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Chapter 1

INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique used

to detect neural activations, which has been widely applied to mapping functions of

the human brain [11]. When neurons in the brain are activated, the increase in electri-

cal activity causes an increase in the local metabolic rate. The increased consumption

of oxygen results in fluctuations in the levels of paramagnetic deoxyhemoglobin in the

blood which is sensed using a magnetic field. The changing level of deoxyhemoglobin

measured in the brain is referred to as the blood oxygenation level dependent (BOLD)

signal.

During an fMRI scan session, a series of three-dimensional images are captured

consecutively, usually two to three seconds apart. The value of the image at each

small volume unit, called a voxel, is the BOLD signal intensity. The patient is usually

presented with a stimuli to induce neural activations. While the types of stimuli vary,

the standard experimental design is a simple ‘on-off’ or ‘boxcar’ design, where the

patient is repeatedly presented with a task followed by a pause.

Functional connectivity is defined as correlations between spatially remote neu-

ral events. If activity in two brain regions is observed to covary, it suggests that

the neurons generating that activity may be interacting [4]. This covariance can be

measured by observing the BOLD signal from two locations in an fMRI scan. The

time-series from different voxel locations can be compared in several different ways,

some of which will be discussed in Chapter 2.

The Structural Informatics Group at the University of Washington is developing
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software tools for processing, integrating, and visualizing multimodality data for sur-

gical planning and the study of language mapping in the brain [12]. Data for this

project is collected from patients who are about to undergo surgery for intractable

epilepsy in order to remove the foci of the seizures. Three main data types are col-

lected for each patient. Before surgery, fMRI volumes showing brain activations for a

language task and structural MRI volumes showing the detailed anatomy of the brain

are collected. During surgery, data is collected using Cortical Stimulation Mapping

(CSM) to pinpoint language areas to be avoided during surgery. For this procedure,

the patient is woken up and given a language task to perform while electrical stimu-

lation is applied to areas of his or her brain.

One goal of the project is to integrate these data types to allow for analysis of

the relationships between the data sources. Identification of regions in an fMRI im-

age volume associated with the language areas identified by CSM could provide a

non-invasive alternative to CSM for epileptic patients and would advance the study

of language mapping in the normal brain. Since it is expected that language re-

gions behave as a functionally connected network [3], it is useful to be able to search

for functional connectivity between voxels in fMRI image volumes and to compare

networks of connectivity across patients.

This work introduces a MATLAB-based tool developed for exploring functional

connectivity in the brain. Four queries have been designed to allow the user to find

and compare these connections. These queries are executed from an interface that

allows the user to choose the query type and interact with the data. The queries

supported by the user interface designed for this work are:

1. Starting with SUR, CSM, or fMRI data, select an (x, y, z) coordinate in the

brain. Get the raw data fMRI time series of the voxel at that location. Use

signal similarity measures to find correlated voxels within the patient’s brain.

2. Starting with one patient’s voxel correlations, search for patients who have a
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similar correlation pattern for a voxel in the same region.

3. For a given patient fMRI and an activation threshold, find patients with similar

activation patterns, by searching the fMRI images showing statistically signifi-

cant activations.

4. For a given patient fMRI and a given location, find other patients who have

greater than or equal activation values at that location, by searching the fMRI

images showing statistically significant activations.

This thesis describes the use of independent component analysis (ICA) as a mea-

sure of voxel similarity, which allows the user to find and view statistically independent

maps of correlated voxel activity. The tool developed in this work uses a specialized

clustering technique, designed to find and characterize clusters of activated voxels, to

compare the independent component spatial maps across patients. This same method

is also used to compare SPM results across patients.

Chapter 2 discusses in detail the techniques used to perform measurements of

voxel and spatial map similarity. Chapter 3 describes the methods used to answer

each of the four queries. Instructions for executing each query and the algorithms

used to find the query results are presented. Chapter 4 provides an evaluation of the

methodology and discusses the results.



4

Chapter 2

RELATED TECHNIQUES

There are two main tasks associated with the four query types. The first task is

the measurement of voxel similarity. This is required by the first query, which allows

the user to select a region of interest (ROI) in a patient’s brain and returns a map

of other regions in the patient’s brain with similar activation patterns. Although

many techniques exist for finding similar voxel behavior, this chapter will address the

use of direct correlation, Statistical Parametric Mapping (SPM), principal component

analysis (PCA), and independent component analysis (ICA).

The second task needed to perform the queries is the measurement of similarity

between spatial activation maps. This measurement is needed for the second and

third queries, which allow the user to select an ICA or SPM similarity map, and

return similar maps of the selected data type from the database. For this application,

a specialized clustering algorithm, which will be discussed in detail in this chapter,

has been developed.

2.1 Methods for Evaluating Voxel Similarity

2.1.1 Direct Correlation

The simplest method of finding similarity between voxels is to use standard correlation

to compare their time series. The correlation coefficient measures the amount of

similarity between two random processes. It is defined for two random processes X

and Y as

cX,Y =
E [(X − µX)(Y − µY )]

σXσY

, (2.1)
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where µ is the sample mean of a process and σ is its standard deviation. The higher

the correlation coefficient, cX,Y , the more similarity there is between X and Y .

When a region of interest in the brain is selected, its voxel time-course can be

extracted from the raw data of an fMRI scan and correlated with the time-courses

of all other voxels in that scan. A high correlation coefficient for two voxel time-

courses indicates shared activation patterns, which may be a result of a functional

connectivity. In Figure 2.1, one slice of a patient’s brain scan is shown, color coded

by correlation coefficients. The time-courses from the voxels at each position shown

were correlated with the time-course from a voxel at position (15, 15). The correlation

values were then normalized for the image. It can be seen from Figure 2.1 that the

area around the voxel at position (15, 15) is highly similar. This is expected since the

targeted functional activations occur in clusters of 2×2 voxels (about 3 mm square)

or larger [11]. A narrow area of activation along the front of the brain can also be

observed on the left side of Figure 2.1. It is difficult to asses the accuracy of this

region, since there is no ground truth that can be used to evaluate the results.

While this technique is straightforward and intuitive, it has an inherent drawback

that impacts its usefulness. The fMRI signal from one voxel is actually the sum of

the signals from the tissue, blood, spinal fluid, and other components in an approx-

imately 1.5 mm cube [11]. The signals can be related to task and non-task related

BOLD response, spontaneous metabolic changes, or physiological influences such as

cardiac and respiratory fluctuations. The signals that are generally most interesting

to researchers are the BOLD responses which indicate neural activity. It has been

demonstrated that even in activated areas, the task related component of a voxel

time-course makes up less that ten percent of the total magnitude [9]. This suggests

that other fluctuations are responsible for the majority of the signal. Direct correla-

tion of these raw time-courses will tend to mask interesting signal components and

provide similarity information about less interesting physiological fluctuations.



