
COCV 2005 Preliminary Version

Automatically Inferring Sound Dataflow
Functions from Dataflow Fact Schemas

Erika Rice 1 Sorin Lerner 2 Craig Chambers 3

Department of Computer Science & Engineering
University of Washington

Seattle, WA, USA

Abstract

In previous work, we presented a language called Rhodium for writing program
analyses and transformations that could be checked for soundness automatically.
In this work, we present an algorithm for automatically inferring sound flow func-
tions given only a set of dataflow fact schemas. By generating the flow functions
mechanically, our approach reduces the burden on compiler writers. This paper
presents a detailed description of our algorithm and shows how it works on several
examples. We have run our algorithm by hand on all the statements of a simple
C-like intermediate language for an is-constant fact schema, a points-to fact schema,
and a variable-equality fact schema. Our algorithm generated a total of 71 rules
for these cases. It generated all but one of the rules we had written by hand for
these dataflow fact schemas, and it also generated new useful rules that we had not
thought of previously.

Key words: Compiler optimization, dataflow analyses, generated
flow functions, automated correctness proofs.

1 Introduction

Compilers are an important part of the infrastructure relied upon by develop-
ers. If the compiler is buggy, then so are potentially all applications compiled
with it. Our broad research agenda is to provide better support for writing
sound compiler optimizations. In previous work [5,4], we presented a language
called Rhodium for writing compiler optimizations that could be checked for
soundness automatically. Programmers would declare dataflow fact schemas
with an associated semantic meaning and then would write flow functions
for propagating facts that are instances of these schemas as well as rules for
performing program transformations. Once written in Rhodium, these flow

1 Email: erice@cs.washington.edu
2 Email: lerns@cs.washington.edu
3 Email: chambers@cs.washington.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rice, Lerner, and Chambers

functions and these program-transformation rules could be proven sound au-
tomatically.

In this paper, we present a technique for automatically inferring sound
forward dataflow functions given only the declarations of the dataflow fact
schemas including their semantic meanings. As a result, the programmer
need not be burdened with writing the flow functions any more, making it
even easier to produce sound dataflow analyses.

Flow functions in Rhodium are expressed using propagation rules, which
state under what conditions a fact can be introduced on the outgoing edge of
a CFG node. Our approach for generating forward propagation rules for a fact
schema works backward from its semantic meaning. The semantic meaning
gives us the requirement that must hold for an instance of the fact schema
to be introduced on the outgoing edge of a node. Weakest preconditions
are used to compute the condition that must hold before the node for the
soundness requirement to hold after the node. Finally, we re-express this
weakest precondition in terms of only the semantic meanings of fact schemas
that have been given to us.

This paper presents a detailed description of the above algorithm, and
shows how it works on several examples. We have run our algorithm by
hand on all the statements of a simple C-like intermediate language for an
is-constant fact schema, a points-to fact schema, and a variable-equality fact
schema. Our algorithm generated a total of 71 propagation rules for these
fact schemas. It generated all but one of the rules we had written by hand for
these schemas, and it also generated new useful rules that we had not thought
of.

Section 2 presents background material on how dataflow analyses are writ-
ten in Rhodium and how they are checked for soundness automatically. Sec-
tion 3 presents an overview of our approach, and then section 4 presents the
details of our algorithm. Section 5 presents our plans for current and future
work, and, finally, Section 6 presents related work.

2 Background on Rhodium

Rhodium analyses run over a C-like intermediate language (IL) with functions,
recursion, pointers to dynamically allocated memory and to local variables,
and arrays. For the purposes of our work on inferring flow functions, we will
consider a simpler IL, shown in Figure 1, that does not have functions calls or
arrays. The IL program is represented as a CFG with each node representing
a simple register-transfer-level statement.

Dataflow information is encoded in Rhodium by means of dataflow facts,
which are user-defined function symbols applied to a set of terms, for example
hasConstValue(x, 5) or exprIsAvailable(x, a + b). A Rhodium analysis uses
propagation rules, which are a stylized way of writing flow functions, to specify
how dataflow facts propagate across CFG nodes. These user-defined flow
functions define a dataflow analysis, whose solution is the greatest fixed point
of the standard equations induced by the flow functions.

2

Rice, Lerner, and Chambers

Stmts s ::= decl x := e | skip | lhs := e | x := new | if b goto ι else ι
Exprs e ::= b | ∗x | &x | op b . . . b
Locatables lhs ::= x | ∗x
Base Exprs b ::= x | c
Ops op ::= various operators with arity ≥ 1
Vars x ::= x | y | z | . . .
Consts c ::= constants
Indices ι ::= 0 | 1 | 2 | . . .

Fig. 1. Grammar of the IL

1. decl X:Var, C:Const

2. define edge fact schema hasConstValue(X:Var, C:Const)
3. with meaning σ(X) = σ(C)

4. if stmt(X := C)
5. then hasConstValue(X,C)@out

6. if hasConstValue(X,C)@in ∧ stmt(Z := K) ∧X 6= Z
7. then hasConstValue(X,C)@out

Fig. 2. Simple constant propagation analysis in Rhodium.

