
Region-Based Dynamic Separation for STM Haskell ∗

Laura Effinger-Dean
University of Washington

effinger@cs.washington.edu

Dan Grossman
University of Washington
djg@cs.washington.edu

Abstract
We present the first design and implementation of dynamic sepa-
ration in STM Haskell. Dynamic separation is a recent approach
to software transactional memory (STM) that achieves strongly-
atomic semantics with performance comparable to that of a weakly-
atomic STM. STM Haskell, a lazy-versioning STM library for
Haskell, previously supported strongly-atomic semantics via static
separation, and we have found dynamic separation to be a natural
extension of the library’s interface.

Our approach to dynamic separation makes several advances
over previous work. First, we use a notion of regions to allow entire
data structures to share a protection state, which avoids expensive
and unnecessary data-structure traversals. Second, we enrich the
set of protection states with a “thread-local” state that allows data
to be used inside and outside transactions. Third, we support static
and dynamic separation, and in particular use a well-typed interface
to allow all dynamic-separation code to be safely composed with
static-separation code.

We prove the correctness of region-based dynamic separation
with respect to an operational semantics for a lazy-versioning STM
using the Coq theorem prover. We have also evaluated the perfor-
mance of our system on a suite of STM Haskell programs.

1. Introduction
Transactional constructs for high-level languages must negotiate
the tension between programmability, efficiency of nontransac-
tional operations, and correctness. Ideally, languages would pro-
vide well-defined constructs that preserve the strong safety guaran-
tees that make transactions appealing to programmers.

STM Haskell is an implementation of transactions for the Glas-
gow Haskell Compiler [10]. The library, which extends Concurrent
Haskell, is beautifully designed, allowing transactions to be com-
posed at run time in sequence or as alternatives. Haskell’s purely-
functional core and monadic type system are surprisingly well-
suited to the STM programming model, as the type system prevents
conflicts between transactional and nontransactional code.

STM Haskell’s division of mutable variables into transactional
and nontransactional types neatly sidesteps a tricky issue in STM
semantics and implementations: weak vs. strong atomicity. In so-
called weakly-atomic implementations, nontransactional reads and
writes bypass the STM entirely. If such accesses conflict with
transactional accesses, they can compromise high-level semantic
guarantees such as atomicity and isolation in surprising ways (see
Section 2.2 for an example). Yet using the STM mechanism for
all memory accesses (to ensure strong atomicity) can be expensive
and/or introduce problems with legacy code.

Solutions to this dilemma provide the performance of weak
atomicity and the semantics of strong atomicity. The static separa-

∗ This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-0718124.

tion of transactional and nontransactional memory in STM Haskell
suffices, as has been proven in more formal settings [1, 15], but is
conservative. Several common concurrency idioms, such as publi-
cation and privatization, require dynamically changing whether a
location is used inside or outside transactions.

Dynamic separation [2, 3] addresses this limitation directly by
having programmers make explicit calls to change the protection
state of memory locations. For example, when a thread publishes
a location, it must change the location’s protection state to pro-
tected—that is, accessible only from transactions. While these state
changes interact with the STM, they should be relatively rare com-
pared to nontransactional reads and writes. In prior work, each ex-
plicit state change applied to just one mutable location. A key in-
novation in our work is support for regions: groups of locations
with the same sharing state that can have their state changed with a
single, constant-time operation on a special region object.

In general, this paper implements, evaluates, formally defines,
and proves correct dynamic separation as an extension to STM
Haskell, including support for regions. STM Haskell is an ideal
setting for ensuring that dynamic separation is suitable for a well-
defined programming language, compiler, and run-time system. Of
course, we hope our results will positively influence other settings,
just as the original STM Haskell has proven influential.

The more specific contributions of this work are as follows:
• We present the first implementation of dynamic separation in

STM Haskell, and more broadly, the first implementation in
a lazy-versioning STM. (STM Haskell uses lazy versioning;
prior work assumed eager updates.)
• We define an interface that allows static and dynamic separa-

tion to exist side-by side within Haskell’s type system.
• We introduce regions to hold the protection state for a collec-

tion of locations. This change lets mutable structures share a
single state among all their objects, saving tedious and expen-
sive data-structure traversals.
• We have a richer set of protection states than prior work. We

support a thread-local state for locations that currently cannot
be read or written by other threads, and a read-only state for
locations that are currently immutable.
• We define a low-level semantics to model a lazy-versioning

STM, and prove that it provides strong atomicity for programs
that obey dynamic separation.
• We discuss the details of our STM Haskell implementation,

and evaluate it on some small programs.

2. Language Design
We first review STM Haskell’s design and the semantic problems
introduced by weak atomicity. (Readers may need to supplement
this necessarily brief overview with a review of the paper introduc-
ing STM Haskell [10] or a more general tutorial on Haskell and
monads, e.g., [17].) We then give a high-level overview of our ex-
tensions to STM Haskell to support dynamic separation.

-- IORefs (nontransactional variables)
data IORef a
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

-- TVars (transactional variables)
data STM a
instance Monad STM

data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

retry :: STM a
orElse :: STM a -> STM a -> STM a
atomically :: STM a -> IO a

Figure 1. Concurrent Haskell’s interface for IORefs and STM.

