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Abstract

Conventional approaches to automatic image annotation
usually suffer from two problems: (1) They cannot guar-
antee a good semantic coherence of the annotated words
for each image, as they treat each word independently with-
out considering the inherent semantic coherence among the
words; (2) They heavily rely on visual similarity for judging
semantic similarity. To address the above issues, we pro-
pose a novel approach to image annotation which simulta-
neously learns a semantic distance by capturing the prior
annotation knowledge and propagates the annotation of an
image as a whole entity. Specifically, a semantic distance
function (SDF) is learned for each semantic cluster to mea-
sure the semantic similarity based on relative comparison
relations of prior annotations. To annotate a new image,
the training images in each cluster are ranked according to
their SDF values with respect to this image and their corre-
sponding annotations are then propagated to this image as
a whole entity to ensure semantic coherence. We evaluate
the innovative SDF-based approach on Corel images com-
pared with Support Vector Machine-based approach. The
experiments show that SDF-based approach outperforms in
terms of semantic coherence, especially when each training
image is associated with multiple words.

1. Introduction

With the prevalence of digital imaging devices such as
webcams, phone cameras and digital cameras, image data
are now explosively increased. An emerging issue is how
to browse and retrieve this daunting volume of images. A
possible way is to annotate images and then retrieve these
images by their associated words [4]. If all the images are
annotated, image retrieval can be solved effectively and ef-
ficiently by the well-developed techniques in text retrieval.
Automatic image annotation aims to automatically generate
words to describe the content of a given image.

Conventional approaches to automatic image annotation

(a) peach (b) peach (c) sun

Figure 1. Semantic similarity �= visual similarity. (a) and (b) have
the same semantic but different appearances, while (b) and (c)
have similar appearance but different semantics.

can be categorized along the following two dimensions.

• Learning-based approaches which formalize image
annotation as a learning problem. Usually, a statisti-
cal model is learned either for each word [9] [18] or
for the joint distribution of words and visual tokens in
each image [1] [5] [6].

• Search-based approaches which leverage search tech-
niques to find similar images and then directly mine
the annotation from the words associated with these
images [10] [13] [16].

However, both of these two categories suffer from two
problems. (1) It is difficult for most of existing approaches
to guarantee a good semantic coherence of the annotated
words for an image, as they treat each word independently
without considering the inherent semantic coherence of the
words. In other words, few of them take the annotation as
a coherent semantic entity. For example, indoor and sky are
unlikely to appear together in a real situation. However, if
these two words are labeled individually, both of them may
be annotated to the same image. In another case, if an tiger
image is labeled as cat, it is better than to be labeled as gar-
den although cat is not an exact match. (2) They heavily
rely on visual similarity for judging semantic similarity. In
fact, it is well-known that semantic similarity does not equal
to visual similarity [4] (see Figure 1 for an example). As a
result, the noises introduced by visual similarity can propa-
gate to learning and search steps, and therefore degrade the
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overall performance. For instance, if Figure 1(a) is input to
search-based approach, then sun may be a false alarm.

To address the above problems in these two categories,
we propose a novel approach to image annotation which is
characterized by simultaneously learning semantic distance
on the basis of prior annotation knowledge and propagating
the annotation of an image as a whole entity. Specifically,
we partition the training set into a number of semantic clus-
ters and learn a semantic distance function (SDF) for each
cluster based on the relative comparison relations of prior
annotations. The learned SDF is used for measuring se-
mantic similarity between images. To annotate a new im-
age, the training images in each cluster are ranked accord-
ing to their SDF values with respect to this image, and their
corresponding annotations are then propagated among dif-
ferent clusters to this image. The proposed SDF-based ap-
proach have the following two distinctive advantages com-
pared with conventional approaches.

(1) The annotation of a training image is always propa-
gated as a whole entity rather than separate words,
which enables our approach to generate annotations
with semantically coherent words, as well as to be
more flexible in the size of word vocabulary.

