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Abstract

We study the problem of learning to rank images for im-
age retrieval. For a noisy set of images indexed or tagged
by the same keyword, we learn a ranking model from some
training examples and then use the learned model to rank
new images. Unlike previous work on image retrieval,
which usually coarsely divide the images into relevant and
irrelevant images and learn a binary classifier, we learn the
ranking model from image pairs with preference relations.
In addition to the relevance of images, we are further in-
terested in what portion of the image is of interest to the
user. Therefore, we consider images represented by sets of
regions and propose multiple-instance rank learning based
on the max margin framework. Three different schemes are
designed to encode the multiple-instance assumption. We
evaluate the performance of the multiple-instance ranking
algorithms on real-word images collected from Flickr - a
popular photo sharing service. The experimental results
show that the proposed algorithms are capable of learning
effective ranking models for image retrieval.1

1. Introduction

The principal function of an image retrieval system is
to rank a set of images according to how well they meet
user’s information needs. In order to facilitate the index
and the search of images in the query-by-keyword scenario
(QBK, which is widely used in commercial image search
engines), much research effort has been devoted to image
classification and automatic image annotation over the past
years. However, the ranking problem remains far from be-
ing solved. Even images indexed or annotated by the same
keyword should have different orders during ranking. For
example, consider the images shown in Fig.1, which are
drawn from Flickr [1], a popular photo sharing service.

1This work was performed at Microsoft Research Asia.

(a) (b) (c)

Figure 1. Three images from Flickr, all are tagged by users with
“elephant”. When the user wants to find representative elephant
images, they would like to get a list where (a) ranks higher than
(b) and (b) ranks higher than (c).

They all are tagged by users with “elephant”. When user
wants to find representative elephant images, it is reason-
able to rank Fig.1(a) higher than Fig.1(b) because only some
unimportant parts of the elephant are shown in Fig.1(b).
However, when compared with Fig.1(c), Fig.1(b) is more
preferable since Fig.1(c) only contains an elephant toy in-
stead of the real animal.
In this work, we are interested in learning to rank the

images. Given a set of images indexed or tagged by the
same keyword, we learn a ranking function from some train-
ing examples. So for a set of new images, we can com-
pute their ranking scores using the learned model and rank
them according to their scores. The problem of learning
to rank has been explored a lot recently in text information
retrieval [4, 5, 12, 17]. Related work for image retrieval,
however, are still limited.
In particular, during training, we consider relative and

qualitative examples of the form “image A is more rele-
vant than image B”. This kind of feedback is more flexi-
ble than traditional relevance feedback for image retrieval,
where images are coarsely divided into relevant and irrele-
vant images. And feedback of this type is supposed to be
more easily available than quantitative examples, such as
“the relevance score of image A is 2.75”. The query logs
of the search engines are one example where ranking pref-
erences between image pairs are readily available for learn-
ing [17]. Given a ranked list of images for a query, it is rea-
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sonable to assume that users are more interested in images
they click than those images that they have observed but de-
cide not to click on. Moreover, quantitative labels provided
by different users may be inconsistent, e.g. the ratings of 3
by two different users may indicate different degrees of rele-
vance. Therefore, some kinds of calibration may be needed
in advance [7]. By converting their ratings to preference
relations, we do not need to calibrate them any more.
In addition to the relevance of images, we also want to

know what portion of the image is of interest to the user.
Therefore, instead of using global information, we would
like to represent an image by a set of regions. However,
during training, we only have preference relations between
image pairs. No explicit information about regions is pro-
vided. The gap between the label information and the data
representation is quite similar with the setting in multiple-
instance (MI) learning. Therefore, in this work, we in-
vestigate the rank learning problem in the MI setting and
regard our algorithms as multiple-instance ranking. Simi-
lar to some previous work in rank learning [5, 15, 17] and
MI learning [2, 9], we formulate the problem in the large
margin framework. We investigate three different schemes
to encode the MI assumption, which associate the ranking
score of the image with its constituent regions. In the exper-
iment, we compare the performance of these algorithms on
images collected from Flickr and show their ability to learn
effective ranking model for image retrieval.
The rest of the paper is organized as follows. In Section

