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Abstract
Most multithreaded programming languages prohibit or dis-
courage data races. By avoiding data races, we are guaran-
teed that variables accessed within a synchronization-free
code region cannot be modified by other threads, allowing
us to reason about such code regions as though they were
single-threaded. However, such single-threaded reasoning is
not limited to synchronization-free regions. We present a
simple characterization of extended interference-free regions
in which variables cannot be modified by other threads.

This characterization shows that, in the absence of data
races, important code analysis problems often have surpris-
ingly easy answers. For instance, we can use local analysis
to determine when lock and unlock calls refer to the same
mutex. Our characterization can be derived from prior work
on safe compiler transformations, but it can also be simply
derived from first principles, and justified in a very broad
context. In addition, systematic reasoning about overlapping
interference-free regions yields insight about optimization
opportunities that were not previously apparent.

We give preliminary results for a prototype implementa-
tion of interference-free regions in the LLVM compiler in-
frastructure. We also discuss other potential applications for
interference-free regions.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics;
D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures; F.3.2
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[Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis

General Terms Languages

Keywords Concurrency, memory consistency models, data
races, sequential reasoning, compiler optimization

1. Introduction
Programming languages that support multiple concurrent
threads communicating via shared variables must provide a
memory model. This model specifies whether variables may
be concurrently accessed, when an update by one thread
becomes visible to another, and so on.

Many mainstream programming languages now have
memory models that disallow data races; that is, they com-
pletely prohibit concurrent accesses to a shared variable un-
less both accesses are reads. The prohibition against data
races has arguably been the dominant rule for decades. Both
Posix threads [6] and Ada [12] have explicitly disallowed
data races from their inception. The revisions of the C and
C++ standards [2–5] currently being finalized are more pre-
cise but equally explicit on this point.

Here we assume such a prohibition against data races. We
do not directly address languages like Java [9], which also
discourage, but do not completely disallow data races. Java
attempts to provide well-defined semantics for data races,
but recent work [1, 11] points out serious deficiencies in
the approach, and calls for a reexamination of the problem.
At this point, we can only speculate whether our work will
eventually be applicable to Java in some form.

It is well-known that, in the absence of data races, when
a variable x is accessed, its value cannot be changed by
another thread between the immediately preceding and im-
mediately following synchronization operations. If another
thread could modify the variable between those two points
(i.e., within a synchronization-free region), then there would
be an execution of the program in which the two accesses of
x are concurrent and therefore form a data race. Similarly, if
x is written within a synchronization-free region, it cannot
be read by another thread within that region.



These observations are fundamental to code optimiza-
tion in current compilers. They allow compilers for lan-
guages like C and C++ to largely ignore the presence of
threads when transforming synchronization-free code. No
other thread can detect such transformations without intro-
ducing a data race. As long as synchronization operations
are treated as “opaque” (i.e., as potentially modifying any
memory location), and no speculative operations, and hence
no new data races, are introduced, safe sequential transfor-
mations remain correct in the presence of multiple threads.

In this paper, we introduce a simple but powerful exten-
sion to synchronization-free regions called interference-free
regions. The observation we make is that when a variable x
is accessed, its value cannot be changed by another thread
between the immediately preceding acquire1 synchroniza-
tion and the immediately following release2 synchroniza-
tion. This is strictly more general than synchronization-free
regions, which do not discern between different types of
synchronization operations. A nice consequence of this gen-
eralization is that the interference-free regions for different
accesses to the same variable may overlap, revealing previ-
ously unrecognized optimization opportunities.

Our contributions are as follows:

• We define interference-free regions over execution traces,
and present several interesting examples for which rea-
soning about interference-freedom, as we have defined
it, allows for easy answers to tricky problems.

• We present a compiler analysis that identifies conserva-
tive approximations of interference-free regions, allow-
ing other compiler analyses to remove redundant mem-
ory operations across synchronization boundaries.

Our analysis is straightforward, but general and applica-
ble to a number of interesting cases. We hope that the discus-
sion sheds light on issues that have not been well understood
prior to our work.