The example in Figure 2 shows a partial implementation of constant prop-
agation in Rhodium. We encode the dataflow information for this analysis
using the hasConstValue(X,C) edge fact schema declared on line 2. A fact
schema is a parametrized dataflow fact (a pattern, in essence) that can be
instantiated to create actual dataflow facts. With the declaration on line 2,
each edge in the CFG will be annotated with a set containing facts of the
form hasConstValue(X,C), where X ranges over variables in the program
being analyzed, and C ranges over constants. 4

Propagation rules in Rhodium indicate how edge facts are propagated
across CFG nodes. For example, the rule on lines 6-7 of Figure 2 defines
a condition for preserving a hasConstValue fact across an assignment node:
if the fact hasConstValue(X,C) appears on the incoming CFG edge of an as-
signment node and X is not the variable assigned to, then the dataflow fact
hasConstValue(X,C) should appear on the outgoing edge of n.

The left-hand side of a rule is called the antecedent and the right-hand
side the consequent. Each propagation rule is interpreted within the con-
text of a CFG node. Edge facts are followed by @ signs, with the name
after the @ sign indicating the edge on which the fact appears. For example,
hasConstValue(X,C)@in is true if the incoming CFG edge of the current node
is annotated with hasConstValue(X, Y). For explanatory purposes, we make
the simplifying assumption that a node with multiple incoming edges sim-
ply merges facts using intersection, and a node with multiple outgoing edges
simply propagates the incoming facts on all outgoing edges.

4 The convention used throughout this paper is that Rhodium variables C and K range
over constants while W , X, Y , and Z range over IL variables.

3

Rice, Lerner, and Chambers

The semantics of a propagation rule on a CFG is as follows: for each
substitution of the rule’s free variables that make the antecedent valid at
some node in the CFG, the fact in the consequent is propagated. For the
rule described above, the hasConstValue(X,C) fact will be propagated on the
outgoing edge of a node for each substitution of X and C with variables and
constants that makes the antecedent valid.

To check Rhodium dataflow analyses for soundness, programmers must
specify a semantic meaning for each fact schema, in the form of a predicate
over a program state σ. For example, the meaning of hasConstValue(X,C),
shown on line 3, is that the value of X in σ, denoted by σ(X), is equal to
the value of the constant C, denoted by σ(C). This meaning states that if
hasConstValue(X,C) appears on an edge in the CFG, then for any σ that
may occur at run-time when control reaches that edge, 5 σ(X) = σ(C) holds.
Henceforth, when we refer to a fact schema, we refer to the parameterized fact
and its meaning.

Rhodium dataflow analyses are checked for soundness automatically by
discharging a soundness obligation for each propagation rule. For each rule
we ask the theorem prover so show that if the meaning of the antecedent
holds before a node for an arbitrary σ, then the meaning of the consequent
holds after executing the node in σ. We have shown by hand that if all the
propagation rules in a Rhodium program pass this condition, then the induced
dataflow analysis is sound.

3 Overview of our Approach

In our previous work we automatically checked that Rhodium propagation
rules were sound. In this work, we automatically infer sound forward propa-
gation rules given only the declarations of the dataflow fact schemas. For the
example in Figure 2, our goal would be to infer propagation rules such as the
ones on lines 4-7 from the definition on lines 2-3.

In the case of hasConstValue, our problem reduces to finding formulas ψ
that make the propagation rule if ψ then hasConstValue(X,C)@out sound.
Intuitively, this rule is sound if the meaning of hasConstValue(X,C) holds
after a CFG node n whenever the meaning of ψ holds before n. As a result, all
the formulas ψ we are looking for must be preconditions of n for establishing
σ(X) = σ(C) after n. To find such preconditions, our approach is to first
compute the weakest precondition φ with respect to n that establishes σ(X) =
σ(C), and then to search through the space of formulas that imply φ to find
appropriate formulas ψ. In logical terms, the process of finding formulas that
imply φ is called strengthening.

To compute the weakest precondition of σ(X) = σ(C) through a node n,
we do a case analysis on the form of the statement at node n. Consider for
example the case where the statement is of the form Y := K, where Y and
K range respectively over variables and constants of the IL program. The

5 The quantification of σ is implicit in the user’s declaration.

4

Rice, Lerner, and Chambers

weakest precondition rule for assignments is as follows:

wp(Y := E,α) = α[Y 7→ E]

where α[Y 7→ E] denotes the formula α with Y replaced by E. In our case,
we would therefore have:

φ = wp(Y := K,σ(X) = σ(C))
= (σ(X) = σ(C))[Y 7→ K]

In the above equation, the Rhodium variablesX and Y range over IL variables.
The result of the substitution operation [Y 7→ K] thus depends on whether
or not X and Y are instantiated to the same IL variable. If they are, then
(σ(X) = σ(C))[Y 7→ K] expands to σ(K) = σ(C), otherwise it expands to
σ(X) = σ(C). The weakest precondition φ is then as follows (we use the
symbol $ for syntactic equality of ASTs and = for semantic equality of run-
time values):