(2) The SDF is learned based on relative comparison rela-
tions (e.g., B is closer to A than C is to A) rather than
absolute pairwise distances, which leads to our ap-
proach being easily extended to weakly labeled train-
ing data. It is well-known that such relative compari-
son is more consistent with human’s perception of sim-
ilarity. Note that this is the first work on learning dis-
tance by directly exploiting the prior semantic knowl-
edge in annotations.

We will next review related work on image annotation
in Section 2, and then present the proposed SDF-based ap-
proach in Section 3. Section 4 gives the experiments and
evaluations, followed by the conclusion in Section 5.

2. Related Work

We provide in this section a review on conventional ap-
proaches to image annotation including learning-based and
search-based approaches.

2.1. Learning-Based Annotation

In learning-based approaches, image annotation is posed
as a learning problem which learned a statistical model ei-
ther for each word or for the joint distribution of words
and visual tokens in each image. One approach treats im-
age annotation as an image classification problem [9] [18].
Specifically, each word is viewed as a unique class. A bi-
nary classifier for each class or a multi-class classifier is

trained independently to predict the annotations of new im-
ages. Various learning algorithms have been adopted for
this purpose, such as Support Vector Machines (SVM) [18],
Hidden Markov Models (HMM) [9], and so on. Another ap-
proach represents the words and visual tokens in each im-
age as features in different modalities. Image annotation
is then formalized by modeling the joint distribution of vi-
sual and textual features on the training data and predicting
the missing textual features for a new image. The works for
modeling this joint distribution include translation language
model [1], cross-media relevance model (CMRM) [6], mul-
tiple Bernoulli relevance model (MBRM) [5], and so on.

2.2. Searching-Based Annotation

One of the most well-known approaches in this category
is AnnoSearch system [16]. This system employs a two-
step process of searching semantically similar images fol-
lowed by mining annotations from them. Specifically, given
a query image and initial keywords, the search process is
to discover visually and semantically similar images on
the Web, while the mining process is designed to discover
salient words from textual descriptions of the search results.
Li et al. relaxed the query of both image and initial words
to image only [10]. The idea of searching-based annotation
was further applied to Web image annotation by mining the
surrounding text in the same web page [13].

3. Approach

Given a set of training images with annotations, the vi-
sual feature of the i-th training image is represented as a
vector xi. Thus, the whole training set with n images is de-
noted as T = {x1,x2, . . . ,xn}. The associated annotations
are represented as {t1, t2, . . . , tn}, where ti is the annota-
tion of i-th image. ti(j) = 1 if j-th word in the vocabulary
is annotated to i-th image; otherwise, ti(j) = 0. A test
image is represented as x, and its soft annotation is repre-
sented as w, where w(j) ∈ [0, 1] indicates the probability
associating word j to x. Figure 2 illustrates the proposed
SDF-based approach to image annotation consisting of the
following components.

1) Semantic clustering of training images. In this step,
the training images are clustered according to the se-
mantics indicated by their ground truth annotations.
The clustering is implemented through a pairwise clus-
tering algorithm, where the pairwise similarity be-
tween two images is measured by the word similarity
via WordNet. As a result, the semantic space is parti-
tioned into several subspaces or clusters where the im-
ages in each cluster are semantically similar enough.

2) SDF learning. Given the partition of the semantic
space, a SDF is learned for each semantic cluster. SDF
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Figure 2. Proposed approach to image annotation by semantic distance learning.

is a function mapping the visual features of two im-
ages to their semantic distance. The learning of SDF is
based on the relative comparison relations rather than
the absolute pairwise distances.

3) SDF-based image ranking. Given a new image, the
probability of this image associated with each seman-
tic cluster is estimated. For each cluster, the seman-
tic distance between the new image and each training
image in this cluster is computed by the learned SDF
function. We then rank the images in this cluster ac-
cording to their SDF distances and propagate their an-
notations to the new image, which yields a probabilis-
tic annotation for this new image from each cluster and
the probability associating this image to each cluster.