2. Interference-Free Regions
In this paper, we concern ourselves with regions of code that
are not synchronization-free. Can we regain some sequen-
tial reasoning even in the presence of synchronization? To
illustrate the problem we are trying to address, consider

lock(mtx p);
...
unlock(mtx p);

where mtx p is a global, potentially shared, pointer to a mu-
tex. We will also assume, for purposes of the examples, that
the only operations on mutexes are lock() and unlock()
operations taking a pointer to a mutex, and that ellipses rep-
resent synchronization-free code that does not modify any
of the variables mentioned in the example. Is it the case that

1 E.g., mutex lock, thread join, volatile read.
2 E.g., mutex unlock, thread create, volatile write.

both instances of mtx p always refer to the same lock? Or
could another thread modify mtx p in the interim?

The prohibition against data races often allows us to an-
swer such questions, without analyzing code that might be
run by other threads. Without such a prohibition, and with-
out knowledge about other threads in the system, we clearly
could not guarantee anything about concurrent updates of
mtx p. Moreover, reasoning about synchronization-free re-
gions is insufficient in this case: the lock is acquired between
the first and second load of mtx p, and hence the two refer-
ences are not in the same synchronization-free region. Nev-
ertheless, we argue that the data-race-freedom assumption
is strong enough to establish, for this example, that another
thread cannot concurrently modify mtx p.

We make an easily provable, but foundational, and appar-
ently normally overlooked observation: the region of code
during which other threads cannot modify a locally accessed
variable may often be extended in both directions beyond
the access’s enclosing synchronization-free region. In par-
ticular, we can extend the boundary of a region backwards
in the trace past any earlier release operations, such as mu-
tex unlock() calls, and forwards through any later acquire
operations, such as mutex lock() calls. To put it another
way, the variable cannot be modified by other threads in
the region between the most recent acquire operation and
the next release operation. We call this extended region the
interference-free region for an access.

Thus, in our example, the interference-free region for the
initial load of mtx p extends through the immediately fol-
lowing lock() call, and includes the second load of mtx p,
guaranteeing that both loads must yield the same pointer.
Here we have separated the accesses to mtx p from the syn-
chronization operations and labeled the first load, but the
idea is the same:

A: tmp = mtx p;


interference-free
region for A

lock(tmp);
...
tmp = mtx p;
unlock(tmp);

We believe that the notion of an interference-free region
is a fundamental observation about the analysis of multi-
threaded code, in that it gives us a much better characteriza-
tion of the applicability of single-threaded techniques. Note
that we make these deductions with no specific information
about other threads in the system; we are relying only on the
data-race-freedom requirement imposed by the language.

2.1 Formalism
Memory models are delicate and must be reasoned about in
a formal setting. We give a formal definition of our execution
model and a proof that interference-free regions are correct
in Appendix A. Briefly, if one thread reads a variable x and
another thread modifies x, then the data-race-freedom guar-
antee requires that these accesses be ordered by the happens-



lock(&mtx1);
A: ...

no acquires



interference-
free region

unlock(&mtx2);
...
unlock(&mtx3);
...

synchronization-
free regionX: tmp = x;

...
lock(&mtx4);

no releases
...
lock(&mtx5);
B: ...
unlock(&mtx6);

Figure 1. An interference-free region in a thread trace. El-
lipses are synchronization-free code.

before relation, a partial order on actions in the execution
which is defined as the transitive closure of the program or-
der and synchronizes-with relations. Because the two actions
occur in different threads, and program order only orders ac-
tions from the same thread, at least one of the edges in the
happens-before ordering must be a synchronizes-with edge.
Given how we defined interference-free regions, it is not pos-
sible for there to be an incoming synchronizes-with edge in
the region before the access, nor for there to be an outgoing
synchronizes-with edge in the region after, so any write by
another thread must happen-before or happen-after the entire
interference-free region.