φ = (X $ Y ∧ σ(K) = σ(C)) ∨ (X 6$ Y ∧ σ(X) = σ(C))
= (X $ Y ∧K $ C) ∨ (X 6$ Y ∧ σ(X) = σ(C))

since K and C are constants σ(K) = σ(C) ⇔ K $ C

The antecedent of a rule cannot contain references to σ since σ is only known
at run-time, not analysis time. As a result, we cannot use the above weakest
precondition directly as the antecedent ψ. However, the antecedent of a rule
can refer to dataflow facts, and the meanings of these dataflow facts refer
to σ. Our task then is to map all the σ’s in φ using dataflow facts. In
the constant propagation example, the user would provide the dataflow fact
schema hasConstValue(X,C) with meaning σ(X) = σ(C). By searching for
syntactic matches of the form σ(X) = σ(C) in φ and replacing them with
hasConstValue(X,C)@in, we get:

ψ = (X $ Y ∧K $ C) ∨ (X 6$ Y ∧ hasConstValue(X,C)@in)

This antecedent does not refer to σ anymore and can therefore be used to
generate a sound propagation rule for statements of the form Y := K:

if stmt(Y := K) ∧ ψ
then hasConstValue(X,C)@out

If we wish, we can split the disjunction in ψ into two separate rules:

if stmt(Y := K) ∧X $ Y ∧K $ C
then hasConstValue(X,C)@out

if stmt(Y := K) ∧X 6$ Y ∧ hasConstValue(X,C)@in
then hasConstValue(X,C)@out

The rules above are equivalent to the hand-written rules from lines 4-5 and
6-7 of Figure 2.

5

Rice, Lerner, and Chambers

function GenerateRules(decls: set[FactSchemaDecl]): set[Rule]
1. let results := ∅
2. for each “define edge fact schema F with meaning M” ∈ decls do
3. for each statement form S do
4. let φ := wp(S,M)
5. let ψ := PerformBackwardSearch(φ, decls)
6. if ψ 6= false then
7. let rule := “if stmt(S) ∧ ψ then F@out”
8. results := results ∪ {rule}
9. return results

function PerformBackwardSearch(φ: Formula,
decls: set[FactSchemaDecl]): Formula

10. let φnorm := Normalize(φ)
11. let φmapped := MapFacts(φnorm , decls)
12. if φmapped contains no σ then
13. return φmapped

14. let φstren := Strengthen(φmapped)
15. return PerformBackwardSearch(φstren , decls)

Fig. 3. Algorithm for generating rules from fact declarations

In this simple illustrative example, the mapping from the weakest precon-
dition φ to a valid antecedent ψ was immediate. In more complicated cases,
the mapping will not be immediate; our algorithm will perform logical rewrites
in an attempt to find a way to eliminate all σ’s. Because we are searching for
formulas that imply the weakest precondition φ, permissible rewrites include
simplifications (finding a φ′ that is equivalent to φ) or strengthenings (finding
a less general φ′ that implies φ). Intuitively, strengthenings sacrifice precision
to make the condition φ statically computable in terms of available facts.

Each logical rewrite, be it a simplification or a strengthening, can be seen
as a single backward step in an inference system. Our algorithm therefore per-
forms a backward search through an inference system starting at the weakest
precondition φ. All of the formulas considered in this backward search will im-
ply φ, and our goal is to find one such formula that does not contain references
to σ. Once we find such a φ, the sequence of inferences we performed during
the search, if reversed to be in the forward direction, will constitute a proof
of soundness for the rule we just generated. Indeed, this forward sequence
of inference steps is a derivation of the condition that our Rhodium checker
would send to the theorem prover on the newly generated rule. In this way,
the rules we generate are guaranteed to be sound.

4 Algorithm for Inferring Rules from Facts

Our algorithm for generating rules is shown in Figure 3. For explanatory pur-
poses, we only present the algorithm that handles single-input-single-output
nodes. 6 For each fact schema declared by the user and for each statement

6 For nodes with many incoming and outgoing edges, we would run the algorithm from
Figure 3 on each input-output edge pair. In this case, wp would take input and output
edges as additional parameters.

6

Rice, Lerner, and Chambers

(X $ Y ∧K $ C) ∨ (X 6$ Y ∧ hasConstValue(X,C)@in) ∨

(K $ C ∧ hasConstValue(X,C)@in)
(4) fact match, logNorm

(∀σ.
[
X $ Y

]
∧ ∀σ.

[
K $ C

]
) ∨ (∀σ.

[
X 6$ Y

]
∧ ∀σ.

[
σ(X) = σ(C)

]
) ∨

(∀σ.
[
K $ C

]
∧ ∀σ.

[
σ(X) = σ(C)

]
)

(3) logNorm
∀σ.

[
X $ Y ∧K $ C

]
∨ ∀σ.

[
X 6$ Y ∧ σ(X) = σ(C)

]
∨ ∀σ.

