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Abstract

The earth mover’s distance (EMD) [16] is an important

perceptually meaningful metric for comparing histograms,

but it suffers from high (O(N3 logN)) computational com-
plexity. We present a novel linear time algorithm for ap-

proximating the EMD for low dimensional histograms us-

ing the sum of absolute values of the weighted wavelet co-

efficients of the difference histogram. EMD computation is

a special case of the Kantorovich-Rubinstein transshipment

problem, and we exploit the Hölder continuity constraint in

its dual form to convert it into a simple optimization prob-

lem with an explicit solution in the wavelet domain. We

prove that the resulting wavelet EMD metric is equivalent

to EMD, i.e. the ratio of the two is bounded. We also pro-

vide estimates for the bounds.

The weighted wavelet transform can be computed in time

linear in the number of histogram bins, while the compar-

ison is about as fast as for normal Euclidean distance or

χ2 statistic. We experimentally show that wavelet EMD is a

good approximation to EMD, has similar performance, but

requires much less computation.

1. Introduction

Histogram descriptors: Histogram descriptors are a

powerful representation for matching and recognition.

Their statistical nature gives them sufficient robustness

while maintaining discriminative power. They have been

used extensively in vision applications like shape matching

[1], keypoint matching [12] and 3D object recognition [7].

Colour and texture histograms [16] are also used for con-

tent based image retrieval. These descriptors are often com-

pared using binwise dissimilarity measures like Euclidean

norm or the χ2 statistic. While these measures can be com-

puted very fast and often give good results, they do not take

into account all possible variations in the random variables

whose distributions they compare. These unmodelled vari-

ations may lead to large measure values for changes in the

distribution that are perceived to be small. For example,

suppose we take two photos of a plain wall with strong and

weak sunlight and compare their colour histograms. The

histograms are shifted delta functions and have large bin-

wise differences. Consequently, all of these measures will

have large values. The popular SIFT descriptor [12] is a

gradient orientation – location histogram. A similar his-

togram shifting will occur if the keypoint is not localized

accurately.

Earth mover’s distance: Crossbin distance measures

take into account the fact that histograms are based in fea-

ture space and it is possible for histogram mass to move

between bins in feature space. They penalize this move-

ment according to the distance covered, called the ground

distance. The earth mover’s distance (EMD) is a natural

and intuitive metric between histograms if we think of them

as piles of sand sitting on the ground (feature space). Each

grain of sand is an observed sample. To quantify the differ-

ence between two distributions, we can measure how far the

grains of sand have to be moved so that the two distributions

coincide exactly. EMD is the minimal total ground distance

travelled weighted by the amount of sand moved (called

flow). EMD makes sure that shifts in sample values are not

penalized excessively. For the example of a shifted delta

function, the EMD is simply the shift amount. For percep-

tually meaningful ground distances, EMD agrees with per-

ceptual dissimilarity better than other measures [16]. EMD

has been successfully used for image retrieval by compar-

ing colour and texture histograms [16], contour matching

[3], image registration [2] and pattern matching in medical

images [5]. Ling and Okada [11] report improved perfor-

mance when comparing various histogram descriptors with

EMD over the χ2 statistic and the L2 norm. However, a ma-

jor hurdle to using EMD is its O(N3 logN) computational

complexity (for an N -bin histogram).

Wavelet EMD: In this paper, we present a novel method

for approximating the EMD for histograms using a new

metric on the weighted wavelet coefficients of the differ-

ence histogram. We show that this is equivalent to EMD,

i.e. the ratio of EMD to wavelet EMD is always between

two constants. Although our estimates for these constants
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Figure 1. Computation of wavelet EMD

are loose, we will show experimentally that our metric fol-

lows EMD closely and can be used instead without any sig-

nificant performance difference. The wavelet EMD metric

can be computed in O(N) time.

