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Abstract 
 

  Finding correspondences between two 3D shapes 

is common both in computer vision and computer 

graphics. In this paper, we propose a general 

framework that shows how to build correspondences 

by utilizing the isometric property. We show that the 

problem of finding such correspondences can be 

reduced to the problem of spectral assignment, which 

can be solved by finding the principal eigenvector of 

the pairwise correspondence matrix. The proposed 

framework consists of four main steps. First, it obtains 

initial candidate pairs by performing a preliminary 

matching using local shape features. Second, it 

constructs a pairwise correspondence matrix using 

geodesic distance and these initial pairs. Next, the 

principal eigenvector of the matrix is computed. 

Finally, the final correspondence is obtained from the 

maximal elements of the principal eigenvector. In our 

experiments, we show that the proposed method is 

robust under a variety of poses. Furthermore, our 

results show a great improvement over the best related 

method in the literature. 

 

1. Introduction 
 

       In computer vision and computer graphics, 

building correspondences between two 3D shapes is an 

important problem that allows the semantic structure of 

shape parts to be determined. The correspondence 

results can be used for numerous applications, such as 

object recognition, time-varying surface recon-

struction, mesh parameterization, and statistical shape 

modeling. As a consequence, the problem of finding 

3D shape correspondence has attracted the attention of 

many researchers. 

      Isometry is a very fundamental characteristic of 3D 

shape correspondences. An isometric transformation is 

one that is invariant with distance. Thus we would like 

to find an optimal correspondence that minimizes the 

distance error between two shapes. If the distance is 

defined to be geodesic distance, this correspondence is 

robust under pose-variation and large deformations. 

However, finding such an optimal correspondence is a 

very typical NP-hard problem. Therefore, a general 

solution that minimizes isometric error is the key point 

to building good correspondences.   

        Addressing this problem, we proposed a general 

framework of minimizing the isometric error by 

spectral assignment. The idea of spectral assignment is 

to build a pairwise correspondence matrix using 

geometric properties and geodesic distance. Based on 

Raleigh’s ratio theorem, the problem of minimizing 

isometric error can be obtained by finding pairs that 

correspond to the maximal elements of the principal 

eigenvector of a pairwise correspondence matrix. This 

proposed framework has two distinctive advantages. 

First, it works directly on the original Euclidean space 

instead of a transformed space and will therefore not 

produce an approximation error. Secondly, this method 

will not force every source point to be mapped to a 

destination point, a characteristic that is important for 

partial correspondences. To further verify the proposed 

framework, this paper also gives an implementation, 

which uses multidimensional scaling (MDS) with least 

squares error for the initial matching. Experiments 

show our method is robust under pose variation and 

shows a great improvement over the most related 

method in the literature. 

2. Related work 
 

 The problem of 3D shape correspondence can be 

solved by different mapping methods, such as distance-

preserving mappings, conformal mappings, and heat 

mappings [1]. Our method is based on distance-

preserving mappings. Therefore, this section gives a 

brief review of this kind of method. 

      Correspondence methods by distance-preserving 

mapping can be further classified into two categories. 

The first category uses multidimensional scaling 



(MDS), proposed by Elad et al [2], who define bending 

invariant signatures by approximating Euclidean 

distance by geodesic distance over the surface. Samuel 

et al [3] fit 3D humans to a template, iteratively 

transforming the template to the input model using 

MDS. Wuhree et al   [4] uses Markov network to learn 

the spatial relations among a human’s feature points 

and builds correspondences by maximizing a joint 

probability over all possible configurations of 3D 

human poses. Jain et al [5] transform two input shapes 

into spectral space using geodesic distance, apply 

principal component analysis to get an initial 

alignment, and use thin-plated splines to obtain the 

correspondence. To further improve Jain’s algorithm, 

Sahillioğlu et al [6] perform an additional step after 

spectral correspondence to minimize the isometric cost 

using an iterative greedy algorithm. Ruggeri et al [7] 

construct a point-based statistical descriptor by 

combining geodesic shape distribution and other 

geometric information.  

       Our work is most similar to Sahillioğlu ’s work. 

Both methods directly work on the original 3D 

Euclidean space. However, Sahillioğlu’s method 

requires many correct correspondences to be found in 

the initial matching. Our method only obtains a set of 

possible correspondences for the initial matching. Our 

condition is less strict than Sahillioğlu’s method, and 

therefore, it is more general. In addition, we improved 

his initial matching method to find better 

correspondences. 

