
University of Washington Computer Science and Engineering Technical Report UW-CSE-14-05-01

Approximate Computing on Programmable SoCs via Neural Acceleration

Thierry Moreau Jacob Nelson Adrian Sampson
Hadi Esmaeilzadeh∗ Luis Ceze

University of Washington ∗Georgia Institute of Technology

Abstract
Processor designs for portable, ubiquitous computing de-

vices such as cell phones have widely incorporated hardware
accelerators to support energy-efficient execution of common
tasks. Porting applications to take advantage of these re-
sources is often a difficult task due to the restricted program-
ming model of the accelerator: FPGA-based acceleration, for
instance, often requires the expertise of a hardware designer.
Fortunately, many applications that can take advantage of
accelerators are amenable to approximate execution, which
prior work has shown can be exploited with a simple program-
ming model.

This paper presents a comprehensive and mostly automatic
framework that allows general-purpose approximate code to
use programmable logic without directly involving hardware
design. We propose SNNAP, a flexible FPGA-based neural
accelerator for approximate programs. We identify the chal-
lenges associated with this approach and design a hardware
framework that offers this capability. We measure a real FPGA
implementation on a state-of-the-art programmable system-
on-a-chip (PSoC) and show an average 1.77× speedup and
1.71× energy savings.

1. Introduction
In light of diminishing returns from technology improve-
ments on performance and energy efficiency [18, 25], re-
searchers are actively seeking solutions that will provide possi-
ble paths forward. There are at least two clear trends emerging.
One is the use of specialized logic in the form of accelera-
tors [23, 24, 47, 48] or programmable logic [11, 36, 38]; and
another is taking advantage of the broad array of applications
that can tolerate quality degradations in return for performance
and energy efficiency—a.k.a., approximate computing. Spe-
cialization leads to better efficiency by trading off flexibility
for leaner logic and hardware resources, and approximate
computing improves efficiency by embracing inaccurate be-
havior. The confluence of the two trends can lead to still more
opportunities to improve efficiency.

One promising approach to specialization for energy effi-
ciency is the incorporation of programmable logic. On-chip
field-programmable gate arrays (FPGAs) have the potential to
unlock order-of-magnitude energy efficiency gains when they
are configured to offload work from the CPU [44]. Commer-
cial system-on-a-chip parts that incorporate a large amount
of programmable logic [2, 50] are beginning to appear. But

enabling mainstream programmers, who are accustomed to
software and not hardware design, to write efficient FPGA
configurations remains a challenge. High-level synthesis and
C-to-gates compilers have been shown to work for some do-
mains but have limited applicability [1, 16].

This paper explores an opportunity to use programmable
logic to accelerate approximate programs without the need
for per-application FPGA designs. Instead, we instantiate
a flexible, high-performance neural network design in pro-
grammable logic. Recent work has shown how to use a
neural network as a general accelerator for approximate pro-
grams [5,10,20,46]. Our accelerator hardware, called SNNAP
(systolic neural network accelerator in programmable logic),
enables neural acceleration for heterogeneous systems aug-
mented with FPGAs. SNNAP can be configured to accelerate
a wide range of programs just by loading new weights into the
accelerator—without reconfiguring the underlying FPGA fab-
ric. This allows SNNAP to support new applications without
requiring hardware design or synthesis.

Approximate programs can use SNNAP for acceleration via
a compiler workflow that automatically configures the neural
network’s topology and weights instead of the programmable
logic itself. The key idea is to train a logical neural network
to behave like regions of approximate code. Once the neural
network is trained, the system no longer executes the origi-
nal code and instead invokes the neural network model on a
neural processing unit (NPU). This leads to better efficiency
because neural networks are amenable to efficient implemen-
tation in hardware [17, 29, 37, 42]. Prior work on NPUs [20]
for general-purpose approximate computing, however, have
assumed NPUs as fully custom logic tightly integrated with
the processor core (evaluated in simulation). While this in-
creases potential applicability, it limits adoption and requires
deeper changes to existing core designs.

SNNAP’s adaptable neural network design offers several
advantages compared to designing special custom logic for
each region of code to be accelerated. First, the programming
model and neural network training framework we employ
frees the programmer from having to design logic. Second, a
very diverse body of code can be accelerated with the same
circuit design, avoiding expensive FPGAs reconfigurations.
The only thing that changes between code regions are the
neural network configuration parameters. Our NPU design
offers fast reconfigurability without resynthesizing the circuit.
Finally, this approach sidesteps the limitations of high-level

1

synthesis (C-to-gates) approaches. While there is likely some
efficiency loss compared to synthesizing a specific design
for each code region, our results show that it is viable and
beneficial to do approximate neural-based acceleration on
programmable logic.