2, we discuss related work in rank learning and MI learn-
ing. In Section 3, we briefly introduce the Ranking SVM
algorithm, which forms the basis of our algorithm. We de-
scribe in details the multiple-instance ranking algorithms in
Section 4. Our dataset, the experiments and the results are
presented in Section 5. Finally we conclude the paper in
Section 6.

2. Related Work
The importance of the ranking problem has inspired nu-

merous approaches to handle it especially in the context of
information retrieval. One typical direction of rank learn-
ing is to formulate it as ordinal regression, i.e., learning
the mapping of the examples to an ordered set of numeri-
cal ranks [10, 21]. An alternative direction which has also
been investigated is to learn the ranking function from rel-
ative ranking preferences between example pairs. For ex-
ample, based on the boosting approach, Freund et al. [12]
proposed the RankBoost algorithm which learns to rank a
set of objects by combining a given collection of preference
functions. In [4], Burges et al. introduced RankNet, which
used neural network and gradient descent methods to learn
ranking functions using pairs of training examples. Besides,
Herbrich et al. [15] applied the large margin principle used
in Support Vector methods to the rank learning problem and

proposed the Ranking SVM algorithm. In [17], Joachims
used the Ranking SVM algorithm to learn retrieval func-
tions from the clickthrough data of the search engine. And
Cao et al. [5] adapted Ranking SVM to document retrieval
by modifying the cost function. Although the idea of learn-
ing to rank has been extensively exploited in text informa-
tion retrieval, related work in image retrieval are still very
limited. Moreover, since the text document is usually repre-
sented by a single feature vector, these methods can not be
directly applied to images represented by a set of regions.
Another set of related work are those that learn distance

metric from training data. In [20], Schultz and Joachims
investigated the problem of learning a distance metric from
relative comparisons in the form of “A is closer to B than A
is to C”. They formulated the problem in the large margin
framework and proposed a method that extended the stan-
dard SVM algorithm. The work that is most closely related
is that presented in [13]. In this work, based on the work of
Schultz and Joachims [20], Frome et al. proposed to learn
local distance functions for image retrieval and classifica-
tion. They learned a distance function for each training im-
age. This is quite similar in spirit to our work, which learns
the ranking function for each query. However, their train-
ing data are in the form of triplets of images, which include
the reference image. And our training data consist of image
pairs without explicit reference. We believe this assumption
is more flexible. For example, the typical elephant images
are actually quite various and it is difficult to specify which
one should be the reference. Frome’s work resembles our
work also in that they used a set of patch-based features to
represent each image instead of using a fixed-length feature.
However, they focused on learning the weights for combin-
ing the elementary distances. And we focus on learning the
relevance scores for the regions. In [14], Frome et al. ex-
tended their work to learn globally-consistent local distance
functions. This work is still in the context of distance learn-
ing and differs our work just like [13].
Multiple-instance learning was first introduced by Diet-

terich et al. [11] in the context of drug activity prediction.
Unlike standard supervised learning in which each instance
is labeled in the training data, here the labels are associated
with sets of patterns, or bags. This problem has been stud-
ied by a lot of researchers and many algorithms have been
developed, such as Diverse Density [18], EM-DD [24], MI-
SVM and mi-SVM [2]. The work that are closely related
are the SVM based algorithms. For example, in [2], An-
drews et al. modified and extended the SVM to deal withMI
learning problems. They associated the dual variables with
the instances, which leaded to mixed integer quadratic pro-
grams. And they proposed two simple optimization heuris-
tics to solve the problem. In [9], Cheung and Kwok pro-
vided a regularization framework for MI learning by allow-
ing the use of different loss functions between the outputs of



a bag and its associated instances. Instead of using heuris-
tics, they use the constrained concave-convex procedure to
solve the problem, which inspired our treatment of the MI
ranking problem. MI learning has been widely exploited for
content-based image retrieval [6, 8, 25], however, they are
mainly in the classification setting. In this work, we embed
the rank learning problem in the MI setting and apply it to
image retrieval.