 

3. Problem formulation  
 

  We cast the problem of 3D shape correspondence 

as a point-to-point correspondence problem. Therefore, 

we assume there are   and   points (   ) evenly 

distributed over the surface   and    respectively. The 

correspondence task is to build a point-to-point 

mapping between two sets    {             } 
and    {             } . For any two points    

and    , their geodesic distance is denoted 

by            . Therefore, the problem of minimizing 

isometric error can be defined by the following 

equation: 

     

      ∑      (     )      (       (  ))   
                                                                  

(1) 

where       denotes a correspondence for point   . To 

generate such an isometric correspondence, we first 

obtain a set of possible correspondences  

  {                          } 

where    is a set of K possible corresponding points in 

T for point    in S. This process can be performed by 

some typical shape features, for example SIFT 

features, MeshDOG features and Euclidean distance of 

two aligned shapes. Second, we compute a pairwise 

correspondence matrix M, each of whose rows and 

each of whose columns represent possible 

correspondences  (     ) between a point      and a 

point     . Thus the matrix has     rows and also 

    columns. The non-diagonal elements of the 

matrix represent the compatibility of a correspondence  

      with another correspondence          . The 

compatibility is given by: 

                                          (2) 

where c is a constant to convert the equation (1) into a 

maximum problem. The compatibility is set to be zero 

if      and       or      and     . The diagonal 

elements of the matrix represent the dissimilarity of a 

single correspondence        and are computed by 

shape features as mentioned above. In our 

implementation, we only use local features to build the 

initial matching set  . Therefore, the value of the 

diagonal elements is initialized to 0. Given P and M, 

the isometric correspondence can be obtained by 

maximizing the following equation: 

                                   (3) 

where X is a characteristic vector denoting the final 

correspondences. The length of X is equal to    . For 

each element, its value is 1 if it is a good 

correspondence and 0 otherwise. Based on Raleigh’s 

ratio theorem, the above maximum problem can be 

solved by computing the principal vector of matrix M. 

Section 4.2 will give more details about how to obtain 

X by greedy algorithm. 

 

4. Implementation  
       This section gives an implementation for the above 

framework. We first perform an even sampling over 

two shapes. Then the initial matching is performed 

using Euclidean distance, since two corresponding 

points are close to each other in two aligned shapes. 

Finally, isometric correspondence can be obtained by 

solving equation (3).  

 

4.1 Even sampling 
      The process evenly samples a subset of vertices 

over the surface of each shape. After even sampling, 

each 3D shape is divided into a set of almost equal 

patches. For each patch, its center is called a base 

vertex. The correspondences are only built for the base 

vertices.  

      The whole sampling process can be iteratively 

performed by geodesic distance. First, all vertices are 



set to be unmarked. In each iteration, one unmarked 

vertex is selected as the seed point and marked. Those 

vertices whose geodesic distances to the seed point are 

less than a predefined radius r are also marked. The 

iterations continue until all vertices are marked. Based 

on these patches, we can construct base vertices, which 

are at least a distance r apart from each other. Figure 1 

shows a result of even sampling. These base vertices 

are evenly distributed over the 3D shape. Therefore, 

correspondences of base vertices can be easily 

extended to build dense correspondences.  

  

Figure 1.  3D shape and its even sampling 

4.2 Initial matching  
       Using these base vertices, we can perform initial 

matching. As shown in Section 3, our framework is to 

select good correspondences from the results of the 

initial matching. Therefore, the quality of initial 

matching plays a very important role for the final 

correspondences. Here the initial matching is 

performed by combining MDS and least squares error. 

First, for each 3D shape, MDS is performed to build a 

pose-invariant representation. Second, two transformed 

3D shapes are aligned by minimizing the least square 

error. Figure 2 shows an example of two aligned 

shapes. It can be seen that each base vertex in the 

source shape and its correct correspondence in the 

destination shape are very close. Therefore, we can use 

Euclidean distance to build the set P of possible 

correspondences. For each base vertex of the source 

shape, the top K nearest neighbors are used to construct 

possible correspondences. (We use K=5.) 