2.1 STM Haskell
Haskell is a lazy purely-functional language known for its monadic
type system. Although its core is purely functional, the full lan-
guage includes a complete I/O subsystem. In particular, Haskell
supports threading and runs on shared-memory multiprocessors
[9]. Threads in Concurrent Haskell communicate via shared mem-
ory. One shared-memory mechanism is the IORef type, the inter-
face for which is listed in Figure 1.1 IORefs are simple mutable ref-
erences; if an IORef is thread-shared, the programmer must avoid
race conditions using synchronization primitives.

Concurrent Haskell supports software memory transactions
with STM Haskell, a library with a composable interface for cre-
ating modular transactions [10]. STM Haskell’s programming in-
terface appears in Figure 1. Although Haskell supports regular
mutable references via the IORef type, transactions use a special
type of reference called a TVar, or transactional variable. Transac-
tions generally consist of one or more TVar operations sequenced
together with monadic bind, like so:

increment :: TVar Int -> STM ()
increment t = do { x <- readTVar t;

writeTVar t (x + 1) }

Note that calling increment on a TVar t does not increment t.
Rather, it produces an STM action, which is only performed when
executed with atomically.2

The advantage of placing STM operations in a separate monad
is composability: client programmers can combine STM operations
exported by different libraries to form larger transactions. This
functionality is similar to that provided by nested transactions,
but the authors of STM Haskell have carefully thought out the
semantics for exceptions and blocking (manual transaction abort
via retry) in relation to composed transactions.

2.2 Semantic Problems with Weak Atomicity
By dividing mutable references into TVars and IORefs, which
can be accessed only inside or outside transactions, respectively,
STM Haskell provides strongly-atomic transaction semantics via
static separation. We might naively wish to improve STM Haskell’s
expressivity by adding weak atomicity to the interface:

1 A value of type IO a is an I/O action: a side-effecting computation that,
when performed, returns a value of type a.
2 Technically, atomically produces an IO action, which must in turn be
executed by the program’s main function, but for the purposes of this paper
the reader can assume atomically executes the transaction.

Thread 1 (T1): Thread 2 (T2):
atomically (do {

atomically (sh <- readTVar x sh;
writeTVar x sh False); if sh

r1 <- readTVarIO x; then writeTVar x 1
r2 <- readTVarIO x; else return ()

});
Initially x holds 0 and x_sh holds True. Can r1 6= r2?

Figure 2. Buffered writes example in STM Haskell.

readTVarIO :: TVar a -> IO a
writeTVarIO :: TVar a -> a -> IO ()

readTVarIO and writeTVarIO read and write TVars without us-
ing a transaction. Depending on how they are implemented, these
functions may undermine the semantics of transactions.

Consider the program in Figure 2. x_sh holds a boolean that
indicates whether x is shared. Under any reasonable interpretation
of the program semantics, it should be the case that T1 sees two
identical values for x: if T1’s transaction runs first, then both reads
of x yield 0; if T2’s transaction runs first, both reads yield 1.

This example exposes buffered writes, a known problem in
weakly-atomic, lazy-versioning STMs [18]. The critical scenario
for Figure 2 is as follows. T2 starts its transaction, reads True
from x_sh, and buffers its update to x. The transaction successfully
commits, but does not yet write back the new value for x. T1 starts
its transaction, buffers a write to x_sh, and tries to commit. T2 has
not finished its write to x, but T1’s transaction did not access x, so
T1 successfully commits. T1 completes its transaction by writing
back False to x_sh, then reads 0 from x. T2 writes 1 to x, and
finally T1 reads 1—a different value—from x.

This example and others [18] demonstrate that unprotected
reads and writes break the high-level semantics of transactions,
even for programs that appear to be free of data races. We could
solve this problem by having readTVarIO and writeTVarIO in-
teract with the STM (enforcing strong atomicity), or by not pro-
viding these operations (enforcing static separation). This paper
focuses on another approach: dynamic separation.

2.3 Dynamic Separation

Dynamic separation is a recent approach for providing strongly-
atomic semantics with the performance of a weak implementation
[2, 3]. In dynamic separation, the programmer explicitly makes
a call to the STM whenever a reference changes its “protection
state.” For example, in Figure 2, x goes from being “protected”
(shared between multiple threads and accessed only in transactions)
to “unprotected” (inaccessible from transactions).

In Figure 2, we can recover strong semantics by calling a new
function, unprotectTVar, on x after T1’s transaction completes.
This call interacts with the STM, waiting until all transactions
currently accessing its argument have completed before continuing.
unprotectTVar solves the buffered writes problem by forcing T1
to wait for T2’s transaction to complete. The threads still coordinate
access to x using x_sh, but unprotectTVar eliminates any race
conditions caused by the weak implementation.

The discussion thus far considered a hypothetical implemen-
tation that allows unprotected access to TVars via readTVarIO
and writeTVarIO. Our actual implementation takes a different ap-
proach: we introduce a new type of reference, dynamic variables.
DVars may be accessed inside or outside a transaction and have
a dynamic protection state. Because TVars and DVars are distinct
types, programmers can use both dynamic and static separation in
STM programs. This seamless combination of static and dynamic
separation in a single interface is a novel contribution of our work.

data DSTM a
instance Monad DSTM

-- DVars reside in the new DSTM monad
data DVar a
newDVar :: a -> DSTM (DVar a)
readDVar :: DVar a -> DSTM a
writeDVar :: DVar a -> a -> DSTM ()

-- Primitives to change a DVar’s protection state
protectDVar :: DVar a -> IO ()
unprotectDVar :: DVar a -> IO ()
makeRODVar :: DVar a -> IO ()
makeTLDVar :: DVar a -> IO ()

-- Functions to allow DSTM code in STM or IO monad
protected :: DSTM a -> STM a
unprotected :: DSTM a -> IO a

Figure 3. Interface for dynamic separation with per-DVar protec-
tion states (extends Figure 1).