2.2 Interference-Free Regions in Thread Traces
Given a memory access in an execution, we can infer the in-
terference-free region for that access. In the execution trace
for a single thread in Figure 1, the IFR for access X extends
backwards through region A and forwards through region B.
Any conflicting write must happen-before the lock of mtx1
or happen-after the unlock of mtx6. The exact sequence of
lock acquires and releases is irrelevant; we simply identify
incoming and outgoing synchronizes-with edges.

2.3 Overlapping Regions
We extend our reasoning about interference-free regions by
considering cases in which two or more regions for the same
variable overlap. If x cannot be changed in either interval
a or interval b, and a and b overlap, then clearly it cannot
change in a ∪ b.

For example, suppose there is a critical section nested
between two accesses, as in Figure 2. In this case, the
interference-free region for load A extends forwards into
region B. The interference-free region for load C extends
backwards past the unlock into region B. Thus mtx p must
be interference-free for the entire region, and we can con-
clude that all locks acquired are released.

The above reasoning does not generally apply if there
is more than one nested critical section in a row. However,

A: tmp = mtx p;


interference-free
region for A

lock(tmp);
...
lock (&mtx2);
B: ...


interference-free
region for C

unlock(&mtx2);
...
C: tmp = mtx p;
unlock(tmp);

Figure 2. The interference-free regions for accesses A and
C overlap, despite the intervening critical section.

A: tmp = p;


interference-free
region for A

lock(&tmp->mtx);
...
lock(&mtx2);
B: ...


interference-free
region for C

unlock(&mtx2);
...
C: tmp = p;
local = tmp->data;
...
lock(&mtx3);
D: ...


interference-free
region for E

unlock(&mtx3);
...
E: tmp = p;
unlock(&tmp->mtx);

Figure 3. Here, the load of p at line C means that p is
interference-free during both nested critical sections.

there are cases for which we can derive similar results even
then. Consider the common case in which, rather than mtx p,
we have a pointer p to a structure that includes both a mutex
and some data, with the program as shown in Figure 3. The
program includes three loads of p, at lines A, C, and E. The
interference-free region for the load of p at line A extends
forward through region B. The interference-free region for
the load of p at line E extends backwards through region
D. The interference-free region for the load of p at line C
extends backwards through B and forwards through D. Thus
we conclude that p cannot be modified by another thread.

More generally, we may conclude that a variable x is in-
terference-free along a section of the execution trace if it
is accessed between every pair of release and subsequent
acquire operations.

2.4 Loop Invariance
We can also use interference-free regions to determine loop-
invariant references for loops that contain synchronization.
The loop in Figure 4 is again not a simple synchronization-
free region, so it is not immediately clear whether the load of
x can be moved out of the loop. However, x is guaranteed to



while(...) {
A: r1 = x;
...
lock(&mtx);
...
unlock(&mtx);

}

Figure 4. The access at line A is loop-invariant.

be accessed between every lock release and the next lock
acquire operation. Hence the interference-free region for
each access of x must overlap with the previous and next
one, if they exist. Therefore, all loaded values of x must be
the same, so it is safe to move the load out of the loop (taking
care to guard the load so as not to introduce a data race).

Similar observations apply to loops that access C++0x [5]
atomic objects. If we consider the loop below where a is an
atomic variable, we can deduce that the loop contains only
acquire operations, and therefore the interference-free region
of any access in the loop includes all later iterations of the
loop. Thus the read of x can safely be hoisted out of the loop:

do {
r1 = x;
...

} while(a);

2.5 Barriers
A common form of synchronization is rendezvous-style bar-
riers (e.g., the pthread barrier t type). Barriers allow
threads to stop and wait for other threads to reach a certain
point in their execution before continuing. Treating barriers
as release and acquire actions is too imprecise, so we handle
them specially. We have proved that if a variable is accessed
both before and after a call to the “wait” function for a bar-
rier, then we can extend the interference-free regions for both
accesses through the call. This makes intuitive sense, as any
remote write to the variable would have to happen either be-
fore or after the barrier call, and the write would therefore
race with at least one of the two local accesses. A formal
explanation of barriers and their relation to interference-free
regions appears in Appendix B.