EMD can be computed as the minimal value of a linear

program. The Kantorovich-Rubinstein (KR) transshipment

problem [15] is the corresponding problem for continuous

distributions. Both problems admit duals with the same op-

timal value. The important insight in our approximation is

that the dual of the KR problem has a wavelet domain rep-

resentation with a simple explicit solution.

In the primal form, the objective function is the total

flow–weighted ground distance between all bin pairs. See

table 1 for exact definitions. The flows must make up for

the difference between the histograms at each correspond-

ing bin. In the dual form, the optimization is over a poten-

tial f assigned to each bin. For a difference histogram p, the
dual EMD is given by :

Dual EMD := sup
f

∫
f(x)p(x)dx (1)

subject to the constraint that any two bin potentials cannot

differ by more than the ground distance c(x, y) = ‖x− y‖,
i.e. f(x) − f(y) ≤ ‖x − y‖. The objective function is

the maximum inner product between the potential function

and the difference histogram and is easily represented in

the wavelet domain, since orthonormal wavelets preserve

inner products. The constraint means that f cannot grow

faster than a (non-vertical) straight line at any point. This

is a Hölder continuity condition and is somewhat between

continuity and differentiability. The wavelet coefficients of

a Hölder continuous function decay exponentially at fine

scales, since fine scale wavelets represent rapid changes in

the function. We thus have an equivalent constraint in the

wavelet domain. The resulting optimization has the explicit

solution :

d(p)wemd =
∑

λ

2−j(1+n/2)|pλ| (2)

p is the n dimensional difference histogram and pλ are its

wavelet coefficients. The index λ includes shifts and the

scale j. We will call this the wavelet EMD between two his-

tograms. This is clearly a metric. This is not exactly equal

to the EMD since the Hölder continuity constraint can’t be

transformed exactly into the wavelet domain.

This surprising formula for approximating the EMDwith

wavelet coefficients of the difference histogram is the main

contribution of this paper. By using appropriate wavelets,

we can approximate EMD very well. Since the wavelet

transform is a common linear time operation, we can com-

pute this in time linear in the number of bins for uniform

histograms. Figure 1 explains the wavelet EMD approxi-

mation algorithm in 2D.

Intuitively speaking, the wavelet transform splits up the

difference histogram according to scale and location. Each

wavelet coefficient represents an EMD subproblem that is

solved separately. For a single wavelet, the mass to be

moved is proportional to the volume of |ψj(x)|, i.e. to

2−jn/2. The distance travelled is proportional to the span of

the wavelet 2−j (According to Meyer’s [14] convention, a

wavelet at scale j is the mother wavelet squeezed 2j times.)

The sum of all distances is an approximation to EMD and

is thus given by equation (2).

Approximation by scale and location separation is sim-

ilar to the way packages are shipped over large distances.

The total journey is broken into several hops – short and

long. Short hops connect the source and destination to ship-

ping hubs, while long hops connect the shipping hubs them-

selves. Packages from nearby towns merge at shipping hubs

to travel together. Thus, the package journey is split into

multiple scales, and the sum of the distances travelled is an



EMD for signatures [16] Discrete EMD for histograms Continuous EMD for distributions

Signatures f(i; 1), f(i, 2) Histograms f(i; 1), f(i, 2) Distributions p1(x), p2(x)
In general,

∑
i f(i; 1) 6=

∑
i f(i; 2)

∑
i f(i; 1) =

∑
i f(i; 2) = 1

∫
p1(x)dx =

∫
p2(x)dx = 1

Difference f(i) := f(i; 1) − f(i; 2) Difference p(x) := p1(x) − p2(x)
Ground distance dij ≥ 0 Ground distance dij ≥ 0 Cost function c(x, y) ≥ 0

Flow (from bin i to bin j) gij ≥ 0 Flow (from bin i to bin j) gij ≥ 0 Joint distribution q(x, y) ≥ 0
Potential πi Potential f(x)