4) Annotations propagation. The annotations obtained
among all semantic clusters are then probabilistically
propagated to the new image. We adopt a linear
weighted fusion of the annotation from each cluster.

3.1. Semantic Clustering of Images

The first step is semantic clustering of the training im-
ages, i.e., partition of semantic space. We are aware that
images with different semantics have different measures of
semantic similarity—they focus on different aspects of vi-
sual properties. This phenomenon can be explained by Fig-
ure 3, in which two words (motorbike and sky) are given as
examples. It is obvious that for motorbike, shape is more
informative than color and texture, while for sky, color and
texture are more informative than shape. Therefore, it is
not applicable to learn a single semantic similarity for all
the images. Instead, we partition the semantic space into a
number of subspaces by semantically clustering the training
images. A semantic distance function (SDF) is learned for
each cluster with the assumption that images with similar
semantic share the same SDF.

However, semantic clustering of images is very differ-
ent from traditional image clustering since we do not have

Figure 3. Images with different semantics have different measures
of semantic similarity. It is obvious that for motorbike (first row),
shape is more informative than color and texture, while color and
texture are more informative than shape for sky (second row).

vectorized features to represent image semantics. We as-
sume that given the manual annotation of images, the se-
mantics of images can be represented by the annotations
rather than low-level visual features. This is because the
textual words are at a much higher language level than vi-
sual features. Given this kind of features, i.e., each sample
is a small set of words, we can partition the data using the
pairwise proximity clustering method. Partitioning proxim-
ity data is considered to be a more difficult problem than
partitioning vectorized data. The proximity is not a metric
because the triangle inequality rule does not hold. There-
fore, traditional clustering methods such as k-means are not
suitable. Instead, we have taken a two step approach which
finds the embedded vectors of the original pairwise proxim-
ity data followed by using x-means algorithm [11] to cluster
the embedded vectors.

Given two sets of words a = {a1, a2, .., an1} and b =
{b1, b2, .., bn2}, where n1 and n2 are the number of words in
these two sets, respectively, the semantic distance SD(a,b)
between the two sets is computed by looking for the closest
word in one set with respect to a particular word in another.

SD(a,b) =
1

2n1

n1∑
i=1

min
j

JCN(ai, bj)+
1

2n2

n2∑
j=1

min
i

JCN(ai, bj)

(1)
where JCN(ai, bj) represents the semantic distance be-

tween two words, given by the JCN word similarity via



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

word similarity x

w
or

d 
di

st
an

ce
 l(

x)

Figure 4. The function �(x) maps word similarity to word distance.

WordNet. The original JCN similarity measure ranges from
0 to ∞. It can be further transformed into a distance mea-
sure ranging from 0 to 1 by the following function [8].

�(x) =




1 x ≤ 0.06
0.6 − 0.4 sin( 25π

2
x + 3

4
π) 0.06 ≤ x ≤ 0.1

0.6 − 0.6 sin
(

π
2
(1 − 1

3.471x+0.653
)
)

x ≥ 0.1

(2)
where x denotes the JCN similarity, and �(x) is motivated

by an empirical investigation of the JCN similarity mea-
sures between different pairs of words, shown in Figure
4. Specifically, words with a JCN similarity less than 0.06
are found to be rarely related, e.g., apple/bath (0.051) and
earth/lighthouse (0.059). Thus, f(x) is set to the largest dis-
tance 1.0 when x ≤ 0.06. When x = 0.1, f(x) is intention-
ally set to 0.6, e.g., elephant/lion (0.092) and glacier/rock
(0.099). The third segment of f(x) is obtained by fitting a
sin function considering the continuousness.

