
1

Performance Evaluation of Vortex-compiled Applications

The Cecil Group

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350
cecil@cs.washington.edu

Abstract

This documentoutlineshow to obtain maximal runtime performancefrom applicationscompiledwith the Vortex
compiler. It first describeshow we typically useVortex to produceprogramswith reasonableruntimeperformance
during day to day applicationdevelopment.Then it discussesseveral issuesthat arisewhen benchmarkingCecil
programsfor maximalperformanceandwhenusingtheVortex compilerinfrastructureto studytheimpactof different
optimizationtechniques.This documentis intendedasa supplementto the Vortex usermanual,andassumessome
familiarity with it.

1 Maximizing Normal Application Performance

Vortex’s default initial compilationmodeis non-optimizingcompilation(o0); to enableoptimizationthe
usermustsetthe compileroption* optimization_level (by convention,larger valuesdenotemore
aggressive combinations of optimizations). Typically, this is done by issuing the o1 (sets
optimization_level to 1) or o2 (setsoptimization_level to 2) commandsat theVortex>
prompt. During applicationdevelopment,we will typically have most of the application’s sourcefiles
alreadycompiled with optimization while thosefiles that are actively being edited/debuggedwill be
compiledwithout optimization to minimize turnaroundtime and maximizedebuggability. Periodically
(over lunchfor example)weutilize thepmakeo2 Vortex commandto recompilewith optimizationall files
that are currently unoptimized.

Thereareanumberof compileroptionsthatcontrolwhatoptimizationsVortex performsduringoptimizing
compilation.They default to settingsthatwehave foundmostappropriatein ourdaily useof Vortex. Thus,
thetypicalusercansimplychooseabuilt-in combinationof optimizations(o0, o1, oro2) withoutneeding
to fine tune other optimization-related compiler options.

Two (often important)optimizationsrequireadditionaleffort by the user, however. Profile-guidedclass
predictioncanbe quite effective for someapplications,but requiresthat the userprovide profile-derived
classdistributions to guide the optimization,We first describehow to gather thesedistributions from
programs and then describe how to make them available to Vortex for exploitation.

Unfortunately, gatheringprofile datais a somewhat tediousprocess.Supposewe wantedto gatherprofile
datafor my_program.cecil, which hasalreadybeencompiledby Vortex usingeitherC or assembly
code-generation.The first stepis to build an instrumentedexecutablefrom the Vortex-generatedfiles by
typingmake pic at theUnix prompt(if you have thepm utility for spawning parallelC compiles,then
you cangive mc the-pic flag). This will produceanexecutablenamedmy_program.pic. To gather
theprofiledata,runtheinstrumentedexecutablewith theadditionalcommandline argument--picstats

* SeetheVortex usermanualfor a descriptionof thevariouscompileroptionsandhow to setthem.A list of all the
compileroptions,their currentvalues,anda brief descriptionof eachoptioncanbeobtainedby typing options
all at theVortex> prompt.



2

Performance Evaluation of Vortex-compiled Applications

on a representative input. The profile data is printed to stdout when the programterminatesnormal
execution,andyou needto capturetheprofile datainto a file for laterprocessing,sowe typically redirect
the program output to a pipe or file. For example,

(Unix%) my_program.pic --picstats [other arguments] > my_program.data

The raw profile data must be processedbefore it can be utilized by Vortex, and a script called
call-chain.perl has been provided to do this. For example,

(Unix%) call-chain.perl < my_program.data > my_program.nCCP

will formattheprofiledatagatheredin thepreviousstepinto aprofilefile calledmy_program.nCCP that
can be utilized by Vortex. Finally, we read the profile data into Vortex by saying:

Vortex> load_profile "my_program.nCCP"

Onceprofiledatahasbeenreadinto thecompiler, it will becomepartof thepersistentprogramdatabaseand
will be utilized during all subsequent optimizing compilations unless explicitly flushed.