[
K $ C ∧ σ(X) = σ(C)

]
(2) ∀ resolution

∀σ.
[
(X $ Y ∧K $ C) ∨ (X 6$ Y ∧ σ(X) = σ(C))

]
(1) $I& , 6$I& ,$Ic

∀σ.
[
(σ(&X) = σ(&Y) ∧ σ(K) = σ(C)) ∨ (σ(&X) 6= σ(&Y) ∧ σ(X) = σ(C))

]
Fig. 4. Inference steps for hasConstValue(X,C) for statements of the form Y := K

form, we first compute the weakest precondition of the meaning provided in
the declaration with respect to the statement form using the wp function (line
4). We then perform a backward search in our inference system starting at the
weakest precondition (line 5). The backward search is a loop that ends when
we have removed all σ’s from φ. The first step in the loop is to express φ in a
normal form using the Normalize function (line 10). We then use MapFacts
(line 11) to map parts of the formula to facts, thus removing some references
to σ. If all references to σ have been removed (line 12), then we have found
a valid antecedent and the search is over (line 13). If not, we strengthen the
formula using Strengthen (line 14), and continue the search with the resulting
stronger formula (line 15).

The algorithm in Figure 3 depends on the four functions wp, Normalize,
MapFacts and Strengthen. These four functions are described in more detail
in the following four subsections.

Throughout our explanations, we will use the examples in Figures 4 and 5,
which show the inference steps used by our algorithm for hasConstValue(X,C)
for statements of the forms Y := K and ∗Y := Z. In these examples, the
fact schemas available for matching are hasConstValue(X,C) with mean-
ing σ(X) = σ(C), mustNotPointTo(X,W) with meaning σ(X) 6= σ(&W) and
mustPointTo(X,W) with meaning σ(X) = σ(&W). The examples should be
read bottom-up: the bottommost formula is the weakest precondition φ as
computed by wp, and the topmost formula is the final predicate ψ that we
use to generate a rule. The final top-down sequence represents a valid logi-
cal deduction. Each backward inference step represents multiple steps taken
by Normalize, Strengthen and/or MapFacts . The labels to the right of an
inference step identify the rewrite rules used for this step. The collection of
all rewrite rules in our system can be found in Figures 6 and 7 and will be
explained in detail in the following subsections. Additional examples of how
our algorithm works can be found in our technical report [8].

4.1 Weakest precondition

For simplicity, we are presenting our algorithm for single-input-single-output
nodes, and so we do not describe the weakest precondition for merge nodes and

7

Rice, Lerner, and Chambers

(mustPointTo(Y,X)@in ∧ hasConstValue(Z,C)@in) ∨

(mustNotPointTo(Y,X)@in ∧ hasConstValue(X,C)@in) ∨

(hasConstValue(Z,C)@in ∧ hasConstValue(X,C)@in)
(4) fact match

(∀σ.
[
σ(&X) = σ(Y)

]
∧ ∀σ.

[
σ(Z) = σ(C)

]
) ∨ (∀σ.

[
σ(&X) 6= σ(Y)

]
∧ ∀σ.

[
σ(X) = σ(C)

]
) ∨

(∀σ.
[
σ(Z) = σ(C)

]
∧ ∀σ.

[
σ(X) = σ(C)

]
)

(3) logNorm
∀σ.

[
σ(&X) = σ(Y) ∧ σ(Z) = σ(C)

]
∨ ∀σ.

[
σ(&X) 6= σ(Y) ∧ σ(X) = σ(C)

]
∨

∀σ.
[
σ(Z) = σ(C) ∧ σ(X) = σ(C)

]
(2) ∀ resolution

∀σ.
[
(σ(&X) = σ(Y) ∧ σ(Z) = σ(C)) ∨ (σ(&X) 6= σ(Y) ∧ σ(X) = σ(C))

]
(1) &∗E

∀σ.
[
(σ(&X) = σ(&(∗Y)) ∧ σ(Z) = σ(C)) ∨ (σ(&X) 6= σ(&(∗Y)) ∧ σ(X) = σ(C))

]
Fig. 5. Inference steps for hasConstValue(X,C) for statements of the form ∗Y := Z

branch nodes. 7 Computing the weakest precondition for a skip statement is
simple because it does not modify any values. If s is a skip, we therefore have
wp(s, α) = α. All other statements are treated uniformly as assignments:
decl x := e assigns x the value of e, x := new assigns x the special token
newloc, 8 and, finally, lhs := e is a regular assignment.

The standard weakest precondition rule for an assignment, LHS := E,
substitutes all occurrences of the left hand side for the expression on the right
in a predicate α. The presence of Rhodium variables and pointer dereferences
in α and LHS make syntactic substitution inadequate. Because Rhodium
variables range over IL variables, the result of the substitution needs to depend
on whether or not the Rhodium variables in LHS and those in α refer to the
same IL variables. Similarly, if either LHS or α contains pointer dereferences,
then syntactic replacement will not take into account the fact that LHS may
be aliased with terms in α.

In order to solve these two problems, we need to find which parts of α may
be modified by the assignment. We use the weakest precondition technique
from SLAM in order to do this [1]. Define a location to be either a variable
or a variable dereference. Now consider wp(L := E,α), where L is a location.
Let L′ be some location mentioned in α. There are two possible cases: if L
and L′ are aliases the assignment modifies L′, and L′ in α must be replaced
with E; if L and L′ are not aliases α remains unchanged.