3. The Ranking SVM Algorithm
In a rank learning problem, we are usually given a set

of training examples {xi}mi=1 ∈ Rn and a set of rela-
tive comparisons between example pairs. Assume that the
preference relation that xi is preferable to xj is denoted
by xi Â xj . The goal is to induce a ranking function
f : Rn → R that fulfills the set of constrains

∀ xi Â xj : f(xi) > f(xj). (1)

We refer to the value of f(xi) as the ranking score of xi.
In text information retrieval, f is usually assumed to be a
linear function. In this case, we have f(xi) = hw,xii.
Unfortunately, this problem proves to be NP-hard. And

just like in classification SVMs, an approximate solution
can be obtained by introducing (non-negative) slack vari-
ables ξij and minimizing the upper bound

P
ξij . In addi-

tion, L2 regularization is imposed on w to maximize the
margin between the closest projections. And these lead to
the following optimization problem

min
w,ξ

1

2
kwk2 + γ

X
i,j

ξij (2)

s.t. ∀ xi Â xj : hw,xii ≥ hw,xji+ 1− ξij ,

∀ i, j : ξij ≥ 0,
which is referred to as the Ranking SVM algorithm [15, 17].
Note that if we rearrange the constrains in Eq.(2) as

∀ xi Â xj : hw,xi − xji ≥ 1− ξij, (3)

the optimization problem becomes equivalent to a classifi-
cation SVM on pairwise example differences. Therefore,
it can be solved using algorithms similar to those used for
SVM classification. Assume thatw∗ is the solution that op-
timizes Eq.(2). For a set of new examples, we can get the
ranking score for each of them using

f(x) = hw∗,xi, (4)

and then rank these examples according to their scores.

4. Multiple-Instance Ranking
In previous rank learning algorithms, each example is as-

sumed to be represented by a single feature vector, which is

reasonable for text data. In this work, however, we assume
that an image consists of a set of segments, each charac-
terized by a feature vector. In this case, the previously de-
veloped rank learning algorithms, such as Ranking SVM,
are not directly applicable to image data, since the prefer-
ence relations are associated with the whole images, and
we don’t have explicit labels for the segments. The gap
between the label information and the data representation
is quite similar with the settings in MI learning. How-
ever, most previous work on MI learning mainly focused
on classification and regression problems. Here we exploit
the ranking problem under the MI assumption.
In multiple-instance ranking, we are given a set of train-

ing bags {Bi}mi=1, where each bag contains a set of in-
stances, i.e. Bi = {xi1,xi2, . . . ,xini}. Each bag corre-
sponds to an image and each instance in the bag corresponds
to a sub-region of the image. We are also given a set of pref-
erence relations between bag pairs, denoted by Bi Â Bj .
Let X be the instance space and H be a Reproducing Ker-
nel Hilbert Space (RKHS) of functions f : X → R, with
associated kernel function k. We assume that the ranking
score of the bag Bi is determined by the scores of the in-
stances it contains, i.e.

g(Bi) = g({f(xil)}nil=1). (5)

Denote the RKHS norm of H by kfkH. The maximal mar-
gin formulation of multiple-instance rank learning is

min
f∈H,ξ

1

2
kfk2H + γ

X
i,j

ξij (6)

s.t. ∀ Bi Â Bj : g(Bi) ≥ g(Bj) + 1− ξij,

∀ i, j : ξij ≥ 0.
We use the representer theory to reduce the optimiza-

tion problem from a possibly infinite-dimensional space
to a finite-dimensional space. Without loss of general-
ity, assume that the instances in the training set are or-
dered as {x11, . . . ,x1n1 ,x21, . . . ,xm1, . . . xmnm}. And
each instance is indexed by I(xil) =