6

Figure 2.1: The colors in this image represent the correlation coefficients for one two-
dimensional slice of the three-dimensional fMRI scan. Each voxel time-course from
the two-dimensional subset is correlated with the time-course of the voxel shown at
position (15, 15) in the image. The higher coefficient values, which indicate more
similarity, are shown in dark red.

2.1.2 Statistical Parametric Analysis

Statistical Parametric Analysis (SPM) is a software package developed by the Well-

come Department of Imaging Neuroscience (University College London) that uses

statistics to analyze brain activity from fMRI and other functional imaging exper-

iments. It provides a library of utilities, such as head movement correction, cross

patient spatial normalization, and smoothing, which significantly improve the quality

of raw imaging data. These correction routines were used on all fMRI data presented

in this paper.

SPM is also used to map regions in the brain that work together on a task; this

is another method that can be used to identify functional connections. The approach

used by SPM circumvents the mixed source problem by using a combination of statis-

tical processes to find voxel activation patterns related to the exam stimulus. A test

vector modeled after the hypothesized response to the exam stimulus is compared to
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Figure 2.2: The three plots of the SPM user interface show the X, Y, and Z planes
of the brain scan. The dark areas mapped on the brain show activations of high
statistical significance to the model.

each voxel using univariate measures (f-tests and t-tests) to look for statistical signif-

icance. Each voxel is assigned a value based on the significance of its relation to the

test vector. These values are then displayed as a three-dimensional volume, as shown

in Figure 2.2.

While SPM solves the problem of separating the small-magnitude, task-related

signal from the raw data, it has limited effectiveness for identifying functional con-

nections. The first weakness is its assumption of a model for the response to experi-

mental stimuli. This implies that the response is identical across all voxels from one

patient scan and across all patients. In reality these may differ, especially in the case

of patients with a pathological brain condition [9]. The use of a model also ignores

transient task related changes that may be caused by learning or fatigue.

Secondly, SPM is limited to evaluating only task-related similarity between voxel
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time-courses. While these components are more interesting than known non-task

related components such as cardiac and vascular fluctuations, this approach ignores

unknown networks of voxel activations that may not be directly dependent on the task

vector. For example, there has been recent interest in low frequency (less than .1 Hz)

activation patterns showing complex spatial structure that have been observed both

at rest and during experimental stimulation[1]. These activation maps may be the

result of baseline activity indicating the presence of functional networks. To better

explore these regions of shared activation, a data driven technique is needed that does

not require the prediction of an activation vector.

2.1.3 Principal Component Analysis

Principal component analysis (PCA) is a linear transformation that decorrelates the

dependent variables in a data set. It projects the data onto a basis set where the

elements are orthogonal to each other. To perform PCA, the first step is to calculate

the the covariance matrix of the data set, which represents the tendency of all possible

voxel pairs to covary. The covariance matrix of an m × n data set X containing m

observations of the n voxels in each of the column vectors x1, x2, ..., xm, is defined as

Cov(X) =


E[(x1 − µ1)(x1 − µ1)] E[(x1 − µ1)(x2 − µ2)] · · · E[(x1 − µ1)(xn − µn)]

E[(x2 − µ2)(x1 − µ1)] E[(x2 − µ2)(x2 − µ2)] · · · E[(x2 − µ2)(xn − µn)]
...

...
. . .

...

E[(xn − µn)(x1 − µ1)] E[(xn − µn)(x2 − µ2)] · · · E[(xn − µn)(xn − µn)]

 ,

where µi is the mean of the column vector xi. Once the covariance matrix is found,

its eigenvectors are computed. The eigenvectors represent the new orthogonal basis

of the data set. The eigenvectors y are defined as the non-trivial solution

C ∗ y = λ ∗ y, (2.2)
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(a) (b) (c)

Figure 2.3: Examples of the uncorrelated spatial patterns in the fMRI data set iden-
tified by PCA

where C is the square covariance matrix, y is a column vector containing the eigen-

vectors, and λ contains the scalar eigenvalues. The eigenvalue associated with an

eigenvector quantifies its contribution to the variance of the data, and therefore its

significance. The PCA algorithm ranks the eigenvectors in order of decreasing eigen-

values. By definition, the eigenvectors are all orthogonal to each other, so the ranked

eigenvectors provide the new uncorrelated bases for the data. In this application,

the eigenvectors contain uncorrelated spatial patterns of activated voxels. Examples

of the three-dimensional spatial patterns extracted from one scan session from one

patient are shown in Figure 2.3.

PCA is commonly used to reduce the dimensionality of the data since bases with

insignificant contributions to the overall variance can be removed with little informa-

tion loss. In this application some of the most interesting components of the data

contribute very little to the overall variance, so the original dimensions should be

retained. The goal of PCA in this application is the projection of the raw data from

the scans onto an uncorrelated basis set. Since the time-course observation from each

voxel is known to contain a mixture of unknown underlying signals, if these signals

have separate causes, they should be uncorrelated and separable by PCA. This is true

when the distribution statistics of the data are second order. In this case independence
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Figure 2.4: PCA finds two orthogonal basis for the data, but ICA is able to cor-
rectly identify a statistically independent basis, revealing the true structure of the
distribution [7].

and decorrelation are equivalent. However for higher order statistics, decorrelation is

not a strong enough condition.

2.1.4 Independent Component Analysis

Independent component analysis (ICA) is a technique used to separate statistically

independent source signals from a set of observations. It is superficially related to

PCA. Where PCA attempts to identify underlying components in the data set that

are orthogonal and therefore uncorrelated, ICA identifies underlying components that

are statistically independent. Statistical independence is a stronger condition than

decorrelation, since it can use any order of statistics rather than being limited to the

two orders available to PCA (from the covariance matrix). In addition, ICA does not

restrict the components to orthogonal dimensions, so the underlying bases are allowed

to be very similar, as long as the independence requirement is met. An example of

the effect of removing these restrictions is shown in Figure 2.4.

In the ICA model, T observations of a random variable x, [x1, x2, ..., xT ], are
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assumed to be a linear mixture of T statistically independent components, c1, c2, ...cT .

Each component xj in the observation set can be represented as

xj = mj1c1 + mj2c2... + mjT cT , (2.3)

where the coefficient mji is a random variable describing the contribution of ci to xj.