EMD := min
∑

ij
gijdij∑

ij
gij

EMD := min
∑

ij gijdij EMD := inf
∫
c(x, y)q(x, y)dxdy

s.t.
∑

j gij ≤ f(i; 1),
∑

i gij ≤ f(i; 2), s.t.
∑

i gik −
∑

j gkj = f(k) s.t.
∫
q(u, y)dy −

∫
q(x, u)dx = p(u)∑

ij gij = min (
∑

i f(i; 1),
∑

i f(i; 2))

Dual EMD := max
∑

i πif(i) Dual EMD := sup
∫
f(x)p(x)dx

s.t. πi − πj ≤ dij s.t. f(x) − f(y) ≤ c(x, y)

Table 1. Correspondence between EMD for signatures, discrete EMD and continuous EMD for probability distributions

approximation to the actual distance.

2. Related Work

The earth movers distance was introduced in vision by

Werman et al. [19], though they did not use this name. Rub-

ner et al. [16] extended this to comparing signatures: adap-

tive histograms of varying mass represented by weighted

clusters. They computed the EMD using a linear program

called transportation simplex and used it for content based

image retrieval by comparing colour signatures. They ob-

tained better performance than binwise measures. This

method has an empirical time complexity between O(N3)
and O(N4). EMD being a transportation problem, can also

be modelled as a network flow problem ([8] chapter 9) in

graph theory. The two histograms are represented by a sin-

gle graph with a vertex for each bin and ground distances as

the edge weights. The two histogram vertices act as sources

and sinks respectively with bin contents as values. Com-

puting EMD is now an uncapacitated minimum cost flow

problem and can be solved by Orlin’s algorithm ([8] section

9.5) in O(N3 logN) time.

Various approximation algorithms have been suggested

to speed up the computation of EMD. Ling and Okada [11]

empirically showed that EMD could be computed inO(N2)
time if an L1 ground distance is used instead of the usual

Euclidean distance. They used the EMD for comparing

different histogram descriptors and noted improved perfor-

mance compared to χ2 and Euclidean distance.

Indyk and Thaper [6] use a randomized multiscale em-

bedding of histograms into a space equipped with the l1
norm. The multiscale hierarchy is obtained by a series of

random shifting and dyadic merging of bins. The histogram

levels are weighted by powers of 2, with more weight at the

coarser levels. They show that the l1 norm computed in this

space, averaged over all random shifts, is equivalent to the

EMD. They do not prove this for individual random embed-

dings, and also do not estimate the constants that bound the

ratio of this norm to EMD. They couple this with locality

sensitive hashing for fast nearest neighbour image retrieval

using colour signatures. Grauman and Darrell’s pyramid

match kernel [4] is based on this method. They use his-

togram intersection instead of l1 distance at each level and

inverted weights to obtain a similarity measure useful for

matching partial histograms instead of a metric. Both these

methods have a time complexity of O(Tdm logD) for d
dimensional histograms with diameter D and m bins. The

random embeddings are computed T times. Although these

algorithms are linear time as well, our algorithm has deter-

ministic error bounds. We will also show empirically that

our algorithm is more accurate.

The diffusion distance introduced by Ling and Okada in

[10] is computed by constructing a Gaussian pyramid from

the difference histogram and summing up the L1 norms of

the various levels. Although this has some similarities with

our algorithm, it is not an approximation to the EMD and

may behave differently.

Holmes and Taylor [5] use partial signature matching

based on the EMD for identifying mammogram structures.

They embed histograms into a learned Euclidean space to

speed up computation.

The continuous EMD problem and its generalizations

have a good basis in probability theory for comparing dis-

tributions and have been studied since Nobel prize winner

L. V. Kantorovich’s [15] first formulation of the problem

as a linear program and the study of its duality in 1942.