Figure 3 extends the interface for STM Haskell with support
for dynamic separation. The interface does not include protection
regions, which we will add in Section 2.5. Operations on DVars
produce results in the DSTM (dynamic STM) monad. DSTM code
may be executed in two ways: (1) as part of a transaction, by wrap-
ping a DSTM term with protected, or (2) as nontransactional code
in the IO monad, by wrapping a DSTM term with unprotected.
DSTM code may therefore be composed with other transactions in
sequence, or as alternatives with orElse. If libraries export func-
tions with DSTM return types, then clients can choose whether or
not to execute the functions as transactions.

2.4 Read-Only and Thread-Local

The previous formalization of dynamic separation [2] supported
two protection states: protected (only accessible in transactions)
and unprotected (only accessible outside transactions). The C# im-
plementation [3] also has a read-only state, which allows references
to be read by transactional and nontransactional code.

These three states share an important property: if accesses to a
DVar comply with its protection state, then it is impossible for a
transaction to race with a nontransaction on that DVar. Protected
and unprotected DVars may only be accessed inside and outside
transactions, respectively, and read-only DVars are clearly safe
from data races. This safety property is crucial for providing strong
semantics with a weak implementation.

Our system supports protected, unprotected, and read-only
states, as well as a thread-local state. To be more precise, the
thread-local state is a family of related protection states, one for
each thread. Thread-local DVars may be read and written inside or
outside a transaction, but only by the thread that owns that DVar.
The protection state is a policy, not a program invariant: if a transac-
tion attempts to access a DVar that is local to a different thread, the
transaction will abort. A thread cannot race with itself, so programs
that comply with the protection states of all DVars will continue to
have strongly-atomic semantics.

In Figure 3, makeRODVar sets a DVar’s protection state to be
read-only and makeTLDVar sets a DVar’s protection state to be
local to the current thread.

2.5 Region-Based Protection States

Together with the seamless integration of static and dynamic sepa-
ration, our most important contribution is the addition of protection
regions to the interface for dynamic separation. Prior work in C#
assumed that each reference’s protection state was independent of

data DSTM a
instance Monad DSTM

-- Regions and protection state changes
data DRgn
newDRgn :: DSTM DRgn
protectDRgn :: DRgn -> IO ()
unprotectDRgn :: DRgn -> IO ()
makeRODRgn :: DRgn -> IO ()
makeTLDRgn :: DRgn -> IO ()

-- Dynamic variables (now region-allocated)
data DVar a
newDVar :: a -> DRgn -> DSTM (DVar a)
readDVar :: DVar a -> DSTM a
writeDVar :: DVar a -> a -> DSTM ()

-- Functions to allow DSTM code in STM or IO monad
protected :: DSTM a -> STM a
unprotected :: DSTM a -> IO a

Figure 4. Interface for dynamic separation with region-based pro-
tection states (replaces Figure 3).

the protection states of all other references. This per-reference ap-
proach is not ideal for shared data structures that consist of many
related references. If protection states are per-reference, changing
the protection state of a data structure requires iterating through the
entire structure, which is tedious and inefficient.

For example, suppose we implement a binary tree using DVars:

data BinaryTreeNode =
Node { val :: Int,

left :: DVar BinaryTreeNode,
right :: DVar BinaryTreeNode }

| Nil

To protect all of the DVars in the tree, we would have to traverse the
entire tree, protecting each DVar one at a time. This code is tedious
to write and takes time proportional to the number of nodes.

Our solution is to introduce special objects called protection
regions, or DRgns. A region holds the protection state for a group
of DVars. Every DVar is associated with a DRgn. The partition of
DVars into DRgns is specified by the programmer at allocation time.
For shared data structures such as the binary tree, programmers can
create a single region object at initialization, and allocate all of the
structure’s DVars in that region. The programmer must keep track
of the structure’s region for use in allocations (e.g., by storing it
in a field at the root of the tree). Changing the protection state of
an entire data structure is now a simple O(1) operation: calling
protectDRgn (for example) on the structure’s region.

Figure 4 shows the final version of our DSTM interface. We
introduce a new datatype, DRgn, and primitives for changing the
protection state of a DRgn. newDVar now takes the DRgn in which to
allocate the DVar in addition to the DVar’s initial value. Of course,
it is still possible to simulate the interface given in Figure 3 by
creating a DRgn that contains a single DVar.

3. Formal Semantics
In this section we give a high-level operational semantics for STM
Haskell with region-based dynamic separation. This semantics
draws on and extends ideas from several sources, including the
semantics for dynamic separation in an eager-update STM [2], the
Atoms Family languages [15], and our own work on modeling re-
laxed memory models [8]. We omit several STM Haskell features,
including retry, TVars, and exceptions.