3. Compiler Analysis
Compilers can use the concept of interference-free regions
to improve the scope of optimizations for data-race-free pro-
grams. We have implemented a pass in the LLVM compiler
framework [8] that identifies interference-free regions. Be-
cause we do not know which path through a program a given
execution will take, we must be conservative: we identify
synchronization calls that, no matter which path is taken, fall
into some interference-free region for a given variable. We
then remove the variable from the set of variables modified
by each identified synchronization call.

3.1 Algorithm
Compilers apply sequential optimizations to multithreaded
code by assuming that synchronization functions are opaque:
they might access any variable. If we can show that no con-
currently running threads modify a particular variable at the
moment a synchronization call is executed, it is sound to re-
move that variable from the call’s set of modified variables.3

We identify synchronization calls whose modified sets
may be pruned by exploiting two symmetric insights:

1. If, on a path through a function that passes through an
acquire call C, there is an access A to a variable x such
that A precedes C and there are no release calls between
A and C, then C is in the interference-free region for A
for that path. Therefore, if such an access A exists for
every path through C, C does not modify x.

2. If, on a path through a function that passes through a
release call C, there is an access A to a variable x such
that A follows C and there are no acquire calls between
C and A, then C is in the interference-free region for A
for that path. Therefore, if such an access A exists for
every path through C, C does not modify x.

Our analysis determines two pieces of information. First, for
each acquire call, we need the set of variables that must have
been accessed since the last release call (ASLR). Second,
for each release call, we need the set of variables that must be
accessed before the next acquire call (ABNA). The former
is a simple forward dataflow analysis; the latter is a simple
backward dataflow analysis. For acquire calls, we remove
any variables in the ASLR set from the modified set for that
call; for release calls, we remove any variables in the ABNA
set. A call to pthread barrier wait is interference-free
for a given variable if that variable appears in both the ASLR
and ABNA sets for the call.

As an example, in Figure 2, mtx p is removed from the
modified sets for the first three synchronization calls, al-
though not the last because it is a release action and its
ABNA set is empty. A redundant load analysis will there-
fore find that the second load can be eliminated. Figure 4 is
an example of conservatism in our analysis: x is not in the
ABNA set for the unlock call (because there is a path that
does not access x after the unlock), so access A will not be
hoisted out of the loop.

In order to improve the accuracy of the analysis, we dis-
tinguish between read and write accesses in the implementa-
tion. For example, if a variable x must be modified (not just
accessed) before an acquire call, then we may assume that
the call neither reads nor writes x.

3 The bodies of the synchronization functions may modify some variables—
e.g., pthread create, a synchronization operation with release behavior,
modifies the new thread ID—so we must take care to distinguish these (non-
racy) writes from writes in other threads.



int max, shared_counter;
pthread_mutex_t m;

void *f(void *my_num) {
int n = *((int *) my_num);
while (n <= max) {
pthread_mutex_lock(&m);
shared_counter++;
pthread_mutex_unlock(&m);
n += 2;

}
}

int main() {
pthread_t t1, t2;
int n1 = 1;
int n2 = 2;
max = 10000000;
shared_counter = 0;
pthread_mutex_init(&m, NULL);
pthread_create(&t1, NULL, f, (void *) &n1);
pthread_create(&t2, NULL, f, (void *) &n2);
pthread_join(t1, NULL);
pthread_join(t2, NULL);

}

Figure 5. A microbenchmark demonstrating the effective-
ness of IFR-based optimizations. When combined with our
analysis, GVN moves the load of max out of the loop in f().

3.2 Data-Race-Freedom
Since we assume data-race-freedom, programs with data
races may be transformed in hard-to-predict ways, compli-
cating debugging. This is already true for current compilers;
otherwise current sequential techniques could not even be
applied within synchronization-free regions [3]. We are not
qualitatively changing the situation, and it does not appear
to be a major problem in practice.

We expect this analysis might be useful on an opt-in basis.
We envision an “-ODRF” flag in future C/C++ compilers,
the documentation for which would make explicit that racy
programs might have unexpected behavior.