Minimal l1 metric, Kantorovich metric [15], Wasserstein

distance and Mallows distance [9] are equivalent formula-

tions of EMD and are computed in the same way. Gen-

eral mass transportation problems have wide applications

in mathematical economics, recursive stochastic equations

for studying convergence of algorithms and stochastic dif-

ferential equations.

3. Theory

The earth mover’s distance is a metric between two prob-

ability distributions for metric ground distances. It is a



special case of a class of optimization problems in applied

probability theory calledmass transportation problems. We

will first look at the analogy between discrete and continu-

ous EMD and state the dual form (section 3.1). Then, in

section 3.2, we will describe how to convert the dual form

into the wavelet domain. The wavelet domain dual problem

has an explicit solution.

3.1. Continuous EMD and its dual

The wavelet domain connection of the EMD problem be-

comes clear only when we look at EMD for continuous dis-

tributions. Table 1 lists analogous terms between EMD for

signatures and discrete and continuous versions of the EMD

problem for distributions. Note that discrete EMD is a spe-

cial case of continuous EMD since a discrete distribution

can be represented as a set of delta functions. Consequently,

our results for continuous EMD are valid for discrete EMD

with histograms as well. The problem is simpler for his-

tograms than for signatures. The objective function is sim-

pler because the total flow
∑

ij gij = 1. The constraint is

simpler as well and means that the flows must make up the

difference between the two histograms. This is a mass con-

servation constraint. We will now formally state the contin-

uous domain EMD problem [15], summarized in the third

column of table 1.

Let P1 and P2 be probability distributions with densities

p1 and p2 respectively, defined on a compact space S ⊂ R
n.

c is a continuous cost function on the Cartesian product

space S × S. Here, we will restrict c to be of the form

‖x − y‖s with 0 < s ≤ 1. s = 1 gives us the usual

Euclidean ground distance. The Kantorovich-Rubinstein

transshipment problem (KRP) is to find

µ̇c = inf
q

∫
||x− y||

s
q(x, y)dxdy (3)

where the infimum is over all joint probability densities q
on S × S. q is analogous to flow in the discrete EMD prob-

lem and specifies how the source density p1 is moved to the

target density p2. Thus the joint density q must satisfy the

mass conservation constraint :

p1(u) − p2(u) =

∫
q(u, y)dy −

∫
q(x, u)dx (4)

p := p1 − p2 is a difference density with the property that∫
p = 0. The Kantorovich–Rubinstein theorem states that

the problem admits the dual representation :

µ̇c = sup
f

∫
f(x)(p1(x) − p2(x))dx (5)

with the same optimal value. The supremum is over all

bounded continuous functions f on S (called potentials)

satisfying the order s Hölder continuity condition

f(x) − f(y) ≤ ||x− y||
s

for all x, y ∈ S (6)

In the dual form, the EMD is the supremum of inner prod-

ucts of the difference density with a suitably smooth func-

tion.

3.2. EMD in the wavelet domain

Now we will look at expressing the dual problem in the

wavelet domain. We can identify the various classes that

a function belongs to by observing the rate of decay of its

wavelet coefficients ([14] Chapter 6). For our application,

we are interested in the wavelet characterization of Hölder

spaces, since the potential f belongs to one. First we will

explain some notation about the wavelet series representa-

tion of a function.

A function f in R
n can be expressed in terms of a

wavelet series (Meyer [14] Chapter 2) as:

f(x) =
∑

k

fkφ(x− k) +
∑

λ

fλψλ(x) (7)

φ and ψ are the scaling function and wavelet respectively. k
runs through all integer n–tuples and represents shifts, and

λ := (ǫ, j, k). In n dimensions, we need 2n − 1 different

wavelet functions which are indexed by ǫ. They are usu-

ally constructed by a tensor product of 1D wavelet functions

along individual dimensions. For example, in 2D, we have

horizontal (ǫ = 1: ψ(x)φ(y)), vertical (ǫ = 2: φ(x)ψ(y))
and diagonal (ǫ = 3: ψ(x)ψ(y)) wavelets. j represents the
scale and is a non-negative integer. Larger values of j mean

finer scales with shorter wavelet functions. The set of all

possible λ for a scale j ≥ 0 is denoted by Λj and Λ is the

union of all Λj . We thus have

ψλ(x) := 2nj/2ψǫ(2jx− k) (8)