DVar d; DRgn r; Thread ID θ

Action a ::= pure | fork(θ) | new(d, r,M) | rgn(r)

| rd(d,M) | wr(d,M) |mkP(r) |mkU(r)

| mkRO(r) |mkTL(r) | begin | end

Term M ::= x | \x->M |M M | () | returnM |M >>=M

| newDRgn | newDVarM M | readDVarM
| writeDVarM M | forkIOM | atomicallyM
| protectedM | unprotectedM
| protectDRgnM | unprotectDRgnM
| makeRODRgnM | makeTLDRgnM
| d | r | θ | inAtomicallyM

Context M ::= [·] |M >>=M | inAtomically M
| protected M | unprotected M

Protection state p ::= pr | unpr | ro | tl(θ)

Transaction state s ::= · | θ | com(θ)

Effect σ ::= (θ, a) | ε Optional M̂ ::= · |M
Program state P : θ ⇒M Tag t ::= RO |Mod

Store S : d⇒ (r,M) Log L : d⇒ (t,M)

Region map R : r ⇒ p Weak heap H ::= (s, S,R, L)

Figure 5. Program and heap syntax.

Our goal is to prove that a lazy-versioning STM is correct for
programs that obey dynamic separation. To this end, we establish
the equivalence of two sets of semantics: the Strong semantics,
which implements strong atomicity, and the Weak semantics, which
models a lazy-versioning STM. We omit the full Strong semantics
for space reasons, but it is a restricted version of the Weak seman-
tics.3 Although these two semantics are not equivalent in general,
they are equivalent for programs that obey dynamic separation.

We actually use three semantics to define our system. First,
the program semantics defines rewrite rules for Haskell terms.
Next we have the two aforementioned heap semantics, Strong and
Weak, which rewrite the global heap. Separating the program and
heap semantics means that we can reuse the program syntax and
semantics, which is elegant and avoids errors due to redundancy.

3.1 Syntax

The syntax for programs and heaps is given in Figure 5. We assume
that there is a map type k ⇒ v, with empty map []. We add values
to a mapmwithm[k 7→ v], retrieve values withm(k), and remove
values with m/k. The domain of a map m is dom(m).

Common syntax Actions a describe program steps. An effect σ
is either a pair of a thread ID and an action, or the empty effect ε.
The program and heap semantics must agree on the effect for each
step. For example, a program step might appear to read a value out
of thin air, but the value is supplied by the heap semantics. The
empty effect is for heap steps (e.g., committing a log entry) that are
invisible to the program.

Program syntax Terms M represent Haskell expressions. In ad-
dition to the DSTM interface, we include an inAtomically run-
time form to distinguish between active and inactive transactions.

3 Our unabridged semantics and Coq code are available at http://wasp.
cs.washington.edu/wasp_scat.html.

Evaluation contexts M identify the active subexpression in a term.
The program state P is a finite map from thread IDs to terms.

Heap syntax A Weak heap H consists of a transaction state s, a
store S, a region map R, and a transaction log L. The transaction
state s is · if no thread is in a transaction, θ if thread θ is in
an active transaction, and com(θ) if thread θ is committing its
transaction. Each DVar is allocated in a DRgn, so the store S maps
DVar locations to DRgn/term pairs. p represents the protection state
for a region. The four possible protection states are pr (protected),
unpr (unprotected), ro (read-only) and tl(θ) (local to thread θ). The
region map R maps DRgns to protection states. The transaction
log L maps DVars to terms, each paired with a tag t that records
whether the entry is read-only (RO) or modified (Mod).

3.2 Program Semantics
We present the program semantics as a helper judgment in Figure 6.
The pure evaluation judgment () (omitted) represents Haskell’s
pure core. The single-threaded judgment (↪→) rewrites terms within
monadic contexts, emitting an action a describing the action per-
formed, as well as an optional forked thread M̂ . The multithreaded
judgment (⇁) transitions the program state P , emitting an action a
and the ID θ of the thread that performed the action.

3.3 Weak Semantics
Figure 7 gives the Weak semantics, which is inspired by our im-
plementation. At most one transaction executes at a time, and non-
transactional reads and writes (READ and WRITE) may race with
transactions. Although real STM implementations, including ours,
allow multiple transactions to execute simultaneously, reasoning
about one transaction at a time is still interesting because of con-
flicts with nontransactional code.

BEGIN sets the current transaction state to the transaction’s
thread ID. Transactions read values into the log (TXREAD1) and
modify only the logged copies (TXWRITE). Reads of logged DVars
always see the logged value (TXREAD2). After the transaction
completes (END), it commits all the values in the log, writing
back modified entries (COMMITW) and removing read-only en-
tries without updating the store (COMMITR). ENDCOMMIT allows
other threads to begin executing transactions once the log is empty.

A key restriction is that protection state change operations (e.g.,
MAKEP—the other three are analogous and omitted) must occur
when no transaction is active. This restriction reflects the intuition
that these operations essentially act as barriers that prevent interfer-
ence between transactions and non-transactions. In the real imple-
mentation, we require these operations to lock whatever region they
are accessing, rather than waiting for all transactions to complete.

As with the program semantics, each step of the Weak heap
semantics emits an effect. The system judgment (→) allows both
the program and the heap to progress together (MUTUAL), and also
allows the heap to take empty steps (HEAP).