Given the annotations of the training images, we com-
pute the semantic distance between each pair of training
images according to Eq. (1). Since the pairwise seman-
tic distances violate the metric, it is impossible to find a
natural embedding of the original data into a vector space.
However, a natural embedding is not really necessary if the
purpose is only data clustering instead of preserving the ab-
solute distances. Roth et al. [12] found that any cluster-
ing method such as k-means, which is invariant under ad-
ditive shifts of the pairwise proximities, can be reformu-
lated as a grouping problem in an Euclidean space. Based
on this observation, they proposed a constant shift embed-
ding framework for non-metric pairwise proximity, which
can completely preserve the cluster structure. Embedding
the pairwise data into an Euclidean space is helpful for data
visualization, as well as there are many existing clustering
algorithms in such space. We used x-means [12] which is
a variant of k-means to cluster the embedded vectors and
automatically chose the optimal number of clusters.

3.2. Learning Semantic Distance Functions

The second step is to learn a SDF for each semantic clus-
ter which maps visual features to a semantic distance. In

general, image annotation depends on a good distance func-
tion for measuring the semantic or perceptual similarity be-
tween images. Usually, the visual similarity in the Euclid-
ean space is taken as semantic similarity [4], which does
not hold in many real cases as we have mentioned in Figure
1. In a more elaborated approach, geodesic distances are
used for image annotation by finding a non-linear manifold
in feature space. However, learning a manifold for general
image still remains an open problem. Research on seman-
tic similarity is further enriched by learning some distance
metrics [17] [19]. These works have focused on statisti-
cal analysis of feature distribution and distance functions
[19] or contextual information [17], given a set of prior dis-
tances. However, they do not directly deal with semantics.
In other words, the learned distances still heavily rely on vi-
sual features. To relax these strict assumptions, we propose
a data-driven approach to learning the semantic similarity
directly from the annotations of training images.

The SDF maps the visual features to semantic distance
between two images. Since this procedure is identical in
each cluster, we describe it in a general case. Given the
training images T and their pairwise distances SD(xi,xj),
we need to learn a SDF f(x,y) which is consistent with the
ground truth pairwise distances (x and y denotes a training
or test sample). An intuitive approach to learning such a
SDF is using the following least square regression

f = arg min
q

n∑
i=1

n∑
j=1

(
SD(xi,xj) − q(xi,xj)

)2

(3)

A disadvantage of this setting is that we are solving a
problem with very hard constraints. With limited training
data and the high dimensional visual features, learning such
a SDF tends to be over-fitting. Thus, we relax the pairwise
distance constraints to the relative comparison constraints
in the following form

{xj is closer to xi than xk is to xi} (4)

The idea of keeping the rank order instead of the absolute
distances has been presented in some techniques for Multi-
dimensional Scaling for non-metric data [3]. Especially in
image annotation, we are more interested in the rank or-
der of images rather than their absolute pairwise distances.
Moreover, learning by relaxed constraints allows us to in-
corporate other data labeled by relative comparison rela-
tions since it is much easier for human to give such relative
constraints (e.g., the distance between A and B is smaller
than that between A and C) than quantitative constraints
(e.g., the distance between A and B is 0.05 while the dis-
tance between A and C is 0.08).

3.2.1 Learning by Relative Comparison

The learning of SDF based on relative comparison is de-
rived from the work in [14]. Given the training images T



and a set of relative comparison constraints S

S = {(xa, xb, xc); xb is closer to xa than xc is to xa} (5)

A distance metric f(x,y) between vector x and y is para-
meterized by two matrices A and W

f(x,y) =
√

(x − y)T AWAT (x − y) (6)

where W is a diagonal matrix with non-negative entries and
A is a real matrix transforming the original data. f(x,y) is
equivalent to the weighted Euclidean distance on the lin-
ear transformed data points AT x and AT y. Especially, if
AWAT is an identity matrix, f(x,y) will be equal to the
Euclidean distance.