In matrix form, this becomes

X = MC (2.4)

where X is a T × V matrix containing T observations of V variables, M is a T ×

T matrix of the mixing coefficients mji, and C is a T × V matrix containing T

observations of the V underlying components. M is generally assumed to be a square

matrix, since the ICA algorithm requires the calculation of its inverse, W = M−1.

In this model, both the mixing matrix, M , and the independent components, C,

are unknown. ICA estimates the values of both, using the assumption that all ci are

independent. The algorithm finds an initial estimate of M̃ and its inverse, W̃ = M̃−1,

is calculated. The independent components are then estimated to be

C̃ = XW̃. (2.5)

The algorithm measures the independence of the components c̃i and uses this

measurement to estimate a new mixing matrix M̃ . This process is repeated iteratively

until the estimates for C converge.

There are several different algorithms available for performing ICA. Two algo-

rithms that have been widely used and are explored in this paper are FastICA [6] and

Infomax [10].

FastICA

FastICA, developed by Hyvarinen and Oja in 1998, is a computationally efficient

fixed-point algorithm for maximizing the statistical independence of the estimated

components by maximizing their non-Gaussianity [6]. It is reasonable to assume that
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(a) (b)

(c)

Figure 2.5: (a) Original four signals, three frequencies and noise, (b) Four randomly
weighted combinations of the original four signals, (c) Estimate of the underlying
signals using the FastICA algorithm.
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the underlying distributions in the data set, modeled as C, do not have Gaussian

distributions. When any non-Gaussian random variables are added together, their

joint distribution becomes increasingly Gaussian in shape. Therefore, any weighted

sum of the independent components will be more Gaussian than the actual non-

Gaussian components. When the estimate of one component c̃j is dependent on more

than one underlying component, its distribution will be more Gaussian than the

actual cj. The FastICA algorithm iteratively calculates the rows of W̃ to maximize

the non-Gaussianity, and therefore independence, of the rows of C̃.

There are several ways to quantify the non-Gaussianity of a random variable.

FastICA maximizes non-Gaussianity by maximizing the negentropy of the estimated

components [5]. Negentropty, named for an abbreviation of negative entropy, is a

statistical measurement based on entropy. For a random variable, entropy describes

the amount of information that can be gained from observation. Observation of

variables with low entropy will allow the identification of a narrow range of values the

variable is likely to take. If a variable has high entropy, it will have a higher degree

of randomness, and observation over time will provide less predictive power. Entropy

of a random variable y is defined as

H(y) =
∑

i

p(y = ai) log(p(y = ai)), (2.6)

where ai are the possible values that y can take. A Gaussian random variable has

the largest possible entropy of all variables with an equal variance, so high degree

of entropy can be associated with a high degree of gaussianity. Negentropy is a

measurement of the entropy of a random variable that is designed to be always non-

negative and equal to zero when the distribution is Gaussian. Negentropy is defined

in terms of entropy as

J(y) = H(ygauss)−H(y), (2.7)
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where H(y) is defined as the entropy of the random variable y and H(ygauss) is the

entropy of a Gaussian random variable with the same mean and variance as y. In

practice, as developed by Hyvrinen [5], this is approximated by the calculation of

J(y) ≈
k∑

i=1

(E[Gi(y)]− E[Gi(ygauss)])
2, (2.8)

where y is the random variable, ygauss is the Gaussian random variable with equal

mean and variance, k is an arbitrary number, generally chosen to be 2, and Gi is

the i’th non-quadratic function. An estimate of the negentropy can be achieved with

almost any non-quadratic Gi, but the most accurate results will be gained by choosing

a function that grows slowly. The iterative formula for estimating the weights w by

maximizing the approximate negentropy of the estimated components c̃ = wT x, using

Equation 2.8 is

wnew = E[xG′(wT
oldx)]− E[G′′(wT

oldx)]wold. (2.9)

In the FastICA algorithm, the values in the weighting matrix are calculated one

at a time to find the optimal weighting for each independent component, wT x. The

iterative steps are:

1. Select random weight, wold.

2. wnew = E[xG′(wT
oldx)]− E[G′′(wT

oldx)]wold

3. wold = wnew/|wnew|

4. If not converged, return to step 2.

Since they are found independently, it is important to decorrelate the estimated

components after every iteration of the algorithm. This is necessary to prevent the
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convergence to two of the same underlying components. The weights are iteratively es-

timated and after each estimation n, the previously estimated components c1, ..., cn−1

are projected onto and subtracted from the current component, cn. The current

component is then renormalized.

Infomax

The Infomax algorithm is a stochastic gradient ascent algorithm developed by Nadal

and Parga [10] and Bell and Sejnowski [2]. This method uses mutual information

rather than non-Gaussianity to maximize the statistical independence of the compo-

nents. Mutual information for two random variables is defined as

I(X, Y ) = p(X, Y )
log(p(X, Y ))

p(X)p(Y )
, (2.10)

where p(X) and p(Y ) are the probability density functions for X and Y , and p(X,Y )

is their joint probability density function. Mutual information measures the extent

to which observation of one variable reduces the uncertainty of the second. This is

minimized when X and Y are independent and one variable provides no knowledge

about the other. In this case,

p(X, Y ) = p(X)p(Y ), (2.11)

and I(X, Y ) = 0. Mutual information can also be expressed in terms of the entropies

of X and Y , where

I(X, Y ) = H(X) + H(Y )−H(X, Y ) (2.12)

= H(X)−H(X|Y ), (2.13)

where H(X) and H(Y ) are the marginal entropies of X and Y , H(X, Y ) is their joint

entropy, and H(X|Y ) is their conditional entropy. The Infomax algorithm maximizes
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the joint entropy of the outputs X and Y , where the joint entropy is defined in terms

of mutual information as

H(X,Y ) = H(X) + H(Y )− I(X, Y ). (2.14)

Maximizing this quantity maximizes the individual entropy, while simultaneously

minimizing the mutual information of the two variables to reduce redundancy. This

results in maximizing the independence of X and Y . This system is implemented with

a non-linear neural network which uses stochastic gradient learning rules to maximize

the joint entropy of the outputs to estimate the independent components of the ICA

model from Equation 2.4.