3.4 Strong Semantics
The Strong semantics (omitted for space) is a restricted version of
the Weak semantics that implements strong atomicity. We change
the Weak semantics as follows:
• The heap no longer has a log. Transactional operations read

and write the store directly.
• We delete the COMMITR, COMMITW, ENDCOMMIT, and

HEAP rules, and have END transition directly to state ·. There-
fore the transaction state com(θ) is no longer necessary.
• Nontransactional reads and writes are allowed only when the

current transaction state is · (i.e., no transaction is active).4

4 The Strong semantics actually combines the transactional and nontransac-
tional rules for reads and writes.

http://wasp.cs.washington.edu/wasp_scat.html
http://wasp.cs.washington.edu/wasp_scat.html

M
a
↪−→M ′; M̂

EVAL
M M ′

M[M]
pure
↪−−→ M[M ′]; ·

P
(θ,a)−−−⇁ P ′

PRGMSTEP

P (θ) = M M
a
↪−→M ′; ·

P
(θ,a)−−−⇁ P [θ 7→M ′]

PRGMFORK
P (θ) = M θ′ 6∈ dom(P)

M
fork(θ′)
↪−−−−→M ′;M ′′

P
(θ,fork(θ′))−−−−−−−⇁ P [θ 7→M ′][θ′ 7→M ′′]

M[newDRgn]
rgn(r)
↪−−−→ M[return r]; · M[makeTLDRgn r]

mkTL(r)
↪−−−−−→ M[return ()]; ·

M[newDVar r M]
new(d,r,M)
↪−−−−−−−→ M[return d]; · M[forkIOM]

fork(θ)
↪−−−−→ M[return θ];M

M[readDVar d]
rd(d,M)
↪−−−−−→ M[returnM]; · M[atomicallyM]

begin
↪−−→ M[inAtomicallyM]; ·

M[writeDVar d M]
wr(d,M)
↪−−−−−→ M[return ()]; · M[inAtomically (returnM)]

end
↪−→ M[returnM]; ·

M[protectDRgn r]
mkP(r)
↪−−−−→ M[return ()]; · M[returnM ′ >>=M]

pure
↪−−→ M[M M ′]; ·

M[unprotectDRgn r]
mkU(r)
↪−−−−→ M[return ()]; · M[protected (returnM)]

pure
↪−−→ M[returnM]; ·

M[makeRODRgn r]
mkRO(r)
↪−−−−−→ M[return ()]; · M[unprotected (returnM)]

pure
↪−−→ M[returnM]; ·

Figure 6. Program semantics.

active(s, θ)

NOTCOMMIT
s 6= com(θ)

active(s, θ)
notTx(s, θ)

NOTTXNONE

notTx(·, θ)

NOTTXOTHER
θ 6= θ′

notTx(θ, θ′)

NOTTXCOMMIT
θ 6= θ′

notTx(com(θ), θ′)

H
σ−⇀ H ′

PURE
active(s, θ)

(s, S,R, L)
(θ,pure)−−−−⇀

(s, S,R, L)

NEWRGN
active(s, θ) r 6∈ dom(R)

(s, S,R, L)
(θ,rgn(r))−−−−−−⇀

(s, S,R[r 7→ pr], L)

NEW
active(s, θ) d 6∈ dom(S)

(s, S,R, L)
(θ,new(d,r,M))−−−−−−−−−⇀

(s, S[d 7→ (r,M)], R, L)

READ
notTx(s, θ) S(d) = (r,M)

(s, S,R, L)
(θ,rd(d,M))−−−−−−−⇀

(s, S,R, L)

WRITE
notTx(s, θ) S(d) = (r,M)

(s, S,R, L)
(θ,wr(d,M′))−−−−−−−−⇀

(s, S[d 7→ (r,M ′)], R, L)

FORK
notTx(s, θ)

(s, S,R, L)
(θ,fork(θ′))−−−−−−−⇀

(s, S,R, L)

MAKEP

(·, S,R, L)
(θ,mkP(r))−−−−−−⇀

(·, S,R[r 7→ pr], L)

. . .
BEGIN

(·, S,R, L)
(θ,begin)−−−−−⇀

(θ, S,R, L)

END

(θ, S,R, L)
(θ,end)−−−−⇀

(com(θ), S,R, L)

TXREAD1
S(d) = (r,M) d 6∈ dom(L)

(θ, S,R, L)
(θ,rd(d,M))−−−−−−−⇀

(θ, S,R, L[d 7→ (RO,M)])

TXREAD2
L(d) = (t,M)

(θ, S,R, L)
(θ,rd(d,M))−−−−−−−⇀

(θ, S,R, L)

TXWRITE1

(θ, S,R, L)
(θ,wr(d,M))−−−−−−−⇀

(θ, S,R, L[d 7→ (Mod,M)])

COMMITR
L(d) = (RO,M)

(com(θ), S,R, L)
ε−⇀

(com(θ), S,R, L/d)

COMMITW
S(d) = (r,M) L(d) = (Mod,M ′)

(com(θ), S,R, L)
ε−⇀

(com(θ), S[d 7→ (r,M ′)], R, L/d)

ENDCOMMIT

(com(θ), S,R, [])
ε−⇀

(·, S,R, [])

H;P
σ−→ H ′;P ′

MUTUAL

H
(θ,a)−−−⇀ H ′ P

(θ,a)−−−⇁ P ′

H;P
(θ,a)−−−→ H ′;P ′

HEAP

H
ε−⇀ H ′

H;P
ε−→ H ′;P

Figure 7. Weak semantics (MAKEU, MAKERO, and MAKETL rules omitted for space).

3.5 Separation Discipline
The Weak semantics as-is does not provide strong atomicity to
all programs. We use the Strong semantics to define the dynamic
separation discipline [2]. Programs conforming to this discipline
are guaranteed to execute with strongly-atomic semantics.