3.3 Preliminary Results
Our LLVM implementation is still in progress, but our initial
results are promising. We inserted our analysis into LLVM’s
link-time optimization pipeline just before the loop-invariant
code motion (LICM) and global value numbering (GVN)
transformations. The machine used for compilation and run-
ning the tests was a 4-core 2.8GHz Intel Xeon with 16GB of
RAM, running Linux.

Microbenchmark Figure 5 shows a small C program that
contains a redundant load: every iteration of the loop in func-
tion f() checks the value of max, which is constant. But be-

SPLASH-2 Syncs Loads
Benchmark LOC in IFRs deleted Speedup

lu-n 678 14 16 1.0080
radix 833 27 22 0.9962

fft 899 12 13 1.0081
lu-c 911 17 19 0.9988

water-n 2,063 27 24 0.9941
water-s 2,670 27 30 0.9701
barnes 2,864 20 11 0.9977

ocean-n 3,046 34 53 0.9840
volrend 4,204 31 25 0.9412

fmm 4,325 37 36 1.0050
ocean-c 4,774 95 79 0.9915
cholesky 5,139 83 19 0.9869
raytrace 10,649 19 14 1.0260
radiosity 11,760 93 45 1.0000

Table 1. SPLASH-2 results.

cause the loop contains synchronization, the standard LLVM
alias analysis pass assumes the synchronization calls may
modify max. Our analysis removes max from the modified
sets for the synchronization calls, allowing GVN to hoist
the load out of the loop. Running the program under val-
grind shows that the optimization is indeed effective: the op-
timized program performs 10 million fewer loads. However,
the program performs over 400 million memory operations
in total, so there is no noticable performance improvement.

Realistic applications We compiled the SPLASH-2 bench-
marks [13] using our analysis. The analysis did not affect the
LICM pass (we suspect because LICM handles only func-
tion calls that do not modify any memory locations), but
the GVN pass found numerous opportunities to remove re-
dundant loads (Table 1).4 The third column in Table 1 lists
the number of synchronization calls which were found to be
in the interference-free region of at least one variable. The
fourth column lists the difference in the number of loads
deleted by GVN when run with and without our analysis.
The fifth column gives the speedup for each benchmark,
which we compute as the runtime for the version of the code
compiled without our analysis divided by the runtime for the
version compiled with our analysis.

Although the analysis exposed a number of redundant
loads, we have had little success in terms of actually extract-
ing performance from these optimizations. The benchmarks
either have similar performance on both versions of the code,
or our “optimized” version is slightly worse. One problem
is that the loads may not be located on hot paths. Another
possibility is that the optimizations increased the live ranges
of variables, resulting in more loads as register variables are
spilled to the stack (perhaps due to the low number of callee-
saved registers on the x86 architecture).

4 Theoretically, our analysis should also be useful for dead store elimina-
tion, but we did not observe any improvement in LLVM’s dead store elimi-
nation pass, so we concentrate on loads here.



4. Other Applications
Interference-free regions are useful for understanding the
behavior of functions that contain internal synchronization.
For example, the C++ draft specification defines malloc
and free as acquire and release synchronization operations,
respectively [5]. We can use interference-free regions in the
code below to establish that global variables p and q are not
referenced by other threads, and therefore that the two free
operations properly deallocate the memory allocated by the
two malloc operations.

p = malloc(...);
q = malloc(...);
free(p);
free(q);

This kind of reasoning is applicable not just to compilers,
but also to static analysis tools, where reasoning about prop-
erties such as deadlock freedom or memory allocation often
requires knowledge about variables that might conceivably
be changed by other threads. We should be able to use our
existing alias analysis to improve the accuracy of existing
analyses, when it is sound to assume data-race-freedom.

5. Related Work
Our analysis is related to a compiler transformation known
as roach-motel reordering. This transformation increases the
size of critical sections by moving actions either past a lock
acquire or before a lock release. In some cases, it is possible
to use this line of reasoning to infer interference-free regions
by repeatedly swapping an access until it reaches the end of
a region. Sevcik established that this transformation is legal
for data-race-free programs [10]. We believe our character-
ization is independently useful, particularly since we make
very minimal assumptions about the language and synchro-
nization primitives and we avoid complex reasoning about
syntactic code transformations. In particular, we know of no
prior presentation of a similar compiler analysis, nor any dis-
cussion of the consequences of overlapping regions.