The main contribution of this work is a comprehensive
framework that allows general-purpose approximate code to
exploit programmable logic without directly involving hard-
ware design. We used a real FPGA for our implementation
and actual measurements on a state-of-the-art programmable
system-on-a-chip (PSoC). We identify two core challenges:
data communication latency between the core and the pro-
grammable logic unit; and the frequency discrepancy between
the programmable logic and the core. We address those chal-
lenges with careful design of a throughput-oriented interface
and an architecture based on scalable systolic arrays.

To evaluate our framework, we ran a suite of approximate
benchmarks on our design implemented in the SoPC. We
found a average speedup of 1.77×, with the fastest bench-
mark achieving a 17.95× speedup and the slowest 0.57×. We
obtained similar energy savings; the average was 1.71×, the
maximum was 17.44×, and the minimum was 0.56×.

2. Programming

SNNAP accelerates regions of approximate code. This sec-
tion describes its interfaces and programming model. The
layers range from the instruction-level interface emitted by the
compiler to an automatic transformation, termed neural accel-
eration, that invokes SNNAP transparently based on minimal
program annotations.

2.1. Neural Acceleration Overview

While SNNAP can speed up explicit neural network invoca-
tions, it is most broadly applicable when it can automatically
replace expensive, approximate code written in the source lan-
guage. To enable software to exploit SNNAP automatically,
we leverage the neural acceleration paradigm originally pro-
posed by Esmaeilzadeh et al. [20]. Here we briefly recap the
neural acceleration workflow.

The process begins with an approximation-aware program-
ming language that marks some code and data as approx-
imable. Language options include Relax’s code regions [15],
EnerJ’s type qualifiers [40], Rely’s variable and operator an-
notations [7], or simple function annotations. In any case,
the programmer’s job is to express where incorrect results are
allowed and where they could break fundamental program
invariants. The neural-acceleration compiler enumerates the
implied regions of approximate code, termed target regions,
and transforms each of them to use an abstract neural network.
During the transformation process, the compiler uses a set of
test inputs to repeatedly execute the program and collect input
and output values for each target region. Standard training
algorithms produce a neural network according to each input–

output data set and, finally, the compiler replaces the original
code with an invocation of the learned neural network.

As an example, consider a program that filters each pixel in
an image. The original code might resemble:

APPROX_FUNC double filter(double pixel);

...

for (int x = 0; x < width; ++x)

for (int y = 0; y < width; ++y)

out_image[x][y] = filter(in_image[x][y]);

where the filter() function is marked as approximable. A
final transformed version of the code replaces the filter call
with a call to invoke SNNAP (nn_invoke) and adds a call early
in the program to set up the neural network for invocation
(nn_configure):

nn_configure(...);
for (int x = 0; x < width; ++x)

for (int y = 0; y < width; ++y)

out_image[x][y] = nn_invoke(in_image[x][y]);

While the above example uses explicit function annotation,
the technique extends to other generic approximate program-
ming models where approximable regions are implicit. For
example, in EnerJ [40], annotations express what may be ap-
proximated but not specifically how—the same annotation
set can permit low-power functional units [19, 30, 49], unreli-
able storage [9, 19, 31, 41], and even algorithmic changes [43].
Neural acceleration fits into the array of approximation strate-
gies when any region of code (a) has exclusively approximate
effects, (b) has a fixed number of numeric live-ins and live-
outs identifiable by the compiler, and (c) is computationally
expensive according to a performance profile.

2.2. Low-Level Interfaces

While automatic transformation represents the highest-level in-
terface to SNNAP, it is built on lower-level interfaces intended
to be emitted by compilers or used directly by experts. This
section details the instruction-level interface to SNNAP and a
low-level library layered on top of it that makes its asynchrony
explicit.

Unlike a low-latency circuit that can be tightly integrated
with the pipeline, FPGA-based accelerators cannot afford to
block program execution to compute each individual input.
Instead, we architect SNNAP to operate efficiently on batches
of inputs. Software groups together invocations of the neu-
ral network and ships them all simultaneously to the FPGA
for pipelined processing. In this sense, SNNAP behaves as a
throughput-oriented accelerator: it behaves most effectively
when the program keeps it busy with a large number of in-
vocations rather than when each individual invocation must
complete quickly.

Instruction-Level Interface At the lowest level, the pro-
gram invokes SNNAP by enqueueing batches of inputs, in-
voking the accelerator, and receiving a notification when the
batch is complete. Specifically, the program writes all the
inputs into a buffer in memory and uses the ARM SEV (send
event) instruction to notify SNNAP. The accelerator then reads

2

the inputs from the CPU’s cache via the coherence interface
and processes them, placing the output into another buffer.
Meanwhile, the program issues an ARM WFE (wait for event)
instruction to sleep until the neural-network processing is done
and then reads the outputs.