Pi−1
r=1 nr + l. Let

n =
Pm

i=1 ni be the total number of instances in the train-
ing set. We can obtain a n×n kernel matrixK defined on all
training instances. Denote the ith column ofK by ki. Using
the representer theorem, we have f(xil) = k0I(xil)α + b.
Moreover, kfk2H = α0Kα.
To solve the optimization problem in Eq.(6), we need to

figure out how to get the ranking score of a bag given the
scores of its member instances. Obviously, there are lots of
ways to encode the multiple-instance assumption in Eq.(5),
we investigate three of them in the following.

4.1. Using the Average of the Instances’ Scores
As the most simple case, we assume that the score of

a bag is the average of its member instances’ scores, i.e.



g(Bi) =
1
ni

Pni
l=1 k

0
I(xil)α + b. Therefore, the member

instances contribute equally to the score of the bag. We can
write Eq.(6) as

min
α,ξ

1

2
α0Kα+ γ

X
i,j

ξij (7)

s.t. ∀ Bi Â Bj :

1

ni

niX
l=1

k0I(xil)α ≥
1

nj

njX
l=1

k0I(xjl)α+ 1− ξij ,

∀ i, j : ξij ≥ 0,

which is a standard QP problem. Note that we omit the bias
b in Eq.(7) because it has no influence on the ranking result.

4.2. Using the Max of the Instances’ Scores

In multiple-instance classification, a bag is “positive” if
at least one of its member instances is a positive instance.
To adapt SVM to deal with multiple-instance classification
problem, Andreas et al. [2] expressed the relation between
the bag label information and the instance label information
as

g(Bi) = max
l=1,...,ni

f(xil), (8)

where f is the function to be learned by SVM.
In the second case, we inherit this assumption and as-

sume that the score of a bag is determined by the member
instance with the max score, as shown in Eq.(8). Therefore,
we can write Eq.(6) as

min
α,ξ

1

2
α0Kα+ γ

X
i,j

ξij (9)

s.t. ∀ Bi Â Bj :

max
l=1,...,ni

(k0I(xil)α)− max
l=1,...,nj

(k0I(xjl)α) ≥ 1− ξij,

∀ i, j : ξij ≥ 0.

This is equivalent to

min
α,ξ

1

2
α0Kα+ γ

X
i,j

ξij (10)

s.t. ∀ Bi Â Bj :

k0I(xjr)α− max
l=1,...,ni

(k0I(xil)α) ≤ ξij − 1,
r = 1, . . . , nj ,

∀ i, j : ξij ≥ 0.

Note that the first constraint is nonlinear but a difference
between two convex functions instead. To solve this we use
the constrained concave-convex procedure (CCCP) devel-
oped by Smola et al. [23]. Given the following optimization

Initialize x as x(0).
repeat
Replace gi(x) with its first-order Taylor expansion at

x(t), and then set x(t+1) to the solution of the following
relaxed optimization problem:

min
x

f0(x)− [g0(x(t)) + h∂xg0(x(t)),x− x(t)i] (12)

s.t. ∀ i : fi(x)− [gi(x(t)) + h∂xgi(x(t)),x− x(t)i] ≤ ci

until convergence of x(t).

Figure 2. Constrained concave-convex procedure (CCCP) [23].

problem:

min
x

f0(x)− g0(x) (11)

s.t. fi(x)− gi(x) ≤ ci, i = 1, . . . ,m,

where fi, gi(i = 0, . . . , m) are real-valued, convex and dif-
ferentiable functions on Rn and ci ∈ R, the CCCP for the
problem in Eq.(11) is shown in Fig. 2. It can be shown that
CCCP converges to a local minimum solution.