For a predicate α, an expression E and locations L and L′, we define
α[L,E, L′] as follows (where σ(&L) = σ(&L′) is used to determine if locations
L and L′ are aliased):

7 For such nodes, wp would take input and output edges as additional parameters.
8 Because all of our rewrites are done on a single statement all references to newloc refer
to the same location.

8

Rice, Lerner, and Chambers

α[L,E, L′] , (σ(&L) = σ(&L′) ∧ α[L′ 7→ E]) ∨
(σ(&L) 6= σ(&L′) ∧ α)

If L1, L2, . . . , Ln are all the locations in α, then wp(L := E,α) is defined
to be α[L,E, L1][L,E, L2] . . . [L,E, Ln].

For constant propagation, the weakest precondition of σ(X) = σ(C) with
respect to a statement of the form Y := K is:

(σ(&X) = σ(&Y) ∧ σ(K) = σ(C)) ∨ (σ(&X) 6= σ(&Y) ∧ σ(X) = σ(C))

In our IL, two variables have the same address only if they are syntactically
the same and two constants have the same value only if they are syntactically
the same constant, so this formula is equivalent to (X $ Y ∧K $ C)∨ (X 6$
Y ∧ σ(X) = σ(C)), which is exactly the predicate we used in the overview
example from section 3.

As another example, the weakest precondition of σ(X) = σ(C) with re-
spect to a statement of the form ∗Y := Z is:

(σ(&X) = σ(&(∗Y)) ∧ σ(Z) = σ(C)) ∨ (σ(&X) 6= σ(&(∗Y)) ∧ σ(X) = σ(C))

In our IL, σ(&(∗Y) simplifies to σ(Y), so the above formula essentially does
case analysis based on whether or not Y points to X.

The standard weakest precondition operator wp does not include quan-
tification over σ; the quantification is implicit. In our algorithm, it will be
useful to make the quantification over σ explicit. We therefore use a version
of weakest precondition called wp∀ which makes this quantification explicit.

We use n to refer to the node that we are currently computing the weakest
precondition for. Furthermore, we assume that Σin refers to the set of all
concrete program states that can appear on the incoming CFG edge of n for
any execution of the particular IL program being analyzed. We define Σout

similarly. Finally, wp∀ is defined as follows (where wp is the previously defined
weakest precondition function without quantification):

wp∀(s, (∀σ ∈ Σout . α)) , ∀σ ∈ Σin . wp(s, α)

Henceforth, we will use the abbreviation ∀σ.
[
α
]

to denote ∀σ ∈ Σin . α.
In this model where quantifiers are explicit, the meaning of

hasConstValue(X,C)@in would be ∀σ ∈ Σin . (σ(X) = σ(C)), which using
our abbreviation would be ∀σ.

[
σ(X) = σ(C)

]
.

4.2 Normalization

The Normalize function transforms a given formula into an equivalent for-
mula that is in a standard normal form. This process involves two kinds of
normalization: logical normalization, which is used to put the formula in dis-
junctive normal form; and IL normalization, which puts terms and expressions
in a normal form based on the semantics of our IL. IL normalizations include
such simplifications as rewriting ∗(&Y) to Y .

9

Rice, Lerner, and Chambers

Context Rules

F t[T1] F t[T2] if T1 T2 F [F1] F [F2] if F2 F2

IL Normalization
Term Rewrite Rules

[&∗E] σ(&(∗X)) σ(X) [∗&E] σ(∗(&X)) σ(X)

Formula Rewrite Rules
[$I&] σ(&X) = σ(&Y) X $ Y [6$I&] σ(&X) 6= σ(&Y) X 6$ Y
[$Ic

] σ(K) = σ(C) K $ C [6$Ic
] σ(K) 6= σ(C) K 6$ C

[TIc&] σ(C) 6= σ(&X) true [FIc&] σ(C) = σ(&X) false
[TIcn] σ(C) 6= newloc true [FIcn] σ(C) = newloc false
[TIn&] newloc 6= σ(&Y) true [FIn&] newloc = σ(&Y) false
[TI&op

] σ(&X) 6= σ(op T1 . . . Tn) true [FI&op
] σ(&X) = σ(op T1 . . . Tn) false

[TI=] σ(T) = σ(T) true [FI 6=] σ(T) 6= σ(T) false
[TI$

] T $ T true [FI$
] T $ T ′ false

(if T and T ′ are distinct)

[opexpand]
F t[σ(op T1 . . . Tn)]
∃ C1, . . . , Cn . σ(C1) = σ(T1) ∧ . . . ∧ σ(Cn) = σ(Tn) ∧ F t[eval(op C1 . . . Cn)]

(where all variables in Ti are free in F t)

Logical Normalization
[logNorm] Rules which cause conversion to a standard disjunctive normal form.

Fig. 6. Normalization Rules

We express the normalization process as a rewrite system in Figure 6,
where x1 x2 says that the term or formula x1 is rewritten to x2. We use
F t[·] to represent a context F t with a term hole, F [·] to represent a context F
with a formula hole, and F+[·] to represent a context F+ with a formula hole
that appears in a positive position in F+.

The context rules in Figure 6 allow terms and subformulas to be rewritten
inside of a formula. Logical normalization rules, the details of which are not
shown in Figure 6, are used to put the formula in a logical normal form. Step
(3) of Figures 4 and 5 shows a logical normalization step where a universal
quantifier is pushed inside of a conjunction.