Prevous work by several of the authors of this paper de-
scribes a framework for enabling sequential optimizations
in multithreaded programs [7]. They identify paths on which
variables are “siloed” by iteratively refining a graph of the
program. (This “siloed” property is essentially the same as
our notion of interference-freedom.) Like us, their imple-
mentation refines the modified/referenced sets for synchro-
nization calls. Our work is complementary to this work, as
our analysis could likely be incorporated neatly into their
framework as an “interference-type refinement.”

6. Conclusion
We have presented an approach to inferring interference-
free regions in data-race-free programs. Since our analysis
is based heavily on data-race-freedom, it requires only in-
formation about a single thread. We have implemented these

ideas as an alias analysis pass in an optimizing compiler, and
we have also discussed how this idea could apply to static
analysis of multithreaded code. Our approach enables new
kinds of inferences about program behavior that had not pre-
viously been considered.
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A. Analysis
In this section, we formally define and prove the correctness
of the interference-free regions described in Section 2. Most
proofs are omitted for space; a Coq script with full proofs
of all theorems is available online at http://wasp.cs.
washington.edu/wasp_memmodel.html.

Define an execution to be a set of memory actions, to-
gether with three relations on that set. The sequenced-before
relation totally orders all actions in a thread, and does not
order actions from different threads. The synchronizes-with
relation defines an ordering between synchronization op-
erations. Finally, the happens-before order is the reflexive
transitive closure of the union of the sequenced-before and
synchronizes-with orders. Formally, we say that an execu-
tion is a quadruple (A,≤sb, <sw,≤hb) where:

• A is a set of actions, where each action is a triple of a
thread ID t, an kind of action k, and a UID (unique ID)
u: (t, k, u). Kinds of actions include reads and writes to
shared variables:

k ::= read(x) | write(x) | . . .

• ≤sb (sequenced-before) is a partial order over UIDs that
totally orders actions with the same thread ID.

• <sw (synchronizes-with) is a relation over UIDs. We do
not define this relation, as the details are irrelevant to
our analysis; presumably, lock releases synchronize-with
acquires of the same lock, writes to volatile variables syn-
chronize-with reads of the same variable, and so on.

• ≤hb is an antisymmetric partial order over UIDs con-
structed as the reflexive transitive closure of the union
of ≤sb and <sw: ≤hb= (≤sb ∪ <sw)∗. 5

We omit the values being read and written (or, equiv-
alently, a writes-seen relation). Because we only consider
data-race-free programs, every normal read sees the value
most recently written to the same variable in ≤hb.

Next we define the notion of incoming and outgoing
edges: happens-before edges that start in one thread and end
in another. An action has an outgoing edge if it synchronizes-
with an action in another thread. An action has an incoming
edge if an action in another thread synchronizes-with that
action. The intuition is that by establishing that a subsection
of a single thread’s execution does not have any incoming
or outgoing edges, we can convince ourselves that no other
thread could interfere with that thread’s execution.

Definition 1 (Outgoing Edge). Let (t1, k1, u1) ∈ A. u1

has an outgoing happens-before edge if there exists (t2, k2,
u2) ∈ A such that u1 <sw u2 and t1 6= t2.

5 The actual C++0x happens-before relation is not transitively closed, so
that memory order depends can be supported. The effect is to prevent
≤sb from contributing to ≤hb in certain contexts. This does not affect our
arguments.

Definition 2 (Incoming Edge). Let (t2, k2, u2) ∈ A. u2

has an incoming happens-before edge if there exists (t1, k1,
u1) ∈ A such that u1 <sw u2 and t1 6= t2.

If there is a happens-before edge between two actions in
two different threads, then there must be an action in the first
thread with an outgoing happens-before edge.