Sincemaxl=1,...,ni (k
0
I(xil)α) in Eq.(10) is non-smooth,

to use the CCCP, we should replace the gradients
by the subgradients. We adopt the subgradient of
maxl=1,...,ni (k

0
I(xil)α) used by Cheung and Kwok in [9]:

∂( max
l=1,...,ni

(k0I(xil)α)) =
niX
l=1

βilkI(xil), (13)

where

β
il
=

½
0, if k0I(xil)α 6=maxr=1,...,ni (k0I(xir)α),
1/na, otherwise.

(14)
na is the number of xil for which k0I(xil)α =

maxr=1,...,ni (k
0
I(xir)α). At the tth iteration, de-

note the current estimation of α and the correspond-
ing βil by α(t) and β

(t)
il respectively. CCCP replaces

maxl=1,...,ni (k
0
I(xil)α) in the constraint of Eq.(10) by

max
l=1,...,ni

(k0I(xil)α
(t)) +

niX
l=1

β
(t)
il k

0
I(xil)(α−α(t))

=
niX
l=1

β
(t)
il k

0
I(xil)α.

(15)



The optimization problem of Eq.(12) in our case is then

min
α,ξ

1

2
α0Kα+ γ

X
i,j

ξij (16)

s.t. ∀ Bi Â Bj :

k0I(xjr)α−
niX
l=1

β
(t)
il k

0
I(xil)α ≤ ξij − 1, r = 1, . . . , nj ,

∀ i, j : ξij ≥ 0,

which is a standard QP problem. Following CCCP, the solu-
tionα of the QP is then used asα(t+1), from which we can
get β(t+1)il , and the iteration continues until convergence.

4.3. Using the Softmax of the Instances’ Scores

In the first case, the member instances contribute equally
to the ranking score of the bag. While in the second case,
only the instance with maximal score is responsible for the
score given to the bag. In the third case, we adopt a scheme
which is a compromise between these two methods. We
let all instances in a bag explicitly contribute to the ranking
score of the bag. However, their contributions are different.
Instances with higher scores are weighted heavier than in-
stances with lower scores. More specifically, we consider
the following log-sum-exp function:

g(Bi) = log (
1

ni

niX
l=1

eη(k
0
I(xil)α+b)). (17)

Note that the log-sum-exp function is convex. Therefore,
if we substitute Eq.(17) into Eq.(6), we will again get an
optimization problem with quadratic objective function and
concave-convex constraints. Although we can also use the
CCCP to solve this problem, the relaxed optimization prob-
lem of Eq.(12) will no longer be a QP problem in this case.
Consider the terms that depend on α in the first-order Tay-
lor expansion of Eq.(17) at α(t), i.e.

Pni
l=1 e

ηk0I(xil)α
(t)

k0I(xil)αPni
l=1 e

ηk0I(xil)α
(t)

. (18)

It can be regarded as a weighted average of the scores of the
member instances, where the weights of the instances de-
pend on their scores underα(t). According to this property,
we use Eq.(18) to approximate the bag’s ranking score in
Eq.(17) and design an iterative algorithm to solve the prob-
lem. At the tth iteration, denote the current estimation of α

by α(t). We solve the optimization problem

min
α,ξ

1

2
α0Kα+ γ

X
i,j

ξij (19)

s.t. ∀ Bi Â Bj :Pni
l=1 e

ηk0I(xil)α
(t)

k0I(xil)αPni
l=1 e

ηk0I(xil)α
(t)

≥
Pnj

l=1 e
ηk0I(xjl)α

(t)

k0I(xjl)αPnj
l=1 e

ηk0I(xjl)α
(t)