Since linear transformation has its limitation in function
complexity, we employ the kernel trick to obtain a nonlinear
transformation. Suppose we have a mapping function φ(x)
which maps x to a very high dimensional vector and define
the transformation matrix A = [φ(x1) φ(x2) . . . φ(xn)].
Then, f(x,y) can be kernelized as

f(x,y) =

√√√√
n∑

i=1

Wii

(
K(x,xi) − K(y,xi)

)2

(7)

where the use of kernel K(x,y) = φ(x)φ(y) suggests a
particular choice of A, the parameters to be learned are the
diagonal elements of W . Given this parameterized distance
function and the relative comparison constraints, the learn-
ing problem is summarized as

solve Wii (8)

s.t. ∀(xa,xb,xc) ∈ S, f(xa,xc) − f(xa,xb) > 0

Wii ≥ 0

Similar to the optimization problem in SVM [2], we
transform the hard constraints in Eq. (8) into soft ones
by adding slack variables to each relative comparison con-
straints. For the convenience of computation, we also con-
vert the constraints on f to f2. This leads to

min
∑

� ξ� (9)

s.t. ∀(xa,xb,xc) ∈ S, f2(xa,xc) − f2(xa,xb) ≥ 1 − ξ�

Wii ≥ 0

ξ� ≥ 0

where � is the index of the relative comparison constraints.
If the set of relative comparison constraints are feasible

and there exists one W fulfilling all the constraints, there
will be infinite number of solutions for W since a scalar
transformation on a feasible solution W is always a feasible
solution. To make the solution unique, we add an additional
constraint that the learned distance function f is close to the
un-weighted Euclidean distances as much as possible. This
constraint can be reformulated as minimizing the norm of
the eigenvalues of AWAT , which is equal to ||AWAT ||2F .

Thus we rewrite the optimization problem, i.e., the first row
in Eq. (9), with this additional constraint as

min 1
2
||AWAT ||2F + C

∑
� ξ� (10)

where 1
2 is added for the convenience of formulating it as

a standard quadratic programming problem, and C > 0 is
a balance parameter. The bigger C is, the more constraints
are to be satisfied; the smaller C is, the closer f is to the un-
weighted distance function. Through some mathematical
derivation, the above optimization problem in Eq. (9) and
(10) can be further reformulated as the following standard
quadratic programming problem

min 1
2
ωT Lω + C

∑
� ξ� (11)

s.t. ∀(xa,xb,xc) ∈ S, ωT
(
g(xa,xc) − g(xa,xb)

)
≥ 1 − ξ�

ωi ≥ 0

ξ� ≥ 0

where

L = (AT A) ∗ (AT A) (12)

g(x,y) = (AT x − AT y) ∗ (AT x − AT y)

ω is the diagonal elements of W and ∗ denotes the elemen-
twise product between vectors. For the kernel version, x is
replaced by φ(x) and both L and function g(x,y) can be
written in the function of the kernel function K( · ).

3.2.2 Learning a SDF for a Semantic Cluster

Given the learning algorithm in the above section, this sec-
tion discuss how to learn a SDF for a specific semantic clus-
ter. Let T (k) = {x(k)

i }nk
i=1 denote k-th semantic cluster,

where x
(k)
i is i-th image and nk is the number of images in

k-th cluster, P = T (k) denote the set of training samples in
this cluster, and N = ∪i�=kT (i) the set of training samples
not in this cluster, the major issue in learning a SDF for this
cluster is to generate the relative comparisons constraints
from the ground truth semantic distances.

A basic assumption of our approach is that images with
similar semantics share the same SDF. In other words,
f(x,y) is only valid if x ∈ P or y ∈ P . Thus our rela-
tive comparison constraints for a particular cluster are only
a subset of all the triples. This subset can be represented as

R = {(xa,xb,xc)} (13)

where xa ∈ P and (xa,xb,xc) satisfy either of the follow-
ing two conditions

(a) SD(xa,xc) > SD(xa,xb) (14)

(b) SD(xa,xc) = SD(xa,xb), but ||xa − xc|| > ||xa − xb||
Condition (b) indicates that if two pairs of images have

the same semantic distances, then the difference in the fea-
ture space is taken into account. Even by this selection pol-
icy, the number of constraints will be overwhelming which



makes the optimization problem in Eq. (11) complex. Fol-
lowing the divide-and-conquer philosophy, we randomly
sample m subsets of the relative comparison constraints
from R, each represented as Ri (i = 1, . . . ,m). We train
m SDFs, denoted as {f1, f2, . . . , fm} in which each fi is
trained by constraints Ri. The final SDF f is an average of
these sub-SDF’s, i.e., f = 1

m

∑
i fi.

