Performance Evaluation of Vortex-compiled Applications

The Cecil Group

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, Washington 98195-2350
cecil@cs.washington.edu

Abstract

This documentoutlineshow to obtain maximal runtime performancerom applicationscompiledwith the Vortex
compiler It first describeshow we typically useVortex to produceprogramswith reasonableuntime performance
during day to day applicationdevelopment.Thenit discusseseveral issuesthat arise when benchmarkingCecil
programdor maximalperformanceandwhenusingtheVortex compilerinfrastructureo studytheimpactof different
optimizationtechniquesThis documents intendedasa supplemento the Vortex usermanual,andassumesome
familiarity with it.

1 Maximizing Normal Application Performance

Vortex’'s default initial compilationmodeis non-optimizingcompilation(o0); to enableoptimizationthe
usermustsetthe compileroption opti ni zati on_| evel (by corvention,largervaluesdenotemore
aggressie combinations of optimizations). Typically, this is done by issuing the ol (sets
optim zation_l evel tol)oro2 (setsoptini zati on_I| evel to2) commandsattheVort ex>
prompt. During applicationdevelopment,we will typically have most of the applications sourcefiles
already compiled with optimization while thosefiles that are actively being edited/debggedwill be
compiled without optimizationto minimize turnaroundtime and maximize detuggability. Periodically
(overlunchfor example)we utilize theprmakeo2 Vortex commando recompilewith optimizationall files
that are currently unoptimized.

Thereareanumberof compileroptionsthatcontrolwhatoptimizationsvortex performsduringoptimizing
compilation.They defaultto settingsthatwe have found mostappropriaten our daily useof Vortex. Thus,
thetypical usercansimply choosea built-in combinatiornof optimizationgo0, 01, or 02) withoutneeding
to fine tune other optimization-related compiler options.

Two (often important) optimizationsrequire additionaleffort by the user however. Profile-guidedclass
predictioncanbe quite effective for someapplications but requiresthat the userprovide profile-derved
classdistributions to guide the optimization, We first describehow to gatherthesedistributions from
programs and then describeahtiv male them =ailable to \ortex for exploitation.

Unfortunately gatheringprofile datais a somavhattediousprocessSupposeave wantedto gatherprofile
datafor my_program ceci | , which hasalreadybeencompiledby Vortex usingeitherC or assembly
code-generationThe first stepis to build an instrumentedexecutablefrom the Vortex-generatediles by
typing make pi ¢ atthe Unix prompt(if you have thepm utility for spavning parallelC compiles,then
you cangive nt the- pi ¢ flag). This will producean executablenamedy_pr ogr am pi c. To gather
theprofile data runtheinstrumente@xecutablevith theadditionalcommandine agument - pi cst at s

" Seethe Vortex usermanualfor a descriptionof the variouscompileroptionsandhow to setthem.A list of all the
compileroptions,their currentvalues,anda brief descriptionof eachoption canbe obtainedby typing opt i ons
al | attheVort ex> prompt.



Performance Ealuation of \értex-compiled Applications

on a representatie input. The profile datais printed to stdout when the programterminatesnormal
execution,andyou needto capturethe profile datainto afile for later processingsowe typically redirect
the program output to a pipe or filerFexample,

(Uni x% my_programpic --picstats [other argunents] > ny_program data

The raw profile data must be processedbefore it can be utilized by Vortex, and a script called
cal | - chai n. per| has been prided to do this. & example,

(Uni x% call-chain.perl < ny_programdata > ny_program nCCP

will formatthe profile datagatheredn the previousstepinto a profilefile calledny_pr ogr am nCCP that
can be utilized by dftex. Finally, we read the profile data int@iex by saying:

Vortex> | oad_profile "my_program nCCP"

Onceprofile datahasbeernreadinto thecompiler it will becomepartof thepersistenprogramdatabasand
will be utilized during all subsequent optimizing compilations unlzpfictly flushed.