Definition 1 (Separation Discipline). A program P0 obeys the
separation discipline (separation(P0)) if, when (·, [], []);P0−→∗(s,
S,R);P

(θ,a)−−−→(s, S′, R);P ′ in the Strong semantics, where a =
rd(d,M) or wr(d,M), S(d) = (r,M ′) and R(r) = p, then:
• If p = pr, then s = θ.
• If p = unpr, then s = ·.
• If p = ro, then a = rd(d,M).
• If p = tl(θ′), then θ = θ′.

3.6 Equivalence
We have proved in Coq that the dynamic separation discipline is
sufficient for strongly-atomic semantics. First, we establish that the
set of program states reachable from programs that obey dynamic
separation in the Strong semantics is a superset of the set of pro-
gram states reachable from the Weak semantics.

Theorem 1. If separation(P0) and (·, [], [], []);P0 −→∗ (s, S,R, L);
P in the Weak semantics, then there exist s′, R′ and S′ such that
(·, [], []);P0 −→∗ (s′, R′, S′);P in the Strong semantics.

Theorem 2 will show that the reverse also holds, and therefore
that the set of reachable program states is the same for both heap
semantics. In order to prove both theorems, we must define a
correspondence between Weak heaps (s, S,R, L) and Strong heaps

lock

watch_queue

region

current_value

TVar

TSO TSO

...

lock

watch_queue

current_tso

current_state

DRgn

TSO TSO

...

Figure 8. TVar and DRgn structures (new components italicized).

(s′, R′, S′) (e.g., R = R′ at every step). However, the theorem
statement does not include the correspondence between heaps,
since it is sufficient to require that the program states are identical.

The proof of Theorem 1 uses an intermediate semantics in
which no other threads can execute while a transaction is active,
but transactions still use a lazy-versioning implementation. This
semantics, called StrongLazy, is defined by slightly modifying the
Weak semantics such that the active and notTx judgments are more
strict. The proof is technically interesting, because we must reorder
nontransactional pure, rgn, new, read, write, and fork steps such
that they do not execute during a transaction’s execution or its
commit. Such reordering is sound if the program obeys the dynamic
separation discipline. We inductively prove soundness by extending
the separation discipline to the StrongLazy and Weak semantics.

The other direction is much easier to prove and holds for all
programs, not just those that obey dynamic separation:

Theorem 2. If (·, [], []);P0 −→∗ (s, S,R);P in the Strong seman-
tics, then there exist s′, S′,R′ and L′ such that (·, [], [], []);P0 −→∗
(s′, S′, R′, L′);P in the Weak semantics.

4. Implementation
This section describes our modifications to STM Haskell to sup-
port dynamic separation. STM Haskell is a lazy-versioning, lazy-
conflict-detection STM. In our implementation, nontransactional
DVar reads and writes are “weak”: they do not interact with the
STM. This means the DVar is not locked during these operations.
If the program does not obey the dynamic separation discipline de-
fined in Section 3.5, these weak operations may violate the atom-
icity and isolation of transactions. To preserve strong semantics in
programs that obey the discipline, functions like protectDRgn and
unprotectDRgn interact with the STM. Specifically, such func-
tions lock their DRgn argument, waiting until any transactions using
that DRgn (or any of its DVars) have completed or aborted.

TVars and DVars TVars are C structs with the layout depicted
in Figure 8. For convenience, our implementation reuses the same
structure for DVars; we will refer to such structs as TVars in this
section even though they may be DVars. A TVar holds a pointer to
the TVar’s current value and a pointer to a watch queue of thread
state objects (TSOs) that need notification when the TVar’s value
is updated. We add two fields to the TVar structure (italicized in
the figure): a pointer to a DRgn and an explicit lock field. In the
original implementation, the current_value pointer doubles as
a lock. Because nontransactional TVar operations do not lock the
TVar, we implement the lock as an integer in a different field so
that nontransactional reads do not observe an ill-typed value.

protection_check_failed

enclosing_trec

state

current_rgn_chunk

current_chunk

TRecHeader
prev_chunk

TRecChunk

next_entry_idx
expected_value

TRecEntry

new_value

tvar
...

prev_chunk

TRecRgnChunk

next_entry_idx
expected_state

TRecRgnEntry

expected_tso

drgn
...

Figure 9. TRec structures (new components italicized).

Regions Regions are represented with the DRgn struct in Figure
8. Like TVars, DRgns hold a lock and a watch queue of threads
waiting for the DRgn’s state to change.5 Unlike TVars, DRgns do not
hold a pointer to a value; instead, they hold an integer representing
the current protection state and an optional pointer to a thread state
object (for the thread-local state). It is helpful to think of DRgns as
TVars whose “value” is a protection state.

Transaction records While a thread is executing a transaction,
it keeps a private record (Figure 9—again, italicized fields have
been added by us) of all TVars accessed during the transaction.
The record, or TRec, logs for each TVar a record entry containing
the TVar’s expected value (the value the TVar held when first
touched by the transaction) and the TVar’s new value (the current
value in the transaction). We have modified transaction records to
include a set of accessed DRgns. The record entry for a DRgn records
the expected state (the protection state the DRgn held when first
touched). A boolean field in the TRecHeader indicates whether the
transaction has retried due to an inconsistency in protection state;
this field is used when deciding whether to restart a transaction.

Transactional operations When a thread performs a readDVar
operation, it checks the current TSO to see if it is inside a transac-
tion. If not, it returns the TVar’s current value; if so, it incorporates
the TVar and the TVar’s region into its transaction record, then
checks the transaction record to see if the region’s protection state
allows access. If this check fails, the thread behaves as if it encoun-
tered a retry: it adds the TSO to the watch queues of all touched
TVars and DRgns, then blocks. writeDVar is similar.