Lemma 1 (Existence of Outgoing Edge). Let (t1, k1, u1),
(t2, k2, u2) ∈ A such that u1 ≤hb u2 and t1 6= t2. Then
there exists u3 such that u1 ≤sb u3, u3 ≤hb u2, and u3 has
an outgoing edge.

The proof (omitted) is a straightforward inductive case
analysis on u1 ≤hb u2. Intuitively, as happens-before is the
closure of the sequenced-before and synchronizes-with rela-
tions, clearly any chain of happens-before edges that crosses
threads must include an outgoing synchronizes-with edge.
Symmetrically, if there is a happens-before edge between
two actions in two different threads, the second thread must
have an action with an incoming happens-before edge.

Lemma 2 (Existence of Incoming Edge). Let (t1, k1, u1),
(t2, k2, u2) ∈ A such that u1 ≤hb u2 and t1 6= t2. Then
there exists u3 such that u1 ≤hb u3, u3 ≤sb u2, and u3 has
an incoming edge.

We now establish our key result: if a region of code after
a normal memory access has no outgoing happens-before
edges, then any writes must happen-after that region of code.
The usefulness of this result depends crucially on the fact
that in an execution of a data-race-free program, reads and
writes to the same variable are ordered by happens-before.

Theorem 1 (Forwards Interference-Free). Let (t1, read(x),
u1), (t1, k2, u2) ∈ A such that u1 <sb u2. Furthermore,
for all u3 such that u1 ≤sb u3 <sb u2, u3 does not have an
outgoing edge. Finally, there is some write (t4, write(x), u4)
such that u1 ≤hb u4 and t1 6= t4. Then u2 ≤hb u4.

Proof. By Lemma 1, there exists u3 such that u1 ≤sb u3,
u3 ≤hb u4, and u3 has an outgoing edge. Clearly u2 ≤sb u3,
because otherwise u3 would violate an assumption. Then
u2 ≤hb u4 by transitivity of happens-before.

Symmetrically, we can show that a variable is inter-
ference-free for a region in which there are no incoming
happens-before edges.

Theorem 2 (Backwards Interference-Free). Let (t1, read(x),
u1), (t1, k2, u2) ∈ A such that u1 <sb u2. Furthermore,
for all u3 such that u1 <sb u3 ≤sb u2, u3 does not have
an incoming edge. Finally, there is some write (t4, write(x),
u4) such that u4 ≤hb u2 and t1 6= t4. Then u4 ≤hb u1.

By applying Theorems 1 and 2, we can conclude that
any write must happen-before or happen-after the entire
interference-free region for an access.

http://wasp.cs.washington.edu/wasp_memmodel.html
http://wasp.cs.washington.edu/wasp_memmodel.html


B. Barriers
In this section we extend our analysis to cover rendezvous-
style barriers. Our key observation is that even though bar-
riers act like a release operation followed by an acquire ac-
tion, we can still reason about interference-freedom if there
are accesses to a variable both before and after a given invo-
cation of a barrier.

Assume that the possible types of actions include notify
and wait actions on barrier identifiers b:

k ::= notify(b) | wait(b) | . . .

Notify and wait actions have the following behavior:

Notify synchronizes-with wait: If (t1, notify(b), u1), (t2,
wait(b), u2) ∈ A, then u1 <sw u2.

Notify and wait only synchronize-with each other: If (t1,
k1, u1), (t2, k2, u2) ∈ A and u1 <sw u2, then k1 =
notify(b) if and only if k2 = wait(b).

Notify and wait are called in the proper order with
no intervening synchronization: If a thread t calls no-
tify and wait on a barrier b ((t, notify(b), u1), (t, wait(b),
u′1) ∈ A), then notify is called before wait (u1 ≤sb u′1),
and t does not perform any synchronization actions be-
tween the calls to notify and wait.6

Note that each barrier is invoked only once per thread;
else it would not always be the case that a notify always
synchronizes-with a wait on the same barrier, or that notify
is sequenced-before wait with no intervening synchroniza-
tion. Although real programs may wait on the same barrier
multiple times, this is simply a convenience; it is possible
to allocate a new barrier for every invocation. Moreover, we
could make our formalism more realistic by tagging notify
and wait actions with a generation that indicates how many
times a thread has invoked this particular barrier, but such a
change would not increase the expressiveness of the model.

