, for example, we equate the background
input to a motor signal representing eye
position, then these multiplicative responses
are similar to the modulation of neuronal
responses by eye position observed in the

Animal brains form the centrepiece of
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visual cortex’.

A second important feature of this type of
recurrent network is its ability to select a sin-
gle stimulus when presented with several
competing stimuli. In this way the network
exhibits nonlinear behaviour, selecting the
strongest of the competing stimuli and sup-
pressing the weaker (Fig. 1c). Such behav-
iour can be regarded as a simplified form of
sensory attention, whereby the network
selects the stimulus location based on stimu-
lus strength. From a neurophysiological per-
spective, the selection of a single target and
the suppression of distractors is important,
for example, in programming arm or eye
movements.

The network’s ability to switch between
linear and nonlinear behaviour, based on its
input, is very different from that of standard
electronics. Engineers usually require sepa-

rate analogue and digital circuits to carry out -

linear amplification and nonlinear selection,
respectively. Hahnloser et al. explain their
hybrid analogue—digital circuit in terms of
the set of neurons that are active in steady
state, and a gain response that depends only
on the identities of the active neurons and
not on their analogue responses. Behaviour
that derives from a common set of active
neurons is linear in the input, whereas
| behaviour that derives from a comparison
among different sets of active neurons is
nonlinear in the input.

Hahnloser et al. extend previous studies
of this class of recurrent networks by
analysing the stability of the dynamical
equations that model the network, and show
that there are inviolate constraints on the
allowed network states. In particular, they
show that if no single input can activate a set
of neurons (the set cannot form a memory),
then no input can activate a supergroup of
these same neurons (no supergroup can
formamemory). Alimitation of the study by
Hahnloser et al is the requirement that
synaptic connections be symmetric — that
is, the strength of the connection from neu-
ron A to neuron B must be the same as that
fromBto A. Thisassumption allows them to
prove network stability, but is difficult to jus-
tify neurobiologically. A fruitful area for
future research, therefore, is the study of
recurrent cortical networks with non-sym-
metric synaptic connections (see, for exam-
ple, refs 8-10 and Supplementary Informa-
tion').

What do Hahnloser et al., and others like
them, hope toaccomplish by buildingsilicon
circuits modelled on biology? First, they can
learn how to map neuronal primitives (such
as neurons and synapses) onto silicon, and
then how to compute using these primitives
(see, for example, refs 10-12). Second, they
can investigate how physical and technologi-
cal limits, such as wire density, signal delays
and noise, constrain neuronal computation.
And third, they can learn about alternative
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models of computation. Biology provides

examples of non-digital computing

machines that are incredibly space- and

energy-efficient, and that excel at finding

good solutions to ill-posed problems. Scien-

tists may eventually decipher all of nature’s

electrochemical circuits, but the work of

Hahnloser et al. demonstrates that we

already know enough to begin building inte-

grated circuits that compute like biology. M
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Figure 1 Linear and nonlinear behaviour in a
silicon circuit inspired by neurobiology.

a, Neuronal network studied by Salinas and
Abbott’, and built in silicon by Hahnloser ef al.'.
Each neuron excites its nearest neighbours, and
inhibits neurons further away from it. The
artificial neurons, in both cases, usea
continuously varying signal to model the firing
rate of a cortical neuron. In their numerical
simulations, Salinas and Abbott model the
strength of synaptic connections from a neuron
to its neighbours as a ‘Mexican hat’ function
(shown below the network), whereas Hahnloser
et al. approximate this function in their silicon
circuit. b, Example of multiplicative responses
(that is, linear gain modulation) in the network.
Given three input pulses at the same location but
at different background amplitudes (green, blue
and red), the network multiplies the output by a
gain factor that is a linear function of the
background input. ¢, Example of stimulus
selection in the network. Given input pulses at
two different locations, the network selects the
location with the stronger input, suppressing the
location with the weaker input. This
competitive, nonlinear behaviour is the result of
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recurrent excitatory and inhibitory interactions
among neurons.
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