3.3. Annotating a New Image

Based on the learned SDF , a new image is annotated by
finding a ranking list of images from the training set accord-
ing to their semantic distances to this image. However, there
still remain two concerns. (a) Each semantic cluster in the
training set has its own SDF, which indicates that the SDF
of a given semantic cluster is only valid if it is used to mea-
sure the distance between a test image to a training image
in this semantic cluster. (b) The SDFs obtained on different
clusters are not comparable. They are learned separately
with different objective functions and constraints. Thus, we
propose a two step approach to annotating a new image. In
the first step, for each semantic cluster, we rank the images
in this cluster according to their distances to the test im-
age based on the learned SDF for this cluster, and assign a
probability that the test image belongs to this cluster. In the
second step, we propagate the annotations of the images in
each semantic cluster to the test images.

3.3.1 Cluster Association Probability

To propagate the annotation from the k-th semantic cluster
to a test image, we take the distance of a sample to all the
samples in P as a feature vector and train a logistic regres-
sion classifier on the positive and negative set P and N . The
detailed process is described as follows.

1) For each sample in P , compute its semantic distances
to all the positive samples in P . This leads to a distance
matrix V p ∈ R

|P|×|P|, where V p(i, j) = f(xi,xj),
xi,xj ∈ P and |P| is the number of positive samples.

2) For each sample in N , compute its semantic distances
to all the samples in P , which results in a distance ma-
trix V n ∈ R

|P|×|N|.

3) Take the column vectors in V p and V n as positive and
negative training samples, respectively, and then train
a logistic regression classifier.

4) Take [f(x,x1), f(x,x2), . . . , f(x,x|P|)]T as the fea-
ture vector of a test sample and assign a cluster associ-
ation probability using the trained logistic regression.

3.3.2 Propagation of Annotations

Suppose the corresponding manual annotations of the rank-
ing list from the k-th cluster are {t(k)

1 , t(k)
2 , . . . , t(k)

nk }, and

their distances to the test images are {d(k)
1 , d

(k)
2 , . . . , d

(k)
nk },

we intentionally propagate t(k)
1 with weight 1.0 and the an-

notation of t(k)
5 with weight 0.5, so that the annotation prop-

agated from the k-th cluster w(k) is

w(k) =
1

nk

∑
i

d
(k)
1 − α(k)

d
(k)
i − α(k)

∗ t
(k)
i (15)

where α(k) is set so that d
(k)
1 −α(k)

d
(k)
5 −α(k)

= 0.5. w(k) is normal-

ized so that its L1 norm is 1. The final annotation is

w =

H∑
k

p(k) ∗ w(k) (16)

where p(k) is the association probability of the test image
to the k-th semantic cluster obtained in Section 3.3.1.

4. Experiments

4.1. Dataset

We evaluate the proposed approach over two data sets.
The first set contains 3100 Corel images, which is a subset
of the 5000 images used in [1] [6]. The second set includes
2360 Corel images from Li [7]. As a result, we have 5460
Corel images in total. All the images have been manually
annotated with 1 ∼ 5 words in Corel database. The number
of unique annotation words in these two sets is 393.