Transaction commit We modified the commit mechanism such
that it checks the DRgns touched by the transaction in addition to the
TVars. The commit fails (and the transaction retries) if any TVar
values or DRgn protection states have changed since the transaction
began, or if any TVars or DRgns are locked. Else we update the
modified TVars and wake any threads on their watch queues.

Protection state changes Changing a DRgn’s protection state is
straightforward: acquire the DRgn’s writer lock, make the update,
wake any threads waiting on that DRgn, and unlock the DRgn.
Because transactions acquire a reader lock on all DRgns whose
TVars they touch, the protection-state change will block until any
concurrently committing transactions have committed or aborted.

5. Evaluation
We have evaluated our implementation on a suite of STM Haskell
programs [16]. Figure 10 gives the results of our benchmarks.
We ran two versions of each benchmark, one using the original
STM Haskell (STM) and one using dynamic separation (DS). The
machine was a 4-core 2.8GHz Intel Xeon with 16GB of RAM,
running Linux. The speedup for each benchmark is the time for
the STM version divided by the time for the DS version.

5 We actually use reader/writer locks for DRgns so that transactions that
access different TVars in the same region may commit without conflicts.

1 thread 2 threads 4 threads
Benchmark STM DS Speedup STM DS Speedup STM DS Speedup

TCache 1.30s 1.26s 1.0 1.82s 1.80s 1.0 2.50s 2.50s 1.0
Parallel Sudoku 1.74s 1.75s 1.0 1.07s 1.14s 0.94 0.633s 0.625s 1.0

Blockworld (CCHR) 6.26s 6.93s 0.90 4.23s 4.27s 0.99 7.39s 8.20s 0.90
Prime (CCHR) 28.1s 37.8s 0.74 15.0s 20.1s 0.75 10.6s 13.3s 0.80

Sudoku (CCHR) 0.342s 0.357s 0.96 0.473s 0.528s 0.90 0.591s 0.363s 1.6
Union Find (CCHR) 1.08s 1.27s 0.854 0.808s 0.857s 0.94 0.531s 0.560s 0.95

Shared Int 0.0824s 0.0950s 0.87 0.126s 0.162s 0.78 0.239s 0.517s 0.46
Linked List (build) 0.828s 0.236s 3.5 0.783s 0.210s 3.7 0.766s 0.218s 3.5

Linked List (access) 2.67s 2.67s 1.0 2.06s 2.01s 1.0 1.56s 1.69s 0.92
Linked List (total) 3.50s 2.91s 1.2 2.84s 2.22s 1.3 2.32s 1.91s 1.2
Binary Tree (build) 3.88s 0.453s 8.6 3.84s 0.427s 9.0 3.87s 0.451s 8.6

Binary Tree (access) 18.0s 17.6s 1.0 10.1s 9.91s 1.0 6.14s 5.79s 1.1
Binary Tree (total) 21.9s 18.1s 1.2 13.9s 10.3s 1.3 10.0s 6.24s 1.6

Hash Table 2.64s 1.78s 1.5 2.13s 1.21s 1.8 1.86s 0.929s 2.0

Figure 10. Benchmark results for the original STM Haskell implementation and our implementation of dynamic separation.

The first six lines in Figure 10 are realistic STM Haskell appli-
cations. (CCHR is a shared constraint handling library.) For these
programs, we changed every TVar access to a protected DVar ac-
cess in order to measure the added overhead of regions and protec-
tion states. The results show that the dynamic separation version
often performs the same as the STM Haskell version, occasionally
doing worse but never getting a speedup lower than 0.74.

The bottom half of Figure 10 is a set of microbenchmarks that
we examined more closely. Shared Int is a pathological case of high
contention: all threads repeatedly try to update a single TVar/DVar.
In this case, we perform significantly worse than STM Haskell,
with speedups as low as 0.46 for 4 threads.

The next two benchmarks implement an ordered linked list and
a binary search tree using TVars. For each benchmark, we changed
the TVars to DVars, and put the entire structure in a single re-
gion. We also divided the benchmark into two phases: build and
access. In the access phase, the threads perform a total of 25,000
inserts, deletes, and lookups, at rates of 10%, 10%, and 80% respec-
tively. The build phase is a single-threaded initialization, which in-
serts 2500 elements into the structure. For STM Haskell, we imple-
mented this phase as one large transaction (one transaction per in-
sert had comparable performance). The dynamic separation version
does the initialization without using a transaction, then protects the
structure’s region before spawning threads for the access phase. We
achieve speedups between 3.5 and 9.0 for the build phase, confirm-
ing that unprotected operations can save significant time over trans-
actions. For the access phase, our implementation is even with STM
Haskell, giving a total speedup between 1.2 and 1.6.

The final line in Figure 10 is a new microbenchmark, adapted
from an existing hash table implementation [13], that is designed to
demonstrate the strengths of dynamic separation. We implemented
a hash table that stores key/value pairs in an array of TVars/DVars.
The array dynamically resizes whenever its size hits a threshold, re-
quiring all keys in the table to be rehashed and leading to high con-
tention. To solve this contention problem, we added a conceptual
lock, implemented with a TVar, that signals whether a rehash is in
progress. All hash table operations check the rehash lock before ac-
cessing the array, and block if a rehash is in progress. This is more
sophisticated than a simple mutex: when no rehash is in progress,
inserts, deletes and lookups operate in parallel using STM. In the
dynamic separation version, all DVars in the table are allocated in
the same region. The rehash operation acquires the rehash lock,
then unprotects the table’s region and does its work without using
a transaction. When the rehash completes, it re-protects the table’s
region and releases the rehash lock. The actual benchmarking code

performs 100,000 total operations, divided evenly among inserts,
deletes, and lookups. Dynamic separation is very well-suited to this
application, achieving speedups of up to 2.0.