Asynchronous Call The most flexible interface to SNNAP
reflects its asynchronous nature by explicitly separating the
invocation from the collection of results. The programmer
calls nn_send(x) to build up a batch of inputs for SNNAP
and later calls nn_receive() to request the computed outputs.
These functions are responsible for implicitly building up
batches, sending them to SNNAP, and buffering results.

Recall the above pixel-filtering example. The nn_invoke

call inside the loop is equivalent to an nn_send immediately
followed by an nn_receive, which permits no batching and
no asynchronous execution. Instead, a more efficient solution
uses two loops, one to send the inputs and one to receive the
results:

for (int x = 0; x < width; ++x)

for (int y = 0; y < width; ++y)

nn_send(in_image[x][y]);
for (int x = 0; x < width; ++x)

for (int y = 0; y < width; ++y)

out_image[x][y] = nn_receive();

This asynchronous style lets the SNNAP runtime library build
batches of pixels. In more sophisticated programs, it also lets
SNNAP run in parallel with other program code that occurs
between nn_send and nn_receive calls.

This style resembles promise or future constructs from par-
allel programming. An nn_send call enqueues an input value
and, if the buffer then becomes full, sends the input batch and
clears it. Each nn_receive call consumes and returns the out-
put for the oldest unconsumed SNNAP invocation. (In other
words, the nth receive call that the program executes corre-
sponds to its nth send call.) If no outputs are available, the call
blocks until a new result batch is received. If nn_receive is
called before the input buffer is full, a partial batch is sent to
SNNAP for computation to avoid deadlock.

This low-level, asynchronous interface is suitable as a com-
pilation target and for expert programmers exploiting fine-
grained task parallelism. The programmer does not explicitly
write nn_send and nn_receive calls when using automatic pro-
gram transformation; these calls are inserted by the compiler
to replace approximate code blocks.

Software Pipelining Optimization In most cases, includ-
ing the example above, the SNNAP invocation appears in
a DOALL loop where each iteration is independent. In
these cases, we can use standard loop unrolling and software
pipelining optimizations to automatically make efficient use
of SNNAP without programmer intervention. The transfor-
mation rewrites a DOALL loop to operate in batches using
a sequence of send and receive calls. If BATCH_SIZE denotes
the number of inputs per SNNAP invocation, then the original
loop above is transformed to:

for (int x = 0; x < width; ++x)

for (int y = 0; y < width; y += BATCH_SIZE) {

nn_send(in_image[x][y]);
nn_send(in_image[x][y + 1]);

...

out_image[x][y] = nn_receive();
out_image[x][y + 1] = nn_receive();
...

}

In practice, many of the applications we examined contained
simple loops around disjoint approximate function calls. For
example, the sobel application used in our evaluation consists
of a stencil computation that resembles the pixel filter above.

3. Architecture
This work takes advantage of an emerging class of heteroge-
neous computing devices, Programmable System-on-Chips
(PSoCs). These devices combine a hard processor core with
programmable logic in the same package and support low-
latency communication between the two. SNNAP’s architec-
ture is informed by the challenges and opportunities involved
in working with PSoCs. A good design for PSoCs must ex-
ploit the low-latency link with the CPU while simultaneously
maximizing throughput and energy efficiency.

Requirements The requirements for an effective NPU de-
sign in a PSoC are as follows:
• The NPU must be configurable to support different neural

network architectures.
• It must operate independently of the CPU to allow the CPU

to sleep and conserve energy.
• It must use the FPGA fabric efficiently to minimize its en-

ergy consumption.
• It must support low-latency invocations to provide benefit

to code with limited approximate region coverage.
• It must also support high-throughput in codes that support

batched concurrent invocation.
The rest of this section describes, at a high level, our tech-

niques for exploiting the particular characteristics of the PSoC
to meet these requirements.

3.1. Design Overview

A systolic array implementation of neural networks. We
choose to base our microarchitectural design on the concept
of systolic arrays. Systolic arrays excel at exploiting regular
data-parallelism, which is abundant in neural networks [12].
Furthermore, systolic arrays are amenable to efficient imple-
mentation on modern FPGAs for two reasons. First, systolic
arrays are highly pipelined and FPGAs have high ratio of
registers to combinational logic resources, which facilitates
efficient pipelining. Second, most of a systolic array’s dat-
apath can be contained within the dedicated Digital Signal
Processing (DSP) silicon found in FPGAs. We leverage these
resources to realize an efficient systolic array based FPGA de-
sign, which in turn motivates the throughput-oriented interface
to SNNAP.