Comparison of techniques

Comparisons of these and other ICA algorithms have shown that while some data sets

may achieve slightly better results with one algorithm, their performance is nearly

equivalent [7]. For the fMRI data sets used in this work, an evaluation of the al-

gorithms is difficult because there is no ground truth to which the results can be

compared. The advantages of the differences between results are very difficult to as-

sess. For these data sets, the Infomax and FastICA algorithms were applied, and an

analysis of the results showed no clear advantages. However, FastICA did have better

processing speed. Infomax makes use of an adaptive learning algorithm, which can

add time to the processing, and is highly dependent on the learning rate and other

network parameters. FastICA avoids this learning problem entirely since it uses a

fixed-point, rather than adaptive learning. This can result in a speed-up factor of

between 10 and 100, when compared to adaptive algorithms [8]. For this application,

the increase in speed was significant enough to make the FastICA algorithm a better

choice.
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2.2 Finding and Characterizing Clusters of Activations

The second task required by the queries is the measurement of similarity between

spatial maps. This measurement is used in the second query to find similar indepen-

dent component maps and in the third query to find similar SPM results maps. For

this application, similarity between two spatial maps is defined as similarity between

the location and characteristics of their activated voxel clusters. The first step in

measuring spatial map similarity is to identify the voxel clusters in a spatial map and

to extract their relevant cluster features.

Before the clustering algorithm is applied to a volume image, the image is prepro-

cessed to improve identification of cluster centers. A threshold is applied to the image

to locate the activated voxels. Voxels determined to be activated are assigned a value

of one. This binary labeling is used to eliminate the influence of activation level when

identifying the clusters. The activations which are most interesting often make up

only about five to ten percent of the raw data, so weighting by activation value is not

useful for finding cluster centers. After the threshold has been applied, the image is

filtered to emphasize the significance of voxels located in groups. A brain activation

is expected to involve a cluster of voxels, so an activated voxel is more likely to be

significant when its neighbors are also activated. Since this algorithm is aimed at

identifying activation centers, voxels which are surrounded by activations are more

likely to be near the center. To utilize this information, each activated voxel xi is

assigned the value

xi = en, (2.15)

where n is the number of neighboring voxels activated. The non-linear function fur-

ther exaggerates the significance of voxels with a large number of neighbors. This

preprocessing improves the speed and accuracy of the clustering step. The effect of

the weighting can be seen in Figure 2.6. The weighted image clearly shows that the
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(a) (b)

Figure 2.6: (a) Original ICA volume with activation threshold applied, (b) ICA vol-
ume weighted by number of activated neighbors

significant voxel clusters in pink have been differentiated from the noisy activations.

After the preprocessing, modified k-means clustering is used to find the activation

centers. Fifty random bin locations are generated in the image. For each activated

point in the image, the Euclidean distance to the bins is calculated, and the point

is assigned to the nearest bin. When each point has been assigned to a bin, the bin

center locations are replaced with the mean of the locations of the activated points

in each bin. Unlike standard k-means clustering, the contribution of each point to

the mean is dependent on the value at that location. This modification to k-means

clustering makes use of a priori information about activation structure to locate the

centers. Each activation location i in a bin is weighted by

wi =
x(i)∑n

j=1 x(j)
, (2.16)

where n is the number of activation locations in the bin, and x(j) is the value at voxel

location j in the weighted, thresholded image. The weights in each bin sum to one,
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so the sum of the weighted locations is the weighted mean. The iterative algorithm

for this procedure is as follows:

1. For all bins bj and each activated point pi, calculate the distance between the

three-dimensional locations of bin bj(x, y, z) and activation point pi(x, y, z),

di,j = abs[bj(x)− pi(x)] + abs[bj(y)− pi(y)] + abs[bj(z)− pi(z)]

and assign activated point pi to the bin that minimizes di.

2. For each bin bj, find sumj, the sum of the weights at the n locations assigned

to bj

sumj =
n∑

i=1

wi,

where the index i represents each activation point pi assigned to bin j.

3. Normalize the weight at each activation location pi in bj,

norm weighti,j =
weight(pi)

sumj

.

4. Weight each activation location in bin j where

weighted location(i, j) = norm weight(i, j) ∗ pi(x, y, z).

5. Calculate the new location of each bin j, where

new binj =
∑

i

weighted location(i, j),

and index i represents each point pi in bin j.

This process is repeated until the bin centers converge within a threshold, or until

twenty iterations have been completed. Twenty was experimentally determined to be

sufficient.
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Once the bin locations have converged, the excess bin locations are removed. First,

bins with less than ten points are removed. After this step, each bin location is stored

sequentially. Before a bin location is stored, the distance to each stored bin is found.

Chebyshev, rather than Euclidean distance is used, defined as the maximum of the

differences along every dimension,

dx,y = max (abs(xi − yi)) . (2.17)

This penalizes differences along one dimension. If the distance is less that a threshold

value, the stored bin location is replaced with the mean of the two bin locations, and

the activation locations in the first bin are added to the values in the stored bin.

Example results from this clustering algorithm are shown in Figure 2.7.

2.2.1 Extracting Features from the Clusters

Once the activation clusters have been located, five features are extracted from each

cluster and are stored in a feature vector.

1. Location of bin center: This feature is the (x, y, z) coordinates of the cluster

center found by the clustering algorithm.

2. Bin size The size of the bin is equal to the number of activated voxels assigned

to that bin.

3. Average distance from bin center: The average distance of the activated

voxels in the bin to the bin center captures differences that may arise in cluster

location for activated regions with the same bin centers. Chebyshev distance is

used to penalize differences along one dimension.

4. Average bin weight: (centrality) In the clustering algorithm, the IC vol-

ume is filtered by weighting each activated voxel by the number of its activated
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(a) (b)

(c)

Figure 2.7: (a) Random placement of fifty bins in the ICA volume (b) Bin positions
after clustering is performed (c) Final assignment of activated voxels to significant
bins, where bins are differentiated by color



22

neighbors. This emphasizes the significance of voxels in clusters, since the tar-

geted functional activations are expected to occur in clusters of 2× 2 voxels or

more. The average weight of the values in the bin provides a measure of how

closely the activated locations are clustered, or the bin “centrality”. It is found

by summing the weights assigned to the bin and normalizing it by the total

number of points.

5. Weighted variance of distances: This feature captures the variance of the

Chebyshev distances between the bin center and the activation locations as-

signed to the bin. The variance is weighted so that locations with larger weights

contribute more to the variance calculation and is given by

∑
i

disti ∗ weighti − E[disti ∗ weighti]∑
j distj ∗ weightj

, (2.18)

where disti is the Chebyshev distance between the bin center and activation

location i and weighti is the value of the weight at location i.