A wavelet ψ has regularity r ∈ N if it has derivatives up to

order r and all of them (including ψ itself) have fast decay,

i.e. they decay faster than any reciprocal polynomial for

large x. For orthonormal wavelets, the coefficients can be

computed as

fk =

∫
f(x)φ̄(x− k)dx, k ∈ Z

n (9)

fλ =

∫
f(x)ψ̄λ(x)dx, λ ∈ Λ, j ≥ 0 (10)

φ̄ and ψ̄ are complex conjugates of φ and ψ respectively.

Hölder space membership is an indication of the global

smoothness of a function. For 0 < s < 1, a bounded,

continuous function f belongs to the Hölder class Cs(Rn)
if the following supremum exists and is finite :

CH(f) := sup
x6=y

|f(x) − f(y)|

‖x− y‖s
(11)

We can now state the constraint (6) simply as

CH(f) < 1 (12)



The following theorem from Meyer ([14] section 6.4) can

be used to characterize functions in Cs(Rn) :

Theorem 1. A function f ∈ L1
loc(R

n), (i.e. |f | is integrable
over all compact subsets of R

n) belongs to Cs(Rn) if and
only if, in a wavelet decomposition of regularity r ≥ 1 > s,
the approximation coefficients fk and detail coefficients fλ

satisfy

|fk| ≤ C0, k ∈ Z
n and

|fλ| ≤ C12
−j(n/2+s), λ ∈ Λj , j ≥ 0 (13)

for some constants C0 and C1.

A little modification to the proof of this theorem (see

[17]) gives the following lemma:

Lemma 1. For 0 < s < 1, if the wavelet series coefficients
of the function f are bounded as in (13), then f ∈ Cs with

CH(f) < C such that

a12(ψ; s)C1 ≤ C ≤ a21(ψ; s)C0 + a22(ψ; s)C1 (14)

for some positive constants a12, a21 and a22 that depend

only on the wavelet and s. For discrete distributions, if we
change the definition of CH(f) to

CH(f) := sup
|x−y|≥1

|f(x) − f(y)|

‖x− y‖s
, (15)

the same condition holds for s = 1 as well.

The constants a12, a21 and a22 are estimated in the tech-

nical report [17]. Now we have all the ingredients necessary

for our main result :

Theorem 2. Consider the KR problem with the cost func-

tion c(x, y) = ‖x − y‖s, s < 1. Let pk and pλ be the

wavelet transform coefficients (approximation and detail,

respectively) of the difference density p generated by the or-
thonormal wavelet-scaling function pair ψ and φ with reg-

ularity r ≥ 1 > s. Then for any non-negative constants C0

and C1 > 0,

µ̂c = C0

∑
k

|pk| + C1

∑
λ

2−j(s+n/2)|pλ| (16)

is an equivalent metric to the KR metric µ̇c; i.e. there ex-

ist positive constants CL and CU (depending only on the

wavelet used) such that

CLµ̂c ≤ µ̇c ≤ CU µ̂c (17)

For discrete distributions, the same result holds for s = 1
as well.

Proof. Consider the auxiliary wavelet domain problem :

Maximize ptf =
∑

k

pkfk +
∑

λ

pλfλ

subject to |fk| ≤ C0 and |fλ| ≤ C12
−j(s+n/2) (18)

p and f are coefficient vectors of pλ and fµ. It is easy to

see that µ̂c in (16) is the solution of this problem. We need

to show that the ratio of the optimal values of the two prob-

lems are bounded by two constants CL and CU . Since we

use orthonormal wavelets that preserve inner products, the

wavelet problem (18) has the same objective function as the

KR problem dual (5).