3

0 7 8 15 16 23 24 31

Ty
pe Size Output Buffer Pointer

(NPU Configuration or
Neural Network Inputs)

hhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhh

Figure 1: NPU invocation record.

The Neural Processing Unit. The core of SNNAP is the
neural processing unit (NPU). The NPU is composed of four
main components: an array of processing elements (PEs),
weight memories, a sigmoid unit (SU), and a scheduler. Dur-
ing the evaluation of a neural network, the computation of
the neurons are multiplexed onto the PEs and the SU by the
scheduler.

The PEs constitute the computational substrate of the sys-
tolic array, and are implemented on the FPGA’s hard DSP
block. The weight memories are distributed across the PEs
and store the weights generated as part of the neural network
training process. The sigmoid unit uses a lookup-table imple-
mentation of a non-linear sigmoid activation function.

Different neural networks have different weights, topologies
and can use different variants of the sigmoid function. As part
of the NPU configuration process, the weights are loaded into
the weight memories, the neural network schedules are loaded
into the scheduler, and the sigmoid activation function values
can be loaded into the lookup-table in the SU.

Section 4 gives more details on the implementation of the
NPU.

Hardware interface. There are three components to the
CPU–SNNAP interface: a memory-mapped register, the ARM
SEV/WFE instruction signaling mechanism, and the ARM Ac-
celerator Coherency Port.

SNNAP communicates with the CPU primarily through
cache-coherent shared memory. This interface must support
two operations: reconfiguration (nn_configure) and neural
network execution (nn_send and nn_receive). These opera-
tions are performed by writing a descriptor to memory and
signaling SNNAP using the ARM SEV instruction; the acceler-
ator reads the descriptor, performs the operations it contains,
and signals the CPU.

Before SNNAP can be used, its descriptor base address must
be set. Our current prototype uses a fixed base address set at
design time, but it could also be made configurable by writing
into a memory-mapped register. When SNNAP is signaled,
it starts reading from this address. Descriptor addresses must
be 256-byte aligned; thus, only 24 bits of this register are
significant.

Figure 1 shows the format of a descriptor record. The Type
field denotes the kind of descriptor: 0 for configuration and 1
for invocation. The Size field denotes the length of the record

in 32-bit words. The Output Pointer points to a 256-byte
aligned buffer to be used for neural-network outputs.

To perform a computation on SNNAP, the CPU builds a
buffer of invocations and passes the pointer to SNNAP, which
then reads the buffer and executes the invocations. When
the neural-network execution is complete, SNNAP writes the
results to the output buffer as they are computed and signals
the processor when they are all done.

3.2. Zynq PSoC Specifics

This section describes the particular challenges faced when
designing SNNAP for a real PSoC device available today. Our
evaluation uses the Xilinx Zynq-7020 on the ZC702 evaluation
platform [50]. The features described here are not unique to
Xilinx’s implementation; other manufacturers produce similar
devices [2].

CPU

32kB D$ 32kB I$

Snoop Controller

256kB SRAM
Scratch Pad

AXI
Coherent
Interface

512kB
L2$

NPU

ARM Cortex-A9
Application Processing Unit

Zynq Programmable Logic

Configuration

ACP

event

Figure 2: SNNAP system overview.

Figure 2 shows an overview of the SNNAP system, includ-
ing the NPU.
3.2.1. The ARM processors and FPGA fabric. The Zynq
includes dual ARM Cortex-A9 cores which support the ARM
version 7 ISA. Each core has a 32KB instruction cache and a
32KB data cache, and the two cores share a 512KB L2 cache.
The address space is backed by a DRAM controller, driving
1GB of DDR3 DRAM on the board, as well as a 256 KB
scratchpad SRAM. The Zynq SoC includes a number of hard
peripherals including interfaces for Gigabit Ethernet, USB,
SPI, I2C, CAN, and an analog-to-digital converter.

The SoC includes a fairly standard programmable logic
fabric: 6-input lookup tables, programmable interconnect,
36 Kb SRAMs (referred to as BRAMs), and hard multiply-
accumulate units (referred to as DSP blocks), supporting 25×
18-bit multiplies with a 48-bit accumulator.