For the bestresults,oneshoulditeratethis processa coupleof times(gatherprofiles,usethemto build an
optimizedexecutablegathernew profilesfrom the optimizedexecutableandsoon), because¢hecall chain
contet associatedvith the profile dataincreaseswith iteration, thus making the data more useful for
optimization.After a few iterations,thereshouldbe no more changesn the profile data;a di f f of the
my_pr ogr am nCCP generatediles shouldindicatewhenthe bestprofile datahasbeenachieved. Our
experiencehasbeenthat profilesderived from optimizedexecutablesare muchmore effective thanthose
from non-optimizedexecutablesandthatseveralrepeatedterationscanincreaseerformancédy 10-20%,
depending on the application.

Specializationis anotheroptimizationthat relies on the presenceof profile dataand must be invoked
explicitly. After loading profile data in to Vortex, typing graphs "ny_program cecil";
speci al i ze at the Vortex> prompt will invoke profile-guided method specialization. This
optimizationincreaseperformancdy around10-15%,again dependingnthe application.Unfortunately
a specializedapplicationis not suitablefor profiling itself, so sase specializationfor last, once profile
iterationhasbeencompleted(In thefuture,we will try to make specializatiorbetterintegratedinto therest
of the compiler infrastructure.)

Currently specialization and static class prediction are only implemented for Cecivargidigrams.

2 Benchmarking Applications

In its default compilationmode,when compiling Cecil applicationsVortex generatesodethat supports
fairly goodsourcelevel dehugging.However, we have not yet spentmuchtime optimizing our delugging
supportandthe simpleschemecurrentlyusedincursafairly hefty runtimecost,oftenonthe orderof 30%
or 40%in optimizedcode.Thereforewhenbenchmarking ecil applicationsve disabledeluggingsupport
by settingthecompileroptionsdebug_support andi nt er r upt _checki ng tofalse(e.g.,Vort ex>

no_debug_support; no_interrupt_checki ng). Note that code compiled with and without
deluggingsupportcannotbe mixed;togglingthe debug_support optionwill automaticallyinvalidate
all compiled code.

Anotherthing to be awareof is that, to reducethe costsof gatheringprofiling data,VVortex doesnot fully
instrumentcalls that have beenstatically-boundpurely by meansof somestatic analysis(for example,
intraproceduratlassanalysisgclasshierarcly analysisor staticclassprediction).ln mostcaseghis doesnot



Performance Ealuation of \értex-compiled Applications

matter butif differentlevelsof staticanalysisaregoingto beused(for exampleto measureheeffectiveness
of variousflavorsof staticclassanalysis)thenit is critical thatthe profile datato be usedin theexperiments
be gatheredrom executablesompiledwith the samelevel of staticanalysisFor example,to measurehe
impact of class hierarcly analysis,one might want to comparethe following four combinationsof
optimizations:

* intra: intraprocedural class analysis

« intra+profile: intraprocedural class analysis + profile-guided class prediction

* intra+CHA: intraprocedural class analysis + class hiesagetalysis

« intra+CHA+profile: intraproceduraklassanalysis+ classhierarcly analysis+ profile-guidedclass
prediction.

To dothisrequirestwo setsof profile information:a profile of theintra versionof the programto build the
intra+profile versionand a profile of the intra+CHA versionto build the intra+CHA+profile version.
Futureversionsof Vortex may supportanadditional,moreexpensve level of profiling thatinstrumentsall
statically-bounctalls,but thisis not currentlyimplementedSimilarly, asmentionecabove, Vortex doesnot
perform enoughinstrumentatiorof specializedprograms,and the missinginformation can degradethe
quality of the profile data substantially

If you aregoingto be doing a non-trivial amountof benchmarkingand/orperformancesvaluationusing
Vortex, you shouldinvestsometime and becomefamiliar with the config family of scriptsthat we have
developedto supportthesetasks(found in $VORTEX_HOME/ bi n/ shel |). The file confi gs. perl is
includedin therestof thescripts;it definesconfigurationinformationandhandlecommandine arguments.
bui | dConfi g usesVortex to build executable,r unProgs measureshe resulting exectuables,and
showDat a displays &perimental results.