Note that changing the KR dual problem constraint

CH(f) < 1 toCH(f) < K for anyK > 0 will simply have

the effect of scaling the optimal value by K, since for ev-

ery function f allowed by the original constraint, there is a

corresponding function Kf allowed by the new constraint.

Further, the constraints in the auxiliary problem (18) will

allow functions with CH(f) < C, where C is bounded by

the limits in (14). So, all functions with CH(f) less than

the lower bound above are included by the constraint, and

no function with CH(f) greater than the upper bound are

included. Consequently, the optimal value is scaled by a

factor C that obeys the bounds in (14). This is equivalent to

(17) with

CL = a12(ψ; s)C1 and

CU = a21(ψ; s)C0 + a22(ψ; s)C1. (19)

The wavelet EMD metric is thus equivalent to EMD.

For discrete distributions, we can scale the domain so

that the minimum distance between any two points is 1 or

more. This scales the EMD by the same factor. Now the

bounds (19) are valid again and we have the required equiv-

alence.

A similar but more complex result holds for biorthogo-

nal wavelets as well. See [17] for details. We set C0 = 0
because this gives us the tightest bounds in (14). Setting the

constant C1 to 1, we get the simple distance measure :

d(p)wemd =
∑

λ

|pλ|2
−j(s+n/2) (20)

The bounds ratio
CU

CL
=
a22(ψ; s)

a12(ψ; s)
(21)

measures the maximum possible error. After scal-

ing wavelet EMD suitably, the ratios WEMD/EMD and

EMD/WEMD will always be less than the bounds ratio.

4. Experiments

First, in section (4.1), we will discuss some implemen-

tation issues that affect the accuracy and other aspects of



wavelet EMD. In section (4.2), we will describe how to

choose appropriate wavelets. Finally, in section (4.3), We

will describe experiments that demonstrate that the wavelet

EMD behaves very similar to EMD, but can be computed

much faster.

4.1. Some implementation notes

For applications that store computed histogram descrip-

tors, we split the wavelet EMD computation into two parts.

First, the histogram descriptor is converted into the wavelet

domain and its coefficients are scaled according to equation

(2). The wavelet EMD distance between two descriptors

is now the l1 (Manhattan) distance between these coeffi-

cients. We should note the following points while comput-

ing wavelet EMD :

1. Initialization: The standard Mallat filter bank algo-

rithm ([13] section 7.3.1) for computing the wavelet trans-

form starts with fine level wavelet coefficients as input. We

can use signal values as input if we want to reconstruct the

signal again, as in compression or denoising, but not if we

want to use wavelet coefficients to represent signal prop-

erties like Hölder continuity. We use the wavelet transform

initialization method (algorithm 2) of Zhang, Tian and Peng

[20]. We assume that the histogram bin values are obtained

from a block sampler.

2. Periodic and non-periodic histograms: For data like

distance and intensity values, there are no samples outside

the histogram limits and we use zero padding extension

while computing the wavelet transform. Since angles are

measured modulo 2π, angle dimensions are extended peri-

odically. For example, SIFT descriptors are 3D histograms

of gradient orientation with respect to location around the

feature point. So, we should use periodic extension along

the gradient orientation dimension and zero padding along

the location dimensions.

3. Wavelet transform sparsity: Most wavelet transform

coefficients are close to zero because the wavelet transform

is a sparse representation. We can store the coefficients

compactly as a sparse vector if we set small coefficients to

zero. After weighting the coefficients, we keep the largest

coefficients that contribute 95% to the total L1 norm. The

remaining are set to zero. The coefficients are then stacked

to form a 1D sparse vector: the final descriptor representa-

tion. Descriptor comparison takes time linear in the number

of non–zero coefficients. Although there may be about 1–5

times as many elements as in the original histogram, de-

pending on its size and dimensionality, the required time

is similar to that for χ2 or Euclidean distance on similarly

enlarged histograms.