 
Figure 2. Alignment of two 3D shapes 

        In a practical implementation, the process of 

minimizing least squares error is replaced by Principal 

Components Analysis (PCA), which can greatly reduce 

the complexity. First, two transformed shapes are 

aligned by PCA. Due to the ambiguity of PCA, we 

need to flip the sign of each axis to see which direction 

has the least squared error between the two shapes. 

Finally the direction with the least error is selected as 

the final alignment. In this way, we only test 8 possible 

directions to get the initial alignment. Therefore, it is 

very efficient compared to the traditional process of 

minimizing least squares error. 

4.3 Correspondences by greedy 

optimization 
       Now the problem of correspondences can be 

solved by computing the eigenvectors of matrix  . We 

first obtain the principal eigenvector of matrix  . 

Notice that each component of the principal eigen-

vector is mapped to a possible correspondence, while, 

its scalar value denotes the possibility of a correct 

correspondence. In particular, the larger the scalar 

value of one component, the better the correspondence 

pair. Therefore, we can formulate the problem of 

finding final correspondences as a greedy optimization 

as summarized in Table 1.   

 

Table 1. Greedy best first search algorithm 

1. Initialize the vector X as a zero vector. 

2. Compute principal eigenvector       of M. 

3. Find maximum element       of vector      . Its 

corresponding element in X is set to be 1. 

4. Remove maximum element      from        . At 

the same time, remove all potential assignments in 

confliction with     . 
5. If       is empty, the process returns the solution 

X. Otherwise go back to step 3. 

 

5. Experimental analysis 
 

  In our experiments, we verify our proposed 

framework using a public 3D shape database called 

TOSCA. The database contains 80 models classified 

into 9 categories. For each category, we select one 

model as the source shape. Then correspondences 

between this source shape and the other shapes in the 

same category are performed to verify the proposed 

framework. Figure 3 shows some results, with only 5% 

of matching pairs displayed for better visualization. 

For two mapped points of a pair, we find the position 

of a source point is very similar to the position of its 

destination point regardless of the varying poses.  

  

  

Figure 3. Some examples of correspondences 

Next, we perform a statistical analysis of the 

corresponding results. There are 68 pairs in the test 

database. In addition, we accept symmetric flips in 



isometric correspondence. Table 2 lists the number of 

incorrect pairs for each category. As a comparison, we 

also show the number of incorrect pairs by 

Sahillioğlu’s algorithm [6].  

Table 2. Comparison of two algorithms 

Category Our algorithm Sahillioğlu’s  

Cat 0 1 

Centaur 0 2 

David 0 1 

Dog 0 0 

Gorilla 0 1 

Horse 0 0 

Michael 0 7 

Victoria 0 9 

Wolf 0 0 

  As shown in the above table, our method has a 

great improvement over his. Since both methods are 

actually a refinement of initial matching, the final 

correspondences are highly depending on that initial 

matching. Sahillioğlu’s algorithm uses spectral 

embedding for initial matching, and each eigenvector 

is independently scaled by the corresponding eigen-

value. However, this scaling strategy will seriously 

destroy the topological features of the 3D shape, 

causing erroneous correspondences. Figure 4 gives 

such an example, where the head of the human is 

wrongly aligned to the feet of the other human (Figure 

4(a)). On the contrary, our algorithm outputs correct 

results (Figure 4(b)). Finally, our algorithm is much 

more general than Sahillioğlu’s method. 

 

  
(a) Sahillioğlu’s 

algorithm 
(b) our algorithm 

Figure 4. Comparison to Sahillioğlu’s algorithm 

 

 Like other related algorithms, the main limitation 

of our current implementation is still the problem of 

symmetric flip, which cannot be distinguished in initial 

matching, as shown in Figure 5. For this problem, it is 

possible to add some constraints by matching local 

features.  

 

  

Figure 5. The problem of symmetric flip 

 

6. Conclusion 
 This paper gives a general framework for finding 

isometric correspondence by spectral assignment 

which is performed by computing the principal 

eigenvector of the pair-wise correspondence matrix 

and is stable under pose-variation. There is much 

future work to be done. First, our current 

implementation of initial matching only works well 

when two shapes can be aligned correctly. Therefore, 

we need to improve the initial matching for better 

results. Secondly, better local shape features will be 

considered to support partial correspondence. 
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