The IL normalization rules in Figure 6 are used to simplify the formula
based on the semantics of our IL. Language normalization rules come in two
categories: term rewrite rules and formula rewrite rules. Term rewrite rules
are used to simplify terms. For example, step (1) of Figure 5 uses the ∗&
elimination rule [∗&E] to simplify σ(∗(&Y)) to σ(Y). Formula rewrite rules
are used to simplify formulas. Most of these rules simplify formulas to either
true or false based on properties of the IL. Step (1) of Figure 4 uses three
common IL normalizations: the [$I&] rule is used to simplify σ(&X) = σ(&Y)
to X $ Y ; the [6$I&] rule is used to simplify σ(&X) 6= σ(&Y) to X 6$ Y ; and
finally, the [$Ic] rule is used to simplify σ(K) = σ(C) to K $ C. Each of

10

Rice, Lerner, and Chambers

these rules allows terms to be compared syntactically when there is a one-to-
one correspondence between an AST and a value.

The Normalize function applies the normalization rules from Figure 6 until
none are applicable anymore. For efficiency, this process can be staged into
three steps: first apply IL term rewrite rules, then apply IL formula rewrite
rules, and finally put the formula in logical normal form. This staging misses
no opportunities for simplification because later stages do not introduce new
opportunities for applying rules from earlier stages.

4.3 Mapping Formulas to Facts

The MapFacts function takes a formula φ and a set S of fact schema dec-
larations, and tries to replace subformulas of φ with facts that are instances
of schemas in S. All the schema meanings are first normalized and then the
schema declarations in S are sorted in decreasing order of meaning size. 9

The algorithm then proceeds through this list, matching each schema mean-
ing greedily against all possible subformulas. When a match is found, the
subformula of φ is replaced with the matching fact.

Because we have made quantifiers explicit, the meaning of a fact
is universally quantified over σ, so that, for example, the meaning of
hasConstValue(X,C)@in is ∀σ.[σ(X) = σ(C)]. As a result, in step (4) of
Figure 4, the MapFacts function replaces the subformula ∀σ.[σ(X) = σ(C)]
with hasConstValue(X,C)@in, as indicated by the [fact match] label to the
right of the inference step.

One subtlety is that Rhodium dataflow facts are must facts and so the
connection between a fact in a formula and its meaning is unidirectional: the
presence of a fact on an edge implies that its meaning holds at that edge,
but not the other way around. As a result, the absence of a Rhodium fact
provides no information whatsoever, and it certainly does not imply that the
meaning of the missing fact does not hold. Consequently, facts should only be
matched in positive positions of the formula φ. Consider, for example, the case
where φ = ¬(∀σ.[σ(X) = σ(C)]). It would be unsound to transform this into
¬hasConstValue(X,C)@in, because the formula ¬hasConstValue(X,C)@in
simply states the absence of hasConstValue(X,C) on the input edge, which
does not imply ¬(∀σ.[σ(X) = σ(C)]).

4.4 Strengthening

If Normalize and MapFacts are not able to remove all occurrences of σ from
φ, then we must strengthen φ using the Strengthen function. The strength-
enings used by Strengthen are shown in Figure 7 as rewrite rules. We write
F1 S F2 to denote that F1 can be strengthened to F2, meaning that, from a
logical point of view, F2 ⇒ F1.

The simplest kind of strengthening is [strong falseI], which rewrites a for-
mula to false. We use this strengthening when no other strengthenings apply,

9 Alternatively, if the user has an intuition of which facts would be better to match first,
we could allow the user to specify this ordering.

11

Rice, Lerner, and Chambers

Context Rules
F+[F1] S F

+[F2] if F1 S F2

Strengthening Rules

[strong FI] F S false
[syntactic] σ(T1) = σ(T2) S T1 $ T2

[∀ ∨ push] ∀x.
[
F1 ∨ F2

]
 S ∀x.

[
F1

]
∨ ∀x.

[
F2

]
[∀ resolution] ∀x.

[
(F1 ∧ F2) ∨ (¬F1 ∧ F3)

]
 S ∀x.

[
F1 ∧ F2

]
∨ ∀x.

[
¬F1 ∧ F3

]
∨ ∀x.

[
F2 ∧ F3

]
Fig. 7. Strengthening Rules

but there are still references to σ in φ. In this case, for each occurrence of σ,
we find the smallest enclosing subformula of φ that is in a positive position in
φ, and replace it with false.

A less conservative kind of strengthening is to change value equality into
syntactic equality, as shown in the [syntactic] rule: if two terms are syntac-
tically equal, in other words T1 $ T2, then they evaluate to the same thing,
in other words σ(T1) = σ(T2). This is a strengthening because the implica-
tion does not hold the other way: σ(T1) = σ(T2) does not necessarily imply
T1 $ T2.