These features are stored in a feature vector. An activation pattern will have one

feature vector for each cluster identified by the clustering algorithm. These vectors

are used to compare activation patterns across patients. An example of this similarity

measurement is shown in Figure 2.8, where the spatial map in (a), shown with the

bin locations highlighted in pink, is compared to 108 different spatial maps. It can be

seen from this figure that the spatial maps with the highest similarity ranking, shown

in (c) through (e), have bins in locations similar to the query image.
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(a) (b)

(c) (d)

(e)

Figure 2.8: (a) Cluster query volume showing bin locations (b) Similarity ranking
based on feature vector distances to 108 activation patterns from a second patient.
(c) Closest match to query volume. (d) Second closest match to query volume. (e)
Third closest match to query volume.
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Chapter 3

METHODOLOGY FOR ANSWERING QUERIES

3.1 Query 1.

Starting with SUR, CSM, or fMRI data, select a three-dimensional coor-

dinate in the brain and retrieve the raw data fMRI time series of the voxel

at that location. Use signal similarity measures to find correlated voxels

within the patient’s brain.

This query is used to locate regions in the brain that may be functionally connected

to a region of interest. Functional connectivity, the correlations between spatially

remote neural events, is observed when activity in two brain regions covaries. This

covariance is measured by comparing the voxel time-courses, the raw data value at a

voxel position at each sample point in one scan, aligned in time.

3.1.1 Application of ICA to fMRI

When applying ICA to fMRI data, temporal or spatial independence can be used

to model the independent components. Temporal ICA models a sample of M voxel

time-series from one brain location as a mixture of M temporally independent source

signals. The observed data Xji is an M × N matrix containing M voxel time-series

of length N , and can be modeled as

Xji =
M∑

k=1

MjkCki, (3.1)

where Mjk is an M×M random mixing matrix and Cki is an M×N matrix containing

the M independent time series.
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Figure 3.1: A conceptual example of spatial independent components. [9]

C and M can be obtained using ICA. The independent source signals may be the

result of vascular pulsation, breathing induced motion, or the task related hemody-

namic response which may have been summed together to create the observed data

from the M voxel locations.

Spatial ICA models the entire observed data set of N volume images as a mixture of

N independent voxel maps. Each voxel map has one time-course that it is associated

with. An example of this is concept is shown in Figure 3.1.

The observed data from one scan session is in the form of T three-dimensional

volumes, where T is the number of time-points in the scan. For the calculations, each

of these three-dimensional volumes is unwrapped into a vector of length V where

V is the number of voxel positions in the three-dimensional volume. Each position

in the one dimensional vector corresponds to one three-dimensional voxel location.

The data from the entire scan, X, of size T × V , contains one unwrapped volume

vector in each row. In this form, the observed spatial patterns from each scan-time

point have only one dimension, and so the dataset’s independent components, which

are statistically independent activation maps, will also be one dimensional. When

the independent components are displayed for the user, the one-dimensional volume
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vector can be re-wrapped into a three dimensional volume, since each position in the

vector corresponds to a specific three-dimensional location.

The observed data X can be modeled as the independent spatial component maps

C multiplied by a random mixing matrix M ,

Xji =
V∑

k=1

MjkCki. (3.2)

where Ci,j is a matrix of size T × V containing the T independent component maps

and M is the mixing matrix. In matrix form, this is
x11 x12 x13 · · · x1V

x21 x22 x23 · · · x2V

...
...

...
. . .

...

xT1 xT2 xT3 · · · xTV

 =


m11 m12 · · · m1T

m21 m22 · · · m2T

...
...

. . .
...

mT1 mT2 · · · mTT

∗


c11 c12 c13 · · · c1V

c21 c22 c23 · · · c2V

...
...

...
. . .

...

cT1 cT2 cT3 · · · cTV

 .

When the matrix multiplication is carried out to find X in terms of M and C,

this can be expressed as

X =


m11c11 + m12c21... + m1T cT1 m11c12 + m12c22... + m1T cT2 · · · m11c1V + m12c2V ... + m1T cTV

m21c11 + m22c21... + m2T cT1 m21c12 + m22c22... + m2T cT2 · · · m21c1V + m22c2V ... + m2T cTV

...
...

. . .
...

mT1c11 + mT2c21... + mTT cT1 mT1c12 + mT2c22... + mTT cT2 · · · mT1c1V + mT2c2V ... + mTT cTV

 .

From this model, it can be seen that the columns of M contain the time-courses

associated with each component map. The observed scan volume at time point t is

row t of X. It can be seen that row t of M specifies the weight of contribution of

each component at time t. Therefore, each column of M contains the weights for one

of the component maps over the entire time interval.

3.1.2 Significance of the Independent Components

When using spatial ICA, the independent component map retrieved by the algorithm

is a T × V matrix, where each of the T rows contains a spatial volume of V voxels

that can be mapped back to its original three dimensions. Each volume represents

a statistically independent pattern of activity. The voxels activated in this pattern



27

share the activation pattern contained in the associated time-course over the duration

of the time-course. For example, vascular pulsations should be localized to large veins,

breathing motion should appear in maps with strong tissue edges, and task related

maps are expected to have time series corresponding to the stimulus onset times from

the exam.

3.1.3 Query Results

This query returns independent spatial maps which show regions in the brain related

to the volume of interest selected by the user. The independent components for each

scan are preprocessed and stored in a database, along with the activation cluster

features of each component volume.

To execute a query of this type using the the interface shown in Figure 3.2, the

user will:

1. Select the patient number from the ‘PATIENT’ menu to load the patient’s

structural volume into the main window.

2. Optionally select an SPM results file from the ‘SPM RESULTS’ menu to map

voxels with time-courses statistically related to the experimental design onto

the structural volume. This may be used to identify a region of interest to the

user.

3. Select the query type, ‘Inter-patient IC Search’, using the radio buttons.

4. Browse the selected patient’s structural volume until a region of interest is

identified.

5. Click the ‘ROI SELECT’ push button.



28

Figure 3.2: Graphical user interface used to query the database.

6. Use the mouse to draw a box around the region of interest on any of the three

volume views.

Although the user can only select a two-dimensional box, the region of interest is

a cube. The depth of the cube is pre-defined to be five samples, centered on the slice

where the user has drawn the box. Once the user has selected a region of interest, all

ICA volumes from the selected scan with an average activation in the region above a

threshold are returned to the user in the re-wrapped, three dimensional format. These

patterns describe independent activation maps that are significantly contributing to
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the observed activations in that region. The algorithm used to find activated IC’s

and rank their significance is:

1. For each IC map i from the selected patient’s scan, find the average activation

value of IC map i in the selected ROI.

2. If the average activation is greater than the threshold of one third of the max-

imum IC map value, continue with the next steps to calculate the ranking.

Else,

rank(i) = 0.

3. Find n, the number of activation clusters in IC map i.

4. Find dmin, the minimum of the distances between the ROI center and each

activation cluster center in IC map i.