+ 1− ξij,

∀ i, j : ξij ≥ 0,

which is a standard QP problem. And the obtained α from
this QP is then used asα(t+1). For initialization, we equally
weight the instances in a bag, which is equivalent to Eq.(7).
We can interpret this iterative algorithm from the per-

spective of EM algorithm, which has been exploited by
other MI learning algorithms, such as MI regression [19],
EM-DD [24] and MI-SVM [2]. In the E-step, we use the
current estimation ofα to compute the weights of the mem-
ber instances, which reflect howmuch they contribute to the
score of the whole image. Then in the M-step, we refine
the estimation of α by solving the QP problem in Eq.(19),
which is based on the weights obtained in the E-step. By
conducting this iterative process, we not only deduce the
ranking scores of the instances, but also estimate how im-
portant the instances are for the ranking of the image.

5. Experiments
5.1. Dataset

We collect images from Flickr, a popular personal photo
sharing service. Users are encouraged to tag images on
Flickr, not only those of their own, but also other users’.
As a result, it is possible to search images tagged with a
specific word. However, images with a common tag do not
necessarily meet user’s interest to the same extent. And we
should rank them according to howwell they meet a specific
information need.
We send 10 animal queries to Flickr. For each of them,

we download 200 images that are tagged with it. Animals
are demonstrably among the most difficult classes to recog-
nize. And there has been much fascination with searching
animals on the web recently [3]. We set our information
need as searching for images that well depict the desired
animals. As the ground truth, we manually assign one of
the three following labels to the images: (1) Good image:
This is a good example of the animal category. The animal
is the dominant object in the image and is well delineated.
(2) Intermediate image: The image contains the desired an-
imal. However, the animal is not the dominant object or the



image has extensive occlusion. (3) Junk image: It doesn’t
contain the real animal. The three images in Fig.1 are ex-
amples of good, intermediate and junk images respectively.
Based on these judgements, we can construct pairwise pref-
erence relations between images with different labels for the
learning of the ranking functions.

5.2. Performance Measures

To evaluate the quality of a ranking for a set of test im-
ages, we use two performance measures commonly used for
information retrieval. The first measure is the Normalized
Discounted Cumulative Gain (NDCG) [16]. For a list of
images sorted in descending order of the scores output by a
learned ranking model, the NDCG score at the mth image
is computed as

Nm = Cm

mX
j=1

2r(j) − 1
log (1 + j)

, (20)

where r(j) is the rating of the jth image andCm is the nor-
malization constant [4, 5]. We set the rating of the good im-
ages as 3, the intermediate images as 2 and the junk images
as 1. According to Eq.(20), the gain of a retrieved image
is discounted by a ranked position based factor log (1 + j).
This is based on the observation that the greater the ranked
position of a relevant image, the less valuable it is for the
user, because it is less likely that the user will ever examine
the image due to time, effort, and cumulated information
from images already seen. Cm is chosen so that a perfect
ordering gets NDCG scores 1. The perfect ordering is ob-
tained by ranking the images in descending order of their
ground truth ratings.
We also use Average Precision (AP) to evaluate the rank-

ing methods. It is the average of precision after each posi-
tive (relevant) image is retrieved. We regard good images as
positive, intermediate and junk images as negative images.
The AP is calculated as

AP =
1

Npos

NX
j=1

P (j)× rel(j), (21)

whereNpos is the number of positive images,N is the num-
ber of total retrieved images, rel(j) is a binary function in-
dicating whether the jth image is relevant, and P (j) is the
precision at j.

5.3. Experimental Setup

For the experiments, the images are first segmented using
Normalized cuts [22]. Then for each region, a set of low
level features are extracted, including color correlograms,
color moments and Gabor textures. We use the Gaussian
kernel for the kernel matrix K.