A third kind of strengthening is to push universal quantifiers into dis-
junctions, as shown in [∀ ∨ push]. Immediately after computing the weakest
precondition, the σ quantifier occurs at the outermost level of φ. However,
individual meanings of fact schemas will match nested subformulas only if the
quantifier occurs as part of the subformula, and therefore pushing quantifiers
inwards is critical. The normalization process takes care of pushing ∀’s into
conjunctions (this leads to an equivalent formula). The [∀∨push] rule is what
allows our algorithm to push ∀’s into disjunctions.

The Strengthen function considers the rules from Figure 7 in the follow-
ing order: [∀ ∨ push], then [syntactic], and finally [strong falseI]. Strengthen
applies the first rule that matches in this list and it only performs one strength-
ening per invocation.

If the Strengthen function only used [∀∨push] to push quantifiers through
disjunctions, then step (2) of Figure 5 would only generate the first two cases
of the disjunction, and the generated rule would be:

(mustPointTo(Y,X)@in ∧ hasConstValue(Z,C)@in) ∨
(mustNotPointTo(Y,X)@in ∧ hasConstValue(X,C)@in)

The first disjunct is applicable if we can statically determine
mustPointTo(X, Y) and the second disjunct is applicable if we can stat-
ically determine mustNotPointTo(X, Y). However, these two rules do
not cover a third situation, in which we can statically determine nei-
ther mustPointTo(X, Y) nor mustNotPointTo(X, Y). In this third situa-
tion, we could still soundly propagate hasConstValue(X,C)@out as long as
hasConstValue(X,C)@in ∧ hasConstValue(Z,C)@in holds. We can recover
this third case automatically and generate useful rules for it using resolution.

12

Rice, Lerner, and Chambers

When applied to disjunctive normal form, resolution says that (A ∧ B) ∨
(¬A ∧ C) is equivalent to (A ∧ B) ∨ (¬A ∧ C) ∨ (B ∧ C). In our case, we
can use resolution to add the missing disjunct. At first, it may seem counter-
productive to add disjuncts using resolution, because the added disjuncts are
logically redundant. However, the key idea is that these additional disjuncts
will reduce the amount of precision that is lost in later [∀ ∨ push] strengthen-
ings.

Consider for example ∀σ.
[
(A ∧ B) ∨ (¬A ∧ C)

]
. Pushing the quanti-

fier through disjunctions and conjunctions produces the stronger formula
(∀σ.

[
A

]
∧∀σ.

[
B

]
)∨ (∀σ.

[
¬A

]
∧∀σ.

[
C

]
). Alternatively, we could apply resolu-

tion to the original formula and get ∀σ.
[
(A∧B)∨(¬A∧C)∨(B∧C)

]
. Although

at this point the disjunct B ∧C is redundant, once we push the quantifier in-
ward, we get (∀σ.

[
A

]
∧ ∀σ.

[
B

]
) ∨ (∀σ.

[
¬A

]
∧ ∀σ.

[
C

]
) ∨ (∀σ.

[
B

]
∧ ∀σ.

[
C

]
),

and in this formula, the disjunct ∀σ.
[
B

]
∧ ∀σ.

[
C

]
is not redundant. The ad-

ditional disjunct covers the case in which neither ∀σ.
[
A

]
nor ∀σ.

[
¬A

]
can be

determined statically. In fact, the formula produced by simply pushing the
quantifiers implies the formula produced by doing resolution and then pushing
the quantifiers. As a result, the latter strengthening loses less precision, and
therefore is a better strengthening to apply.

Because the disjuncts introduced by resolution are redundant and therefore
useless until the [∀∨push] rule is applied, we have merged [∀∨push] with reso-
lution to produce the combined rule [∀ resolution], as shown in Figure 7. The
Strengthen function considers this rule before the other three strengthening
rules. The [∀ resolution] rule is used in step (2) of the examples in Figures 4
and 5. The use of this resolution rule has uncovered useful cases that we had
not thought of previously when writing the flow functions by hand (and some
cases that we had written by hand but would have missed without resolution).

5 Current and Future Work

We are currently trying our technique on additional dataflow fact schemas by
hand, for example an available expressions fact schema. Once this is done,
we will start implementing our algorithm in a prototype tool for inferring
Rhodium flow functions. After this prototype is completed, there are several
possible directions for future work.

One direction would be to infer not only rules but also new fact schemas.
Consider for example the derivation from Figure 5, but this time we will
assume that the user has only provided the hasConstValue schema, and not
the mustPointTo and mustNotPointTo schemas.

The derivation will be the same as in Figure 5, except that step (4) will
lead to the following formula:

(∀σ.
[
σ(&X) = σ(Y)

]
∧ hasConstValue(Z,C)@in) ∨

(∀σ.
[
σ(&X) 6= σ(Y)

]
∧ hasConstValue(X,C)@in) ∨

(hasConstValue(Z,C)@in ∧ hasConstValue(X,C)@in)

Because mustPointTo and mustNotPointTo were not provided as fact

13

Rice, Lerner, and Chambers

schemas, there is no way to map the remaining σ’s onto facts, and so our
current algorithm will have to resort to strengthenings: it will be forced to
use [strong falseI] to remove the first two disjuncts, leaving only the third one.
Our goal is to extend our algorithm so that instead of strengthening in the
above case we would infer the need for two new fact schemas: one with mean-
ing σ(&X) = σ(Y), and one with meaning σ(&X) 6= σ(Y). These are exactly
the mustPointTo and mustNotPointTo schemas that we previously assumed
were given to us. Our algorithm would have to infer rules for these new fact
schemas, which may in turn lead to more fact schemas. The key challenge will
be to find good heuristics for choosing when to infer new fact schemas and
when to strengthen so that this loop ends in practice.