5. Assign IC map i the rank

rank(i) =
1

n2dmin

.

Steps three through five determine the order in which the IC maps with activations

in the ROI are returned to the user. Activation maps with many clusters are more

likely to be caused by noise, and are generally less interesting to the user than those

with a few, large clusters. This information is included in the ranking with n, defined

in step 3. Additionally, activations with a center close to the center of the ROI will

be more relevant to the volume selected by the user. This information is included in

the ranking with dmin, defined in step 4.

Once every IC map in the selected patient’s scan has been ranked, by the assign-

ment of the value rank, the maps with the highest non-zero rankings are returned to

the user. The IC maps are displayed in their re-wrapped, three-dimensional format.

Under each plot is a ‘DETAILS’ push button which the user can use to get more
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information about the displayed IC map. Selecting this button launches a browser

which displays the IC mapped back onto the patient’s structural MRI volume and

a plot of the IC’s associated time-course. If there are more than six IC maps with

an activation in the ROI, the ‘NEXT’ button can be used to browse through the

remaining maps.

Sample results from query 1 are shown in Figure 3.3. The blue box outlining the

user selected ROI can be seen on the first structural MRI plot. Four IC maps with

activations in the ROI are displayed. The highest ranked match appears to have an

interesting pattern, while the remaining three matches contain so many activation

clusters that they are most likely the result of physiological noise. Figure 3.4 shows

the detail browser for the first match, IC 113. Comparing the plots from the detail

browser to the original query image, it can be seen that the returned result has a

significant activation in the ROI.
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Figure 3.3: Sample results from query 1 showing a selected region of interest and the
returned IC’s with significant activation in that region.
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Figure 3.4: Detailed view of the first match, IC 113, showing the mapping onto the
patient’s structural MRI image and the associated time-course.
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3.2 Query 2.

Starting with one patient’s voxel correlations, search for patients who have

a similar correlation pattern for a voxel in the same region.

This query starts with results retrieved by the previous query. Once the query

1 algorithm has been used to find independent activation maps relevant to the user-

selected region of interest, the user may select an interesting map and search for

similar maps across patients. This can reveal whether this pattern is specific to the

patient, or if there is evidence that other people may have had a similar activation

during the scan. This information allows the user to explore the frequency with which

this pattern occurs in the pool of patients in the database, and may look for other

commonalities between the returned patients.

The steps to follow to execute this query, using the interface shown in Figure 3.2,

are:

1. Complete steps 1 through 6 from query 1 to display relevant IC maps from the

selected patient’s scan.

2. Change the query type to ‘Cross-patient IC Search’, using the radio buttons.

3. Use the ‘VOLUME SELECT’ menu to choose one of the six displayed IC maps.

The menu should be set to the title of the plot of the selected IC map.

The similarity of the ICA activation patterns is measured by an algorithm that

uses the specialized clustering method described in Chapter 2 to find activated regions

in the brain. For each patient in the database, there is one fMRI scan, with 168

corresponding IC maps. Each IC map has been pre-processed with the clustering

algorithm, and n feature vectors, describing the characteristics of the n activation

clusters identified in that map, are stored for each IC map. The number of activation

clusters identified may be different for each IC. The algorithm for the comparison is:
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1. Load the feature vector for each activation cluster k in the selected IC map from

the query patient.

2. For each patient i in the database, and each IC map j from patient i, load the

feature vector for each activation cluster f in IC map j, for patient i.

3. Find mindisti,j,k, the minimum over f , of the distances between feature vector

f from patient i, IC map j and feature vector k from the selected IC map of

the query patient.

mindisti,j,k =
min

f
[∑

abs(featveci,j,f − featveck)
]

4. If mindisti,j,k > 50

clustermatchi,j,k = mindisti,j,k ∗ binsizei,j ∗ averagebinweighti,j

where binsize and averagebinweight are two elements of the feature vector.

Else,

clustermatchi,j,k = 0.

5. ICmatchi,j =
∑

k clustermatchi,j,k

These steps assign a ranking, ICmatchi,j to each IC map from each patient in the

database. The six IC maps with the highest non-zero rankings, over all patients and

all IC maps, are returned to the user, displayed in their re-wrapped, three-dimensional

format. Like in the first query, the ‘DETAILS’ push button under each returned result

can be used to get more information. Selecting this button launches a browser which

displays the IC mapped back onto the patient’s structural MRI volume and a plot of

the IC’s associated time-course. If there are more that six IC maps with a non-zero

ranking, the ‘NEXT’ button can be used to browse through the remaining maps.

Sample results from query 2 are shown in Figures 3.5 through 3.8. Since query

2 requires the use of results from query 1, Figure 3.5 shows a sample query 1, ROI
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based IC search for patient P185. The IC of interest which will be selected for query

2 is the first match returned, IC 87. The details from this IC map can be seen in

Figure 3.6. The results of query 2 are shown in Figure 3.7, and it can be seen that

‘VOLUME 1’, the plot title of the first match from query 1, has been selected on the

‘VOLUME SELECT’ menu. The best match for patient P185, IC 87 is patient P189,

IC 94. The details from patient P189, IC 94 can be seen in Figure 3.8. Comparing

the match IC details to the query IC details in Figure 3.6, the similarities can be

easily seen.

Figure 3.5: Sample results from query 1 showing a selected region of interest and the
returned IC’s with significant activation in that region.
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Figure 3.6: Detailed view of the first match, IC 87, showing the mapping onto the
patient’s structural MRI image and the associated time-course.



37

Figure 3.7: Sample results from query 2 showing IC’s in the database that are similar
to selected volume 1 from the query in Figure 3.5.



38

Figure 3.8: Detailed view of the first match from query in Figure 3.5, IC 94 from
patient P189, showing the mapping onto the patient’s structural MRI image and the
associated time-course.
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3.3 Query 3.

For a given patient fMRI and an activation threshold, find patients with

similar activation patterns. This will query the fMRI images showing

statistically significant activations.

This query searches the SPM results maps from all patients in the database to

find those similar to a results map selected from the query patient. The SPM results

map is a standard visual representation of statistically significant activations from an

fMRI scan created by the software package SPM. Each voxel time series is correlated

with the experimental design, and the value displayed at each voxel in the results

map is the f-score or t-score indicating the statistical significance of its activation.

The steps to execute this query, using the user interface shown in Figure 3.2, are:

1. Select the patient number from the ‘PATIENT’ menu to load the patient’s

structural volume into the main window.

2. Select an SPM results file from the ‘SPM RESULTS’ menu to map voxels with

time-courses statistically related to the experimental design onto the structural

volume.