Images corresponding to each query are randomly parti-
tioned in half to form a training set and a test set. The learn-
ing algorithms learn a ranking function for each query using
the training images and then rank the test images using the
learned model. The parameter γ and σ2 (Gaussian kernel
radius) are selected according to a two-fold cross-validation
on the training set. The parameter η for the softmax scheme
is set to be 4. Each experiment is repeated five times for five
random splits, and the average results are reported.
We compare the rankings obtained by the multiple-

instance ranking algorithms with the original Flickr ranking
which we compute over the same test images based on their
orders in the Flickr search result. We let Flickr rank the im-
ages in descending order of their “interestingness”, which is
supposed to be determined according to the clickthroughs,
comments and some other factors. This is the best ranking
result in Flickr. Among the three multiple-instance rank-
ing algorithms, the Average method treats the constituent
regions equally, which does not fully embody the spirit
of multiple-instance assumption. Moreover, through tak-
ing average, it actually converts the multiple-instance rank
learning problem to a single-instance rank learning prob-
lem. Therefore, by comparing the other two methods with
it, we can tell, to some extent, how multiple-instance rank-
ing performs compared with single-instance ranking.

5.4. Results

In Table 1, we report the AP for each query using dif-
ferent algorithms. We can see that the multiple-instance
ranking algorithms significantly exceed the Flickr rank-
ing. Among the three learning algorithms, the Max scheme
achieved comparable overall performance with respect to
that of the Average scheme and Softmax consistently out-
performs the other two methods. The slight inferiority of
the Max scheme in comparison to the Average scheme in-
dicates that for image retrieval application, it is likely that
there are several regions in the image which together really
explain why the image is desirable. However, treating the
regions equally and combining their scores by taking the
average is not good enough. We can achieve better perfor-
mance by weighting more important regions heavier.
We compare the NDCG values at the fifth, tenth and

twentieth images in Fig.3. Unlike AP, which reflects the
overall ranking quality of the entire list, NDCG reflects
the quality of the top ranked images. According to Fig.3,
the Softmax scheme outperforms the Average method in
NDCGmeasure just like in AP. And theMax scheme, which
does not perform very well according to AP, shows quite
pleasant performance this time. This indicates that the Max
method is good at discovering some relevant images which
have a distinctly relevant region in it. This property makes
the Max method quite desirable because users are usually
more interested in top results when conducting search.



Query Flickr Average Max Softmax
alligator 0.445 0.503 0.522 0.575
giraffe 0.613 0.810 0.781 0.857
goat 0.284 0.521 0.482 0.577
leopard 0.584 0.721 0.698 0.798
dolphin 0.477 0.730 0.741 0.772
elephant 0.422 0.570 0.565 0.622
horse 0.442 0.571 0.582 0.596
penguin 0.388 0.630 0.619 0.646
dalmatian 0.594 0.767 0.745 0.789
kangaroo 0.580 0.728 0.688 0.762

Table 1. Average Precisions for each query. The mean value of the
APs for these four algorithms are 0.483, 0.655, 0.642 and 0.699
respectively.

The multiple-instance ranking algorithm can not only
rank images but also indicate the relevance of the regions.
We show some examples for the Softmax scheme in Fig.4.
For each image, we first normalize the scores of the regions
to the range [0, 1], i.e. the minimal and the maximal region
score in the image is 0 and 1 respectively. We then linearly
map the scores to gray values. So the brighter the regions in
Fig.4 the more relevant they are. Note that since image seg-
mentation is still a hard problem, the segmentation results
are not perfect. However, the learning algorithm works even
using inaccurate segmentations.

6. Conclusion
In this work we exploit the problem of learning to rank

images. Unlike previous work on image retrieval, which
usually treat it as a binary classification problem and learn
classifiers for it, we directly learn ranking functions, us-
ing image pairs with preference relationships between them.
We consider images represented by sets of regions and pro-
pose multiple-instance ranking based on the max margin
framework. Three different schemes are designed to encode
the multiple-instance assumption. The algorithms achieved
pleasant performance on real-world images collected from
Flickr. For future study, we would like to exploit other
methods to associate image’s score with regions’ scores and
validate the algorithms by more extensive experiments.
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