Because the ARM subsystem is hard logic, its maximum
clock rate is relatively fast. The device we used tops out at 666
MHz, although other devices in the Zynq family support clock
rates up to 1 GHz. While the maximum clock rate obtainable

4

when using the FPGA fabric is dependent on the design, it is
limited by the maximum clock rate of the SRAMs (388 MHz)
and MAC units (464 MHz); once the delay due to routing is
taken into account, we have found it practical to target clock
rates in the 200–250 MHz range. The accelerator exploits
parallelism in the neural network to overcome this difference.
3.2.2. CPU–FPGA communication. While PSoCs hold the
promise of low-latency, high-bandwidth communication be-
tween the CPU and FPGA, the reality is more complicated.
We need a communication design that permits throughput-
oriented, asynchronous neural-network invocations without
sacrificing latency. The Zynq device supports five different
models of communication between the CPU and the FPGA
[52]: direct synchronization signaling, low throughput CPU
programmed I/Os, medium-throughput General Purpose (GP)
I/Os, a high-throughput Accelerator Coherency Port (ACP)
and very high-throughput High Performance (HP) ports.
Synchronization. The ARM v7 ISA contains two instruc-
tions for synchronizing with accelerators. The ARM and
the FPGA are connected by two unidirectional event lines
eventi and evento, used for direct synchronization. The
SEV instruction causes a the evento in the FPGA fabric to
toggle; the WFE instruction causes the processor to sleep in a
low-power state until the FPGA toggles the eventi signal.
These operations have lower latency (5 CPU cycles) than
any of the other communication methods and are used in our
design for synchronization purposes.

CPU programmed I/Os. Up to 64 bits connected to the
FPGA fabric can be accessed by the ARM processors as
memory-mapped registers. These offer a relatively medium-
latency interface with the FPGA (138 CPU cycle roundtrip
latency), but are also low-bandwidth, since transitions must
be executed by the CPU a word at a time.

General Purpose (GP) I/Os. The ARM interconnect in-
cludes two 32-bit AXI bus GP interfaces to the FPGA fabric,
which can be used to implement memory-mapped registers or
support DMA transfers. These interfaces are easy to use and
are relatively low-latency (114 CPU cycle roundtrip latency)
but only support moderate bandwidth. We found the GP I/O
interface useful to implement memory-mapped registers for
pointer passing.

High Performance (HP) I/Os The ARM interconnect in-
cludes four 64-bit AXI slave interfaces connected directly to
the memory system. This allows the FPGA to issue reads and
writes directly to the ARM SRAM and DRAM controller.
However, these operations are not coherent with the proces-
sor’s caches. The CPU must flush the data from the cache
to make it visible to the FPGA via main memory. The HP
interface is appropriate for large data movements to and from
external DRAM, which is currently not adequate for the data
granularity we are operating on.

Accelerator Coherency Port (ACP). The FPGA can access
the ARM on-chip memory system through the 64-bit Accel-
erator Coherency Port AXI slave interface. This port allows

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

y0

y1

Input Layer

Hidden Layer 0 Hidden Layer 1

Output

w47

w57

w67

∑
i=4

6
wi7•xi ! x7

(a) An MLP neural network.x7
x8
x9

= f

w47 w57 w67
w48 w58 w68
w49 w59 w69

 ·

x4
x5
x6

(b) Matrix representation of hidden layer evaluation.

x4

x5

x6

w47w48w49

w57w58w59 .

. .w67w68w69

0

x7 x8 x9!

(c) Systolic algorithm on one-dimensional systolic array.

Figure 3: Implementing multi-layer perceptron neural net-
works with systolic arrays.

the FPGA to make read and write requests directly to the
processors’ Snoop Control Unit, allows the FPGA to read
data directly out of the processor caches with high bandwidth
and low latency. We found this communication interface
to be the ideal candidate given the data sizes we were mov-
ing (4B-4kB) at a time. We ended up designing a custom
AXI master for the ACP interface to optimize our design’s
maximum frequency and to reduce roundtrip communication
latency down to 93 CPU cycles.

Since SNNAP needs to operate independently from the CPU
and to support high-throughput, low-latency coherent transfers,
we choose the Accelerator Coherency Port to move data and
SEV/WFE instructions to synchronize with the CPU.

4. Hardware Design

This section describes SNNAP’s microarchitecture. We first
describe the use of systolic arrays to evaluate a multi-layer per-
ceptron (MLP) neural network. We then discuss our specific
FPGA implementation.

5

4.1. Multi-Layer Perceptrons With Systolic Arrays

A multi-layer perceptron is a type of neural network that con-
sists of a set of nodes, arranged in layers, connected in a
directed graph. Each layer is fully connected to the next. Each
edge has a weight, and each neuron is a computation unit that
computes the weighted sum of its inputs and applies a non-
linear activation function. This function is most commonly a
sigmoid function.