3. Change the query type to ‘Cross-patient Results Search’, using the radio but-

tons.

4. Use the ‘VOLUME SELECT’ menu to choose option ‘Current SPM Results’.

When the currently loaded SPM results map has been selected from the ‘VOL-

UME SELECT’ menu, the algorithm compares the results patterns from all patients,

using the specialized clustering algorithm introduced in Chapter 2, to identify acti-

vations cluster locations and measure their similarity. For each patient entered in

the database, there is one fMRI scan and sixteen corresponding SPM maps. Each
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SPM map has been preprocessed with the clustering algorithm. For each SPM map

in the database, there are k feature vectors describing the characteristics of k acti-

vation clusters in the map. Each map may have a different number of clusters. The

algorithm for the SPM map comparisons is:

1. Load the feature vector for each activation cluster k in the query SPM results

map.

2. For each patient i in the database and each SPM results map j for patient i,

load the feature vector for each activation cluster f in SPM results map j, from

patient i.

3. Find mindisti,j,k, the minimum over f , of the distances between feature vector

f from patient i, SPM results map j and feature vector k from the query SPM

results map

mindisti,j,k =
min

f
[∑

abs(featveci,j,f − featveck)
]
.

4. If mindisti,j,k > 50

clustermatchi,j,k = mindisti,j,k ∗ binsizei,j ∗ averagebinweighti,j,

where binsize and averagebinweight are two elements of the feature vector.

Else,

clustermatchi,j,k = 0.

5. SPMmatchi,j =
∑

k clustermatchi,j,k

These steps assign a ranking, SPMmatchi,j to each SPM map from each patient

in the database. The six SPM maps with the highest non-zero rankings, over all

patients and all SPM maps, are returned to the user, displayed in three-dimensional
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format. To view these results mapped onto the structural fMRI of the appropriate

patient, the ‘DETAILS’ push button should be selected. Like the other queries, if

there are more that six IC maps with a non-zero ranking, the ‘NEXT’ button can be

used to browse through the remaining maps.

The results from a sample query 3 are shown in Figure 3.9, where the SPM results

map spmF005 from patient P185 is loaded onto that patient’s structural MRI images,

and ‘Current SPM Results’ selected from the ‘VOLUME SELECT’ menu. The similar

results are returned in volume plots one through six. The details from the first match,

the SPM results map spmF0001 from patient P186, are shown in the details browser

in Figure 3.10. Comparing the structural mapping of the best match in Figure 3.10

to the structural mapping of the original query in Figure 3.9, it can be seen that they

are very similar.
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Figure 3.9: Sample results from query 3 showing the loaded SPM results from the
query patient, and the returned similar SPM results from other patients in the
database.
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Figure 3.10: Detailed view of the first match, patient P186 spmF0001, showing the
mapping onto the patient’s structural MRI image.
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3.4 Query 4.

For a given patient fMRI and a given location, find other patients who

have greater than or equal activation values at that location. This will

query the fMRI images showing statistically significant activations.

The last query is also based on the results image generated by SPM. To find other

patients with a similar activation in the results image, the user selects the region of

interest from the displayed results image, and the average statistical score of the area

is calculated. The same area is extracted from each patient in the database, and

the average scores are calculated. Patients with the same or higher average score are

returned to the user, and their results images are displayed. This query differs from

the previous query by using a region of interest, rather than the entire pattern to

compare SPM results maps across patients. To execute a query of this type using the

interface shown in Figure 3.2 the user will:

1. Select the patient number from the ‘PATIENT’ menu to load the patient’s

structural volume into the main window.

2. Optionally select an SPM results file from the ‘SPM RESULTS’ menu to map

voxels with time-courses statistically related to the experimental design onto

the structural volume. This may be used to identify a region of interest to the

user.

3. Select the query type, ‘Cross-patient Results Search’, using the radio buttons.

4. Browse the selected patient’s structural volume until a region of interest is

identified.

5. Click the ‘ROI SELECT’ push button.
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6. Use the mouse to draw a box around the region of interest on any of the three

volume views.

As discussed in query 1, the region of interest is a cube, with length and width cor-

responding to the ROI box drawn by the user and the depth predefined as five samples

centered on the slice the box has been drawn on. Once the ROI has been selected, the

selected patient’s SPM results maps with an average activation in the region above

a threshold are sorted by relevance and returned to the user in re-wrapped, three

dimensional format. The algorithm for finding and sorting the activated volumes is:

1. For each patient i in the database and each SPM results map j from patient i,

find the average activation value of the SPM results map in the selected ROI.

2. If the average activation is greater than the threshold of one third of the maxi-

mum results map value, continue with the next steps to calculate the ranking.

Else,

ranki,j = 0,

and return to the first step.

3. Find n, the number of activation clusters in SPM results map j.

4. Find dmin, the minimum of the distances between the ROI center each activation

cluster center in SPM results map j.

5. Assign SPM results map i, from patient j, the rank

ranki,j =
1

n2dmin

.

Every SPM map in the selected patient’s scan is been ranked by the assignment

of the value rank, and the maps with the highest non-zero rankings are returned to



46

the user. The SPM maps are displayed in three-dimensional format. The ‘DETAILS’

push button under each returned result allows the user to display the selected SPM

results volume mapped onto the appropriate patient’s structural MRI volume.

The results from a sample query 4 is shown in Figure 3.11. The region of interest

can be seen outlined in blue on the first structural image. The detail browser for the

first and fourth match can be seen in Figures 3.12 and 3.13. Comparing the plots

from the detail browsers to the original query image, it can be seen that both results

have a significant activation in the ROI.

Figure 3.11: Sample results from query 4 showing a selected region of interest and the
returned SPM similarity volumes from other patients in the database with significant
activations in that region.
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Figure 3.12: Detailed view of the first match, patient P186, spmT0009, showing the
mapping onto the patient’s structural MRI image.

Figure 3.13: Detailed view of the fifth match, patient P190, spmT0008, showing the
mapping onto the patient’s structural MRI image.
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Chapter 4

EVALUATION AND DISCUSSION OF RESULTS

In the previous chapter, several different sample queries were shown that used inde-

pendent component analysis to evaluate similarity between voxel regions. A thorough

evaluation of this technique would require knowing the actual relationships between

all voxels. Since this ground truth is not available, we can evaluate the independent

component maps based on their relationships to both the raw scan data and SPM

results maps.

4.1 Relationship to fMRI Raw Data

One way to evaluate the IC maps is to look at how well they relate back to the original

raw data from the fMRI scan. An IC map shows regions in the brain which covary

according to the time-course associated with that IC map. The averaged raw time-

courses from the voxels activated in one IC map would then be expected to relate back

to that IC map’s associated time-course. However, this is not a direct relationship.