Daubechies CU/CL Daub. symmetric CU/CL

db3 6.33 sym3 6.33

db4 7.29 sym4 4.64

db5 9.92 sym5 6.01

db6 12.59 sym6 5.58

Coiflets CU/CL Ojanen CU/CL

coif1 4.38 oj8 7.46

coif2 4.75 oj10 10.56

coif3 5.85 oj12 13.79

Table 2. Theoretical (loose) estimates for maximum error for vari-

ous 1D wavelets. Ojanen wavelets have maximum smoothness for

a given filter length. Coiflets have low error despite large support.

4. Histogram dimensionality: Although the computa-

tion time increases linearly with the number of bins N , it

grows exponentially with the histogram dimension n. This
method may become impractical for more than 4–5 dimen-

sions. Further, any sparsity in the high dimensional his-

togram may be lost when computing the wavelet transform

leading to increased space requirement. We restrict our ex-

periments to histograms of dimensionality 1, 2 and 3 only.

Next we will look at how to choose wavelets that approx-

imate EMD well.

4.2. Which wavelets ?

The conditions of theorem (2) put some restrictions on

the wavelets for which this works. We need wavelets with at

least one derivative. This rules out the simple Haar wavelet.

We can try choosing the best possible wavelets by comput-

ing the bounds ratio CU/CL for C0 = 0, C1 = 1. Ta-

ble 2 lists theoretical maximum error estimates (CU/CL)

for some common wavelets in 1D. These estimates [17] are

computed through combinatorial optimization and are hard

to compute for higher dimensions. The estimate formulas

do indicate that wavelets with small support and fast decay

will have a high CL. CU will be low if the wavelet has a

small absolute value maximum.

In higher dimensions, it is easier to choose wavelets em-

pirically using wavelet EMD error on random histogram

pairs. Since uniformly random histogram pairs tend to have

EMD concentrated in a small range, we instead generated

only the first histogram randomly. The second histogram

was obtained by changing this at random bins by random

amounts. The number of changed bins and the maximum

allowed change at a bin was gradually increased. These ran-

dom histogram pairs have well distributed EMDs. Wavelet

EMD was scaled to make Mean(WEMD/EMD) = 1.
The estimated bounds ratio is the maximum of all the ra-

tios (WEMD/EMD) and (EMD/WEMD), while the
normalized RMS error is the RMS deviation of the ratio

(WEMD/EMD) from 1. Table 3 shows these two quan-

tities and the computation time in MATLAB R2007a on an



Wavelet Normalized Bounds ratio Time (ms)

RMS error CU/CL

db3 16% 1.91 28

db4 20% 2.45 36

db5 17% 1.98 43

db6 18% 1.93 49

sym3 16% 1.91 28

sym4 17% 2.18 31

sym5 13% 1.50 34

sym6 16% 2.00 44

coif1 16% 1.88 34

coif2 15% 1.85 45

coif3 14% 1.87 74

oj8 20% 2.44 37

oj10 18% 2.07 39

oj12 17% 1.82 43

Table 3. EMD approximation error for random 16× 16 histogram

pairs for various wavelets
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Figure 2. EMD approximations with Wavelet EMD using order 3

Coiflets is better than with Indyk and Thaper’s [6] method. Darker

shades indicate greater point density. The diagonal red (dark) line

indicates points of zero error.

Intel Xeon 3GHz PC for a set of 100 random 16 × 16
histogram pairs. The time can be improved if optimized

wavelet transform implementations are used. We observed

that Coiflets of order 3 and symmetric Daubechies wavelets

of order 5 had low errors. We use order 3 coiflets in our

experiments.