Figure 3a depicts an MLP with two hidden layers. The
computation of one of the neurons in the second hidden layer
is highlighted: the neuron multiplies the values of the source
neurons with the weights, sums them, and applies the nonlinear
activation function f to the result. The activation function
yields the output value to be sent to the destination neuron.

The evaluation of an MLP neural network can be repre-
sented by a series of matrix–vector multiplications interleaved
with non-linear activation functions. Figure 3b shows this
approach applied to the hidden layers of Figure 3a. We can
schedule a systolic algorithm for computing this matrix-by-
vector multiplication onto a 1-dimensional systolic array as
shown in Figure 3c. When computing a layer, the vector ele-
ments xi are loaded into each cell in the array as elements of
the matrix w ji trickle in. Each cell is a computational element
that performs a multiplication xi · w ji, adds it to the sum of
products produced by the upstream cell above it, and sends the
result to the downstream cell below it. The activation function
is then applied to the output vector produced by the systolic
array, completing the layer computation.

Systolic arrays can be efficiently implemented using the
hard DSP slices that are common in modern FPGAs. Our
Zynq unit incorporates 220 DSP slices in its programmable
logic [52]. DSP slices offer pipelined fixed-point multiply-
and-add functionality and provide a hard-wired data bus for
fast aggregation of partial sums on a single column of DSP
slices. As a result, a one-dimensional systolic array can be
contained entirely in a single hard logic unit to provide higher
performance and lower power [51].

4.2. SNNAP’s Systolic Array Design

The core of SNNAP is the Neural Processing Unit (NPU),
which implements a complete configurable neural network.
The NPU design consists of a series of Processing Elements
(PEs), as illustrated in Figure 4a. Each PE corresponds to a
systolic array cell. As shown in Figure 4b, a PE consists of a
multiply-and-add block implemented on a DSP slice.

The input elements are loaded every cycle via the input bus
into each PE as dictated by the systolic algorithm schedule.
Weights, on the other hand, are statically partitioned among
the PEs in weight memories. Each weight is stored in the
weight memory associated with the PE that will compute
the corresponding neuron value. These weight memories are
implemented on an FPGA Block RAM (BRAM).

The NPU architecture can support an arbitrary number of

PE

acc_in
d_in

w_in
d_out

PE

acc_in
d_in

w_in
d_out

PE

acc_in
d_in

w_in
d_out

PE

acc_in
d_in

w_in
d_out

weight BRAM

weight BRAM

weight BRAM

weight BRAM

input FIFO

accumulator
FIFO

offset BRAM

from
sigmoid FIFO

to accum. MUX

sigmoid FIFO

from
accumulator FIFO

to input mux

INPUT

OUTPUT

Sigmoid Unit

accum. MUX
input MUX

(a) Neural Processing Unit (NPU)

x

+

acc_in

w_in

d_in

d_out

(b) Processing Engine (PE)

Figure 4: SNNAP’s systolic array design.

PEs; however, adding more PEs in the design causes the input
bus length and fan-out to increase, thus increasing complexity
and decreasing maximum operating frequency.

Sigmoid Unit. The NPU design uses a 3-stage pipelined
sigmoid unit that applies a non-linear activation function on
each outputs produced by the PEs. The Sigmoid Unit is imple-
mented using a BRAM-based lookup-table (LUT) plus some
logic for special cases. We found that using a 2048-entry LUT
provided adequate accuracy (0.011% normalized RMSE over
the input range) when combined with a x = y linear approxi-
mation on small input values. Due to the multitude of neural
network configurations, we support three activation functions:
(1) the sigmoid activation function, (2) the hyperbolic tan-
gent function and (3) a linear activation function, sometimes
used on the output layer. The configuration determines which
activation function is used for each layer.

We found that one Sigmoid Unit was sufficient for our NPU
design. Out of the 6 application benchmarks we used in our
evaluation, only the FFT benchmark schedule experienced
contention for the Sigmoid Unit from two PEs, thus introduc-

6

ing a one-cycle bubble in the schedule and increasing the FFT
neural network computation latency by 4.8%.

Flexible NN size and topology. While abstract neural net-
works can use any number of neurons, the NPU design must
have a fixed size. The NPU executes neural networks of differ-
ent sizes by time-multiplexing the neural network computation
onto the PEs. The systolic algorithm breaks down each MLP
layer into multiple sequences of sum-of-product operations.
Computing a MLP layer with n input neurons and m output
neurons requires n PEs, each performing m multiplications.