Another direction for future work is to infer a set of fact schemas for
justifying a particular optimizing transformation. The user would only provide
an optimization goal of the form “try to transform s1 to s2”, and our system
would essentially infer the dataflow analysis to drive this optimization: it
would find the fact schemas to justify a Rhodium transformation rule of the
form if stmt(s1) ∧ ψ then transform s2, and then it would find the rules
to propagate facts that are instances of these schemas (potentially inferring
more fact schemas in the process). In the very long term, we could also try
to infer the optimizing transformations themselves, or provide programmers
with various tools to help them find useful optimizing transformations.

6 Related Work

Our work is closely related to predicate abstraction [3,2,1]. The domain in
predicate abstraction consists of a fixed, finite cartesian product of boolean
values, where each boolean value is the abstraction of a predicate over concrete
states. Because such domains are finite, it is possible to infer the flow functions
by asking a theorem prover to try out all possible abstract transitions. The
generated flow functions consist of those transitions that the theorem prover
was able to validate. Unlike the predicate-abstraction approach, our technique
handles infinite-domain fact schemas such as hasConstV alue(X,C), where C
ranges over arbitrary constants.

The recent work of Reps, Sagiv, and Yorsh [7,9] addresses the finite-domain
limitation of the predicate-abstraction approach: they have derived the best
flow function for a more general class of domains, namely finite-height domains
(which includes hasConstValue(X,C)). For these domains, Reps et al. present
an algorithm that computes the best possible abstract information flowing out
of a statement given the abstract information flowing into it. The flow function
of Reps et al. is not specialized with respect to the domain: they describe one
single flow function that works for all finite-height domains. In contrast, our
approach generates flow functions that are specific to the domain specified by
the user. Furthermore, their flow function is computationally expensive. Each
invocation of their flow function uses an iterative approximation technique
that makes successive calls to a decision procedure (a theorem prover). In
contrast, our generated flow functions only perform syntactic checks when
they are executed.

14

Rice, Lerner, and Chambers

Finally, our work is also related to the HOIST system for automatically
deriving static analyzers for embedded systems [6]. The HOIST work derives
abstract operations by creating a table of the complete input-output behavior
of concrete operations, and then abstracting this table to the abstract domain.
Our work differs from HOIST in that we can handle concrete domains of
infinite size, whereas the HOIST approach inherently requires the concrete
domain to be finite.

7 Conclusion

We have presented an algorithm for inferring dataflow functions from dataflow
fact schemas. By reducing the burden on the analysis-writer, while at the same
time guaranteeing that flow functions are sound, we hope that our work will
not only make it easier to write sound program analysis tools, but will also
make it feasible to open up program analysis tools to safe user extensions.

References

[1] Ball, T., R. Majumdar, T. Millstein and S. K. Rajamani, Automatic predicate
abstraction of C programs, in: Proceedings of ACM SIGPLAN PLDI’2001,
Snowbird, Utah, USA, 2001.

[2] Das, S., D. L. Dill and S. Park, Experience with predicate abstraction, in:
Proceedings of the 11th International CAV Conference, 1999.

[3] Graf, S. and H. Saidi, Construction of abstract state graphs of infinite systems
with PVS, in: Proceedings of the 9th International CAV Conference, 1997.

[4] Lerner, S., T. Millstein and C. Chambers, Automatically proving the correctness
of compiler optimizations, in: Proceedings of ACM SIGPLAN PLDI’2003, San
Diego, California, USA, 2003.

[5] Lerner, S., T. Millstein, E. Rice and C. Chambers, Automated soundness proofs
for dataflow analyses and transformations via local rules, in: Conference Record
of the 32nd ACM SIGPLAN-SIGACT POPL, Long Beach, California, USA,
2005.

[6] Regehr, J. and A. Reid, HOIST: A system for automatically deriving static
analyzers for embedded systems, in: Proceedings of the 11th International
ASPLOS Conference, Boston, Massachusetts, USA, 2004.

[7] Reps, T., M. Sagiv and G. Yorsh, Symbolic implementation of the best
transformer, in: Proceedings of VMCAI 2004, Venice, Italy, 2004.

[8] Rice, E., S. Lerner and C. Chambers, Automatically inferring sound dataflow
functions from dataflow fact schemas, Technical Report UW-CSE-2005-02-03,
University of Washington (2005).

[9] Yorsh, G., T. Reps and M. Sagiv, Symbolically computing most-precise abstract
operations for shape analysis, in: Proceedings of TACAS’2004, Barcelona, Spain,
2004.

15

	Introduction
	Background on Rhodium
	Overview of our Approach
	Algorithm for Inferring Rules from Facts
	Weakest precondition
	Normalization
	Mapping Formulas to Facts
	Strengthening

	Current and Future Work
	Related Work
	Conclusion
	References