Our key insight that nothing can happen-between a no-
tify and a wait. First, we prove two lemmas. The first lemma
establishes that, if an action in another thread happens-after
a notify, then either the action also happens-after the sub-
sequent wait, or the happens-before chain between the no-
tify and the remote action includes a synchronizes-with edge
originating from the notify.

Lemma 3 (Inversion of Happens-After-Notify). Suppose
(t1, notify(b), u1), (t1, wait(b), u′1), (t2, k, u2) ∈ A such
that t1 6= t2 and u1 ≤hb u2. Then either (1) u′1 ≤hb u2

or (2) there exists u3 such that u1 <sw u3 ≤hb u2 .

The proof (omitted) is a straightforward inductive analy-
sis on u1 ≤hb u2. A symmetric lemma establishes that if a
remote action happens-before a wait, then either the action
also happens-before the notify, or the happens-before chain
includes a synchronizes-with edge terminating at the wait.

6 Formally, if ∃u2, u3 such that u1 ≤sb u2 ≤sb u′1 and u2 <sw u3, then
u2 = u1; if u1 ≤sb u2 ≤sb u′1 and u3 <sw u2, then u2 = u′1.

r1 = x;
...
pthread mutex lock(...);
...
pthread mutex lock(...);
...
pthread barrier wait(b);
...
pthread mutex unlock(...);
...
pthread mutex unlock(...);
...
r2 = x;

Figure 6. Interference-free region around a barrier wait.

Lemma 4 (Inversion of Happens-Before-Wait). Suppose
(t1, notify(b), u1), (t1, wait(b), u′1), (t2, k, u2) ∈ A such
that t1 6= t2 and u2 ≤hb u′1. Then either (1) u2 ≤hb u1

or (2) there exists u3 such that u2 ≤hb u3 <sw u′1.

Given these two lemmas, the key theorem follows easily:

Theorem 3 (Nothing Happens-Between Notify and Wait).
Suppose (t1, notify(b), u1), (t1, wait(b), u′1), (t2, k, u2) ∈ A
such that t1 6= t2. Then ¬(u1 ≤hb u2 ≤hb u′1).

Proof. Assume u1 ≤hb u2 ≤hb u′1. We will establish a con-
tradiction by proving that ≤hb is no longer antisymmetric.
By Lemma 3, either u′1 ≤hb u2 or there exists u3 such that
u1 <sw u3 ≤hb u2. The first case is a violation of the anti-
symmetry of ≤hb, as we have that u2 ≤hb u′1, and we know
u′1 6= u2 because they are from different threads. Similarly,
we can rule out the first case for Lemma 4. Therefore (using
u4 as the witness for the second case of Lemma 4), we have
that u1 <sw u3 ≤hb u2 ≤hb u4 <sw u′1. By assumption, u3

is wait(b) and u4 is notify(b). Therefore u4 <sw u3, which
creates a cycle in ≤hb: u3 ≤hb u4 and u4 ≤hb u3. We know
that u3 6= u4 as they are notify and wait actions, respectively,
so the theorem is proved.

We can combine Theorem 3 with Theorems 1 and 2 to
infer larger interference-free regions. For instance, consider
the code in Figure 6. The call to pthread barrier wait
performs both the notify and wait actions, satisfying the
requirement that these actions occur in the proper order
with no intervening synchronization. Suppose a remote
write to x were to happen-after the first read and happen-
before the second. By Theorem 1, the write must happen-
after the notify; by Theorem 2, the write must happen-
before the wait. Therefore, by Theorem 3, no such write
exists, so the two reads see the same value. In effect, the
interference-free region for x extends across the call to
pthread barrier wait—but only because there are reads
of x before and after the barrier. Else the remote write could
happen-before or happen-after the barrier.
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