If a layer has fewer than n inputs (where n is the number
of inputs), the outputs of the unused PEs are ignored. On
the other hand, evaluating a neural network with more than n
input neurons requires time-multiplexing the PEs. We include
an accumulator FIFO in our design to store the temporary
sums produced by the PEs during this process. The PEs are
multiplexed in order: first, the partial sums of the first n input
neurons are computed and stored in the accumulator FIFO;
then the PEs are set to compute the next n input neurons and
the partial sums are streamed through. This process repeats
until the last input neuron is mapped to a PE; at that point the
completed sum is directed to the sigmoid unit.

A similar process is performed to evaluate neural networks
with hidden layers. In this case, the outputs of the sigmoid unit
must be buffered until the evaluation of the layer is complete;
then they can be used as inputs to the next layer. This is the
purpose of the sigmoid FIFO. When evaluating the final layer
in a neural network, the outputs coming from the sigmoid unit
are sent directly to the memory interface to be written back to
the CPU’s memory.

The fixed sizes of the sigmoid and accumulator FIFOs limit
the maximum layer width of the neural networks that SNNAP
can execute. This limit can be alleviated by allocating more
BRAM space for each FIFO.

Control. The topology of a neural network can be mapped
to a static schedule for the NPU given the number of PEs in
the NPU. The process is computationally inexpensive and can
be computed on-the-fly during a nn_configure call. Note this
does not involve reconfiguring the FPGA itself.

The schedule is represented as vertical microcode and stored
in a BRAM. Outputs of this BRAM are used as control inputs
to the PEs, Sigmoid Unit, FIFOs and weight memories. When
the NPU starts evaluating a neural network, it iterates through
the schedule memory in order without stopping.

Numeric representation. While many approximate applica-
tions use floating-point data types, floating point computations
are difficult to implement efficiently in an FPGA. To enable the
use of an efficient fixed-point numeric representation inside
the SNNAP design, we bound the range of possible neuron
weights in a neural network configuration.

The NPU design optionally converts from floating-point to
fixed-point at its input and output ports and uses a fixed-point
representation internally. We selected a 16-bit signed fixed-

point representation with 7 fractional bits to make efficient use
of the ARM’s byte-oriented memory interface for applications
that provide fixed-point inputs directly. This representation
fits within the 18×25 DSP slice multiplier blocks. The DSP
slices also include a wide 48-bit fixed-point adder that helps
avoid overflows on long summation chains.

5. Evaluation

5.1. Experimental setup

Applications. Table 1 shows the applications measured in
this evaluation, which are the same benchmarks used by Es-
maeilzadeh et al. [20]. We offloaded one approximate region
from each application to SNNAP using the neural acceleration
transformation process. We include a hypothetical “Amdahl
speedup limit” computed by subtracting the measured runtime
of the kernel to be accelerated from the overall benchmark
runtime.

Target Platform. We evaluate the performance, power and
energy efficiency of SNNAP running against software on the
ZYNQ ZC702 evaluation platform described in Table 2. The
ZYNQ processor integrates a mobile-grade ARM Cortex-A9
and a Xilinx FPGA fabric on a single TSMC 28nm die.

Software environment. We compiled our benchmarks us-
ing GCC 4.7.2 targeting the ARM Cortex-A9 architecture,
with the -O3 flag. We ran the benchmarks directly on the
processor, with no OS.

Monitoring performance and power. In order to count dy-
namic instructions and CPU cycles on the Cortex-A9 core,
we use the event counters in the ARM’s architectural perfor-
mance monitoring unit, combined with performance counters
implemented in the FPGA.

The ZYNQ ZC702 platform uses Texas Instruments
UCD9240 power supply controllers, which allow us to mea-
sure voltage and current usage on each of the board’s power
planes multiple times a second. This allows us to track
power usage for the different sub-systems (e.g. CPU, FPGA,
DRAM).

NPU configuration. We evaluated our design with an 8-PE
NPU, running at 222MHz, maintaining a 1/3 integer ratio with
CPU’s 666MHz frequency. The number of PEs was fixed at
8 arbitrarily in order to support the construction of a simpler
design; future work could evaluate the benefits of different PE
counts.

5.2. Performance and Energy

Transforming a program to use SNNAP can improve perfor-
mance and energy efficiency. Here, we describe empirical
measurements of those benefits on our test hardware.

Performance. Figure 5a shows the application speedup
when an 8-PE NPU is used to execute each benchmark’s tar-
get region, while the rest of the application runs on the CPU,

7

Application Description Error Metric NN Topology Error Amdahl Speedup (×)

fft radix-2 Cooley-Tukey FFT mean error 1–4–4–2 0.1% 3.92
inversek2j inverse kinematics for 2-joint arm mean error 2–8–2 1.32% > 100
jmeint triangle intersection detection miss rate 18–32–8–2 20.47% 99.65
jpeg lossy image compression image diff 64–16–64 1.93% 2.23
kmeans k-means clustering image diff 6–8–4–1 2.55% 1.47
sobel edge detection image diff 9–8–1 8.57% 15.65

Table 1: Applications used in our evaluation. The “NN topology” column shows the number of neurons in each MLP layer.
“Amdahl Speedup” is the hypothetical speedup for a system where the SNNAP invocation is instantaneous.