For thebestresults,oneshoulditeratethis processa coupleof times(gatherprofiles,usethemto build an
optimizedexecutable,gathernew profilesfrom theoptimizedexecutable,andsoon),becausethecall chain
context associatedwith the profile data increaseswith iteration, thus making the datamore useful for
optimization.After a few iterations,thereshouldbe no morechangesin the profile data;a diff of the
my_program.nCCP generatedfiles shouldindicatewhenthe bestprofile datahasbeenachieved.Our
experiencehasbeenthatprofilesderived from optimizedexecutablesaremuchmoreeffective thanthose
from non-optimizedexecutables,andthatseveralrepeatediterationscanincreaseperformanceby 10-20%,
depending on the application.

Specializationis anotheroptimization that relies on the presenceof profile dataand must be invoked
explicitly. After loading profile data in to Vortex, typing graphs "my_program.cecil";

specialize at the Vortex> prompt will invoke profile-guided method specialization. This
optimizationincreasesperformanceby around10-15%,againdependingontheapplication.Unfortunately,
a specializedapplicationis not suitablefor profiling itself, so save specializationfor last, onceprofile
iterationhasbeencompleted.(In thefuture,wewill try to makespecializationbetterintegratedinto therest
of the compiler infrastructure.)

Currently specialization and static class prediction are only implemented for Cecil and Java programs.

2 Benchmarking Applications

In its default compilationmode,whencompiling Cecil applicationsVortex generatescodethat supports
fairly goodsourcelevel debugging.However, we have not yet spentmuchtime optimizingour debugging
supportandthesimpleschemecurrentlyusedincursa fairly hefty runtimecost,oftenon theorderof 30%
or 40%in optimizedcode.Therefore,whenbenchmarkingCecilapplicationswedisabledebuggingsupport
by settingthecompileroptionsdebug_support andinterrupt_checking to false(e.g.,Vortex>
no_debug_support; no_interrupt_checking). Note that code compiled with and without
debuggingsupportcannotbemixed; toggling thedebug_support optionwill automaticallyinvalidate
all compiled code.

Anotherthing to beawareof is that, to reducethecostsof gatheringprofiling data,Vortex doesnot fully
instrumentcalls that have beenstatically-boundpurely by meansof somestatic analysis(for example,
intraproceduralclassanalysis,classhierarchy analysisor staticclassprediction).In mostcasesthisdoesnot



3

Performance Evaluation of Vortex-compiled Applications

matter, but if differentlevelsof staticanalysisaregoingto beused(for exampleto measuretheeffectiveness
of variousflavorsof staticclassanalysis),thenit is critical thattheprofiledatato beusedin theexperiments
begatheredfrom executablescompiledwith thesamelevel of staticanalysis.For example,to measurethe
impact of class hierarchy analysis,one might want to comparethe following four combinationsof
optimizations:

• intra: intraprocedural class analysis

• intra+profile: intraprocedural class analysis + profile-guided class prediction

• intra+CHA: intraprocedural class analysis + class hierarchy analysis

• intra+CHA+profile: intraproceduralclassanalysis+ classhierarchy analysis+ profile-guidedclass
prediction.

To do this requirestwo setsof profile information:aprofileof the intra versionof theprogramto build the
intra+profile versionand a profile of the intra+CHA versionto build the intra+CHA+profile version.
Futureversionsof Vortex maysupportanadditional,moreexpensive level of profiling thatinstrumentsall
statically-boundcalls,but this is notcurrentlyimplemented.Similarly, asmentionedabove,Vortex doesnot
perform enoughinstrumentationof specializedprograms,and the missinginformation can degradethe
quality of the profile data substantially.

If you aregoing to be doing a non-trivial amountof benchmarkingand/orperformanceevaluationusing
Vortex, you shouldinvestsometime andbecomefamiliar with the config family of scriptsthat we have
developedto supportthesetasks(found in $VORTEX_HOME/bin/shell). The file configs.perl is
includedin therestof thescripts;it definesconfigurationinformationandhandlescommandlinearguments.
buildConfig usesVortex to build executable,runProgs measuresthe resulting exectuables,and
showData displays experimental results.