4.2. Performance Measures for Image Annotation

In the previous work, there are mainly two performance
measures used to compare different algorithms, namely,
precision and recall. They are defined respectively wrt. a
particular word w as follows,

precision(w) =
# of images correctly annotated withw

# of images automatically annotated with w

recall(w) =
# of images correctly annotated with w

# of images manually annotated with w

A disadvantage of these two measures is that they con-
sider an annotation word as correct only if there is an exact
match. However, even if an automatically annotated word
does not have an exact match to the ground truth annotation,
it is acceptable in some cases. An example is given in Table
1, where the first row is the manual annotation, the second
and third rows are the automatic annotations generated by
two different algorithms. If we evaluate the performances
of these two algorithms in terms of precision and recall,
Algorithm 1 outperforms Algorithm 2 because there is at
least one word (mountain) correctly annotated while none



of the annotation words generated by Algorithm 2 has an
exact match with the ground truth. In fact, Algorithm 2 per-
forms better than Algorithm 1 because three of the four pre-
dicted words have similar semantics with the ground truth
(i.e., tree/trunk, water/waterfall, sun/sunrise).

Table 1. Comparison of two automatic annotations
Manual trunk, waterfall, mountain, sunrise

Algorithm 1 mountain, clouds, street, garden
Algorithm 2 tree, water, counds, sun

We hereby propose a new performance measure, named
semantic Relevance Comparative Score (RCC), which
takes the semantic relevance between annotated words into
account. The intuition of RCC is that if a predicted word
does not have an exact match, it is expected to represent
the semantics of the image as close as possible. We be-
lieve that RCC is more reasonable than the commonly used
precision and recall for measure the annotation quality.
For example, if a waterfall image is labeled as water, it is
better than to be labeled as clouds if clouds are not present
in this image. RCC is computed from two annotation re-
sults on the same dataset. Suppose the number of test im-
ages is n, the annotations of the ground truth, annotation
generated by Algorithm 1, and annotation generated by Al-
gorithm 2 are T0 = {t0

1, . . . , t
0
n}, T1 = {t1

1, . . . , t
1
n}, and

T2 = {t2
1, . . . , t

2
n}, respectively. The RCC between Algo-

rithm 1 and 2 is computed by

RCC =
# of images where SD(t0

i , t
1
i ) < SD(t0

i , t
2
i )

n
(17)

where SD is the distance function defined in Eq. (1). If
RCC > 0.5, Algorithm 1 performs better in terms of se-
mantic relevance and vice versa.

4.3. Evaluation

We used 225 dimensional block-wise color moment as
the global features which have proved to be effective for im-
age annotation [15]. Since our approach is based on the se-
mantic distance learning algorithm on the global visual fea-
ture, it is not suitable to compare its performance with other
approach using other form of features such as blob features.
Instead, we have focused on comparing the proposed SDF-
based approach with SVM-based approach using the same
features, as it is the most widely accepted approach to im-
age annotation in the first research dimension described in
Section 2.1. Note that we did not compare our approach
with the second dimension as it has utilized a large-scale of
Web images, which makes the comparison not fair.

The SVM-based approach takes each word as a unique
class. A binary classifier is trained for each class. Given a
test image, these classifiers are applied one by one to give
a probability of each annotation word. The words with the
five largest probabilities are taken as the final annotation.

Table 2. Results of experiment I and II
Experiment Method Precision Recall RCC

I
SVM 0.38 0.53 0.37
SDF 0.36 0.51 0.63

II
SVM 0.32 0.46 0.24
SDF 0.37 0.53 0.76

In our implementation, the parameter C in Eq. (11) is ad-
justed automatically, i.e., for a given set of relative com-
parison constraints, we randomly sample 80% of the con-
straints and train a SDF. The trained SDF is then tested on
the rest 20% constraints. After finding the best C, we train
the SDF again using all of the constraints. The RBF kernel
is adopted as the kernel function in Eq. (11). It is worth
noticing that the partition of training and validation is on
the pairwise relative comparison instead of the image set it-
self. We compare the performance of these two approaches
in terms of three measures: precision, recall and RCC.
The precision and recall are the average precision and re-
call of the top 50 words for each approach. This is a widely
used comparing methodology in image annotation [1] [6].