4.3. Image retrieval: colour histograms

We tested wavelet EMD on content based image re-

trieval using colour histograms, since this is the most recog-

nized application of EMD. We used the SIMPLIcity image

database [18] of 10 image classes with 100 images each. We

show that wavelet EMD provides a better approximation to

EMD than other EMD approximation methods in terms of

distance values as well as retrieval performance for colour

histograms. We computed 16 × 16 × 16 colour histograms

in Lab colour space, since Euclidean (ground) distances in

Method Bounds Normalized Preproc. Compare

ratio RMS error time (s) time (ms)

EMD – – 0.92 63

Wavelet EMD 7.03 18% 2.35 0.11

Indyk-Thaper 11.00 43% 0.51 22

Table 4. Error and time requirements for 16x16x16 colour his-

tograms. Preprocessing time includes colour space conversion,

binning, clustering (EMD only) and weighted wavelet transform

(WEMD). Indyk-Thaper random embedding is repeated 5 times.
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Figure 3. Wavelet EMD is less likely to disagree with EMD about

ordering of histogram distances than Indyk-Thaper.

this colour space are proportional to perceived colour differ-

ences. To reduce EMD computation time, each histogram

was clustered to 64 clusters before computing EMD, similar

to [16]. No clustering was done while computing approxi-

mations, since it was not necessary.

The scatter plots in figure 2 compare the wavelet EMD

approximation with that of Indyk and Thaper [6] for dis-

tances computed between all colour histogram pairs in the

dataset. Both approximations are scaled to have a mean

ratio with EMD of 1. The plot indicates that Wavelet EMD

distances correlate better with EMD than Indyk and Thaper.

Note that EMD and its approximations have a maximum

value depending on the histogram size. Indyk-Thaper scat-

ter plot appears cut–off because its greater spread causes

it to reach this limit faster. Table 4 shows the approxima-

tion errors and time requirements for EMD, wavelet EMD

and Indyk and Thaper’s method. Note that the normalized

RMS error is 18% for wavelet EMD compared to 43% for

Indyk-Thaper. Although wavelet EMD needs more prepro-

cessing time than the other two methods, the actual compar-

ison is very fast. For nearest neighbour searches, compari-

son time is far more important than preprocessing time. For

example, in our 1000 image database, it will take 63.92s
and 22.51s to retrieve the image most similar to a query

image using EMD and the Indyk-Thaper approximation re-

spectively. Using wavelet EMD, the closest image can be
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Figure 4. Colour histograms for content based image retrieval:

wavelet EMD performance compared to other EMD methods

retrieved in merely 2.46s.
Another method of measuring approximation error in

the context of feature matching is to measure the proba-

bility of distance order reversal, i.e. the probability that

histogram p1 is closer to histogram p2 than to histogram

p3 according to EMD, but not according to an approx-

imation. We expect this probability to decrease as p3

moves farther away from p1, compared to p2, i.e. the ratio

EMD(p1, p3)/EMD(p1, p2) increases. Figure 3 shows

that this probability starts lower and falls off faster for

wavelet EMD than for Indyk and Thaper’s approximation.

We do not include EMD–L1 in these comparisons because

it uses a different ground distance.

Figure 4 shows ROC curves for EMD and its different

approximation methods obtained from leave one out image

retrieval experiments on this dataset. Wavelet EMD and

EMD have almost the same performance, and this is bet-

ter than EMD–L1 and Indyk and Thaper’s method.

5. Conclusion and future work

We have introduced a new method to approximate

the earth mover’s distance between two histograms using

weighted wavelet transform coefficients of the difference

histogram. We provide theoretical bounds to the maxi-

mum approximation error. Our experiments with colour

histograms demonstrate that the wavelet EMD approxima-

tion preserves the performance of EMD while significantly

reducing computation time.

In this paper, we have focussed our attention on approx-

imation of EMD for full histograms. We would like to ex-

tend this to matching partial histograms as well. We also

want to explore the use of different ground distances (differ-

ent powers s) and other applications like image registration

that can benefit from fast EMD computation.
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