The maps are overlapping, so one IC’s associated time-course will specifies only one,

statistically independent, component in the activated voxel time-courses.

One way to verify that the averaged raw data time-courses from an IC map’s ac-

tivated voxels contains a component relating to the associated time-course is to look

at the frequency content of both signals. The raw data contains many statistically

independent components, so it is expected that there will be several peaks in its fre-

quency spectrum that are not present in the frequency spectrum of the IC associated

time-course. However, if the associated time-course contains strong peaks at a few

frequencies, corresponding peaks should be observable at the same frequencies in the



49

Figure 4.1: IC map relationship to fMRI raw data time-courses

raw data.

To perform this comparison, an IC map was selected, and the activated voxel

locations were recorded. The raw time-courses for the voxels at these locations were

then extracted and averaged. The discrete-time Fourier transform (DTFT) of this

signal was plotted, and compared to the DTFT of the time-course associated with

the IC map. This was done for several IC maps, and it was observed that the peaks in

the associated time-course frequency spectrum corresponded to peaks in the averaged

raw data frequency spectrum. An example of this comparison is shown in Figure 4.1.
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4.2 Relationship to SPM Results

Statistical parametric mapping (SPM) is a standard way to identify correlated voxels

in an fMRI scan. However, unlike the IC-based method developed in this work, SPM

does not look at the relationships between voxels. Instead, it models the hypothesized

response to the exam stimuli of the fMRI scan session, and each voxel is independently

evaluated for a statistical relationship. This produces a map of the voxels that have

a direct relation to the modeled stimuli response.

The IC-based method of finding voxel correlations is expected to be much more

powerful than the SPM method, since it is not limited by the use of a hypothesized

response, and can look for functionally connected regions which are indirectly de-

pendent, or independent of the exam stimuli. However, while the IC-based method

should return more information, it should still be able to replicate the results found

by SPM, since the SPM map indicates voxel regions which vary according to the

exam stimuli, a statistically independent source. It is expected that for each SPM

result map, there would be a corresponding IC map with a similar activation pattern,

and an associated time-course similar to the stimuli response model used by SPM. A

‘boxcar’ stimuli design was used for all scan sessions in the data base, so associated

time-course is expected to show an ‘on-off’ pattern.

Using the user interface to browse through IC and SPM activation maps, it was

concluded that the SPM results maps were a subset of the IC maps. An example of

this finding is shown the following figures. In Figure 4.2, the selected SPM results

map from patient P189, which will be compared to that patient’s IC maps, is shown.

To find IC maps similar to the selected SPM map, an ROI based query is executed.

The selected SPM results are mapped on to patient P185’s structural image in the

main query window, as shown in Figure 4.3. The ‘Inter-patient IC Search’ query type

is selected, and an ROI is drawn over the SPM map activations. The first IC map

match returned by this query looks very similar to the SPM map shown in Figure
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(a) (b)

Figure 4.2: SPM results map shown (a) mapped onto the patients structural MRI
and (b) as a three-dimensional volume.

4.2 (b). The detail browser for this IC map is shown in Figure 4.4, and its structural

similarity to the SPM map shown in Figure 4.2 (a) can be easily seen. In addition,

the time-course associated with the IC map clearly has the expected ‘on’ and ‘off’

pattern associated with the stimuli response model.

To investigate whether this pattern could be found in other patients, the database

was queried to find other patients with SPM results similar to those shown in Fig-

ure 4.2 for patient P189. Due to the fact that the patients in this database have

intractable epilepsy, all patients are not expected to have normal responses to the

experiment stimulus, and it cannot be assumed that the response to the task will be

the similar over all patients.

Searching for patients with similar SPM results allows the identification of patients

within the database who have a similar response to the experimental task. The results

of this search are shown in Figure 4.5. It can be seen that the majority of the matches

are from patients P185 and P190, with a weaker match from P187. Next, a ROI-

based search was performed to find IC maps corresponding to the SPM results for
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Figure 4.3: Query showing ROI-based search for IC maps with activation in the same
region as the selected SPM results map.



53

Figure 4.4: Detail browser for patient P185 IC map 55 showing best match for SPM
results map in Figure 4.2.
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(a)

(b)

Figure 4.5: Search results for cross-patient SPM results that are similar to the SPM
results for patient P185, which are displayed on the structural image. The first page
of results is shown in (a) and the second page of results is shown in (b).
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each of these patients.

The results for these queries are shown in Figures 4.6 through 4.8. It can be

clearly seen that the associated time-courses for patients P185 and P190 have a

strong correlation to the ‘boxcar’ experimental stimulus. Patient P187 has a slightly

weaker correlation, but is still similar.

4.3 Contributions

This thesis introduces a tool that uses independent component analysis as a mea-

sure of voxel similarity to allow the user to explore statistically independent maps of

correlated voxel activity. A specialized clustering technique, designed to find and char-

acterize clusters of activated voxels, allows comparison of the independent component

spatial maps across patients. Similar search capabilities are provided for spatial maps

produced by the popular fMRI analysis tool SPM, so that the relationship between

the IC maps and the results produced by SPM may be investigated.

The main contributions of this work are:

1. a method for applying Independent Component Analysis as a voxel similarity

measurement

2. a new algorithm for detecting and extracting characteristics from significant

clusters of activations in three-dimensional activation maps.

3. a three-dimensional spatial similarity measurement based on cluster feature ex-

traction

4. the development of algorithms for answering the four query types described in

this work

5. construction of a user interface for executing these queries.
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(a)

(b)

Figure 4.6: Results for ROI-based search for patient P185. The IC map similar to
the SPM results displayed on the structural image is shown in (a). Details for the
returned IC map 110 are shown in (b).
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(a)

(b)

Figure 4.7: Results for ROI-based search for patient P190. IC maps similar to the
SPM results displayed on the structural image are shown in (a). Details for the first
match, IC map 74 are shown in (b).
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(a)

(b)

Figure 4.8: Results for ROI-based search for patient P187. IC maps similar to the
SPM results displayed on the structural image are shown in (a). Details for the first
match IC map 90 are shown in (b).
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4.4 Future Work

This work has introduced a tool for exploring functional connections in the brain using

fMRI data. Most of the analysis that has been done on the independent components

has been concentrated on the spatial maps. As seen in the example in Figure 4.4, the

time-courses associated with the component maps can provide a significant amount

of information about the source and importance of the map. Further work could be

done to incorporate this information into the existing query algorithms, or to use it

in the design of new queries.
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