Experiment I: The whole data set is partitioned into
training and testing set. The ratio of the size of training to
testing set is 9:1. This is consistent to the setting in [1] [6].
The annotation results show that the SVM-based approach
performs a little better in terms of precision and recall.
However, SVM does not show any advantage in terms of
RCC, as listed in Table 2.

Experiment II: We select the images with more than
three annotation words and partition this subset of images
into a training and testing set by the ratio of 9:1, which re-
sults in 3192 training and 355 testing images. This experi-
ment has shown SDF-based approach performs better on the
images with multiple annotation words, as we have taken
the semantic relevance between annotated words into ac-
count. If an image has a single annotation word, the advan-
tage of cross-word semantic relevance can not be demon-
strated. The results are shown in Table 2, from which we
can observe that when the images have multiple words,
SDF-based approach outperforms SVM in terms of all the
three measures. The RCC is improved from 0.63 to 0.76.
The precision and recall of SVM-based approach has
dropped down in this setting. It is because with multiple
words, the class boundary between different semantic con-
cept becomes more ambiguous.

Some test images with the annotations generated by the
two approaches are shown in Figure 5. Taking the first im-
age (row 1, col 1) as an example, although horse is rela-
tively easy to be classified, foal and mare are not so that
SVM-based approach failed to annotate these two words.
In contrast, SDF-based approach annotates foal and mare
because of the contextual prior knowledge from manual an-
notations. For the image of African woman (row 2, col 2),



GT: field, foals, horses, 
mare

SVM: grass, horse, 
animal, tree, plant

SDF: horse, foal, mare, 
fence, tree

GT: cliff, sky, water

SVM: people, ocean, 
flower, beach, snow

SDF: sky, mountain, 
water, valley, coast

GT: beach, buildings, sand, 
water

SVM: landscape, mountain, 
snow, people, ocean

SDF: sand, beach, water, 
people, sky

GT: field, foals, 
horses, mare

SVM: grass, horse, 
animal, tree, plant

SDF: horse, foal, 
mare, fence, tree

GT: indian, pots, 
woman

SVM: rock, animal, 
buildings, snow, winter

SDF: people, indian, 
hats, costume, african

GT: cow, elk, forest

SVM: buildings, waterfall, 
landscape, ocean, plant

SDF: field, grass, cow, 
deer, tree

GT: boats, harbor, sky, 
water

SVM: sky, cloth, fashion, 
decoration, snow

SDF: water, sea, boat, 
harbor, sky

GT: ceremony, church, 
garden, people

SVM: buildings, people, 
fish, snow, rock

SDF: people, church, 
mosque, indian, buildings

GT: beach, oahu, 
people, water

SVM: snow, mountain, 
animal, rock, tree

SDF: beach, bay, sea, 
tree, sunset

Figure 5. Sample images and annotations. GT: ground truth.

SDF-based approach annotates it with people. The ground
truth annotation does not contain people but woman. Since
people and woman have very strong semantic relevance we
do not think people is a junk annotation.

5. Discussion

In this paper, we have proposed a novel approach to im-
age annotation based on semantic distance learning. Dif-
ferent from conventional approaches to image annotation
which are lack of a good semantic coherence of annotated
words and good semantic distances, the proposed approach
is able to simultaneously learn a semantic distance by cap-
turing the prior annotation knowledge and propagate the an-
notation of an image as a whole entity. To the best of our
knowledge, this is the first work on learning image distance
by directly exploiting the prior knowledge in annotations.
The major bottleneck of the proposed approach is that cur-
rent semantic distance learning cannot handle with the over-
whelming number of relative comparison constraints very
efficiently, as well as the heavy reliance of WordNet for
word similarity. Therefore, our future work will focus on
designing more scalable algorithm from ranking data and
experimenting on a large-scale of real-world image data.
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