6. Related Work
Clearly this work builds most closely on STM Haskell [9, 10] and
dynamic separation [2, 3]. Prior work on dynamic separation has
been in the context of C# and Automatic Mutual Exclusion [12]. As
with our work, the key formal results for dynamic separation and
earlier work on static separation [1, 15] involve demonstrating that
weakly-atomic and strongly-atomic STMs are indistinguishable for
programs obeying the separation discipline. These proofs also use
an intermediate semantics to establish the key equivalence result,
but all assume an eager-update STM.

While separation puts additional burden on programmers (ei-
ther to obey a static discipline or insert the right protection-state
operations for a dynamic discipline), it avoids semantic problems
with weakly-atomic systems. As several prior papers have cata-
logued [11, 14, 18, 19], naively bypassing STM mechanisms for
nontransactional memory accesses leads to semantic anomalies that
cannot be explained in terms of data races. Hence the initially
imprecise term “weak” atomicity [6] has been refined with more
precise notions of what semantic guarantees a TM system pro-
vides [7, 14]. Using variants of separation to achieve weaker-but-
well-defined semantics would be interesting future work.

Grouping data into regions so that the protection state of the
group can change with a single operation is related to an enor-
mous body of work in ownership type systems, region-based mem-
ory management, etc. Of particular relevance is recent work on
SharC [4, 5], a system that detects concurrency errors in lock-based
C programs. Many of the protections states in SharC have ana-
logues in our work, but the implementation details are essentially
different due to the speculative (abort-and-retry) nature of STM.

7. Conclusion
Dynamic separation is a flexible and explicit approach to managing
transactional and nontransactional access to shared memory. We
have designed, implemented, and formalized a dynamic-separation
extension to STM Haskell. Our most important innovation has been
using regions to change the protection states for multiple objects
with one operation. More generally, Haskell has provided an ideal
setting to validate and precisely define our work. We hope our
work will not only enrich STM Haskell but also influence other
languages seeking well-defined meaning for efficient transactions.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transac-

tional memory and automatic mutual exclusion. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2008.

[2] M. Abadi, T. Harris, and K. F. Moore. A model of dynamic separation
for transactional memory. In International Conference on Concur-
rency Theory, 2008.

[3] M. Abadi, A. Birrell, T. Harris, J. Hsieh, and M. Isard. Implemen-
tation and use of transactional memory with dynamic separation. In
International Conference on Compiler Construction, 2009.

[4] Z. R. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Check-
ing data sharing strategies for multithreaded C. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2008.

[5] Z. R. Anderson, D. Gay, and M. Naik. Lightweight annotations for
controlling sharing in concurrent data structures. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2009.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of trans-
actional memory atomicity semantics. IEEE Computer Architecture
Letters, 5(2), Nov. 2006.

[7] L. Dalessandro and M. L. Scott. Strong isolation is a weak idea. In
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, 2009.

[8] L. Effinger-Dean and D. Grossman. Modular metatheory for memory
consistency models. Technical Report UW-CSE-11-02-01, Univer-
sity of Washington Department of Computer Science & Engineering,
2011.

[9] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a shared-
memory multiprocessor. In ACM SIGPLAN Haskell Workshop, 2005.

[10] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2005.

[11] R. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. McRT-
Malloc: A scalable transactional memory allocator. In International
Symposium on Memory Management, 2006.

[12] M. Isard and A. Birrell. Automatic mutual exclusion. In 11th Work-
shop on Hot Topics in Operating Systems, 2007.

[13] E. Kmett. The Comonad.Reader. http://comonad.com/reader/.
[14] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.

Hudson, B. Saha, and A. Welc. Practical weak-atomicity semantics
for Java STM. In ACM Symposium on Parallellism in Algorithms and
Architectures, 2008.

[15] K. F. Moore and D. Grossman. High-level small-step operational
semantics for transactions. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2008.

[16] C. Perfumo, N. Sönmez, S. Stipic, O. Unsal, A. Cristal, T. Harris,
and M. Valero. The limits of software transactional memory (STM):
Dissecting Haskell STM applications on a many-core environment. In
ACM International Conference on Computing Frontiers, 2008.

[17] S. Peyton Jones. Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In
C. Hoare, M. Broy, and R. Steinbrueggen, editors, Engineering Theo-
ries of Software Construction, pages 47–96. IOS Press, 2001.

[18] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. Hudson, K. F. Moore, and B. Saha. Enforcing iso-
lation and ordering in STM. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2007.

[19] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatiza-
tion techniques for software transactional memory. Technical Report
915, Computer Science Dept., Univ. of Rochester, 2007.

http://comonad.com/reader/

	Introduction
	Language Design
	STM Haskell
	Semantic Problems with Weak Atomicity
	Dynamic Separation
	Read-Only and Thread-Local
	Region-Based Protection States

	Formal Semantics
	Syntax
	Program Semantics
	Weak Semantics
	Strong Semantics
	Separation Discipline
	Equivalence

	Implementation
	Evaluation
	Related Work
	Conclusion