Zynq SoC

Technology 28nm TSMC
Processing 2-core Cortex-A9

FPGA Artix-7
FPGA Capacity 53KLUTs, 106K Flip-Flops

Peak Frequencies 667MHz A9, 222MHz FPGA
DRAM 1GB DDR3-533MHz

Cortex-A9

L1 Cache Size 32kB I$, 32kB D$
L2 Cache Size 512kB

Scratch-Pad 256kB SRAM
Interface Port AXI 64-bit ACP

Interface Latency 93 cycles roundtrip

NPU

Number of PEs 8
Weight Memory 1024×16-bit

Sigmoid LUT 2048×16-bit
Accumulator FIFO 1024×48-bit

Sigmoid FIFO 1024×16-bit
DSP Unit 16×16-bit multiply, 48-bit add

Table 2: Microarchitectural parameters for the Zynq platform, CPU, FPGA and NPU.

compared to running the whole benchmark on the CPU. On
average, we see a speedup of 1.77×.

Among the benchmarks, inversek2j has the highest
speedup (17.95×) since the bulk of the application can be exe-
cuted on the NPU, and the region to be accelerated includes
many trigonometric functions, which the NPU can approxi-
mate using only a small neural network. Conversely, kmeans
sees a 40% slowdown, mostly due to the fact that the target
region is very small (only a handful of arithmetic operations),
compared to the size of the neural network required to achieve
reasonable error rates.

Energy. Figure 5b shows the energy savings for each bench-
mark. The baseline is the energy consumed by executing the
benchmark solely on the CPU. This comparison shows the
actual energy savings we measured on our board, including all
the components.

We find that all the benchmarks that provide a speedup
are able to save energy. Again, inversek2j does the best
(14.12×), and kmeans does the worst (0.41×). sobel has
the smallest actual speedup, and saves a small amount of
energy (1.08×). These energy savings can be understood by
looking at the power draw of the CPU and FPGA: when the
CPU is offloading computation to the NPU, it sleeps, lowering
its power draw slightly. But the power required to perform
computation on the NPU on the FPGA is larger than this
savings. Thus, a speedup is necessary to obtain a energy
savings.

5.3. Characterization

This section supplements our main energy and performance
results with secondary measurements that put the primary
results in context and help justify our design decisions.

Energy savings breakdown. While we observed an energy
savings on average for our benchmarks, the evaluation board
we used is not optimized for low-power operation. In Fig-
ure 6, we provide a more detailed breakdown of the energy
savings we measured to help predict the benefit for new, power-
optimized designs.

The first comparison is intended to provide a conservative
estimate of the potential benefit to a mobile SoC designer
who is considering including an FPGA fabric in her design.
This comparison includes only the power drawn by the core
logic and SRAMs of the CPU and FPGA, with no DRAM or
peripherals included. The baseline includes only the core logic
of the CPU, with no FPGA power. The bars show the energy
benefit when running on the NPU, including both core logic
and memory power planes for the CPU and the FPGA fabric.
This comparison shows similar results to the whole-board
speedup numbers, but with a lower magnitude. On average,
we see a 1.31× energy savings.

The second comparison is intended to show the power ben-
efit from using an NPU on a chip that already has an FPGA
fabric. This baseline includes all the power supplies that con-
nect to the Zynq chip and its associated DRAM, including the
FPGA core voltage, but the FPGA is left unconfigured dur-
ing software-only execution. We omit the 3.3 volt supply to
avoid making an unfair comparison: on our board this supply
powers wasteful components (e.g., high-current LEDs) that
would not be included in a design optimized for power. The
bars show the energy benefit when the FPGA is programmed
and benchmarks are accelerated on the NPU.

Again, all the benchmarks that provide a speedup are again
able to save energy, but this time the benefit is larger (1.64× on
average). This is due to the power draw of components com-
mon to both the baseline and accelerated cases. The additional
power drawn by the FPGA during acceleration is smaller rela-

8

1.82

0.57

1.99

0.6

1.38

1.77

17.95

0

1

2

3

fft inversek2j jmeint jpeg kmeans sobel GEOMEAN

S
pe

ed
up

(a) Speedup

1.75

0.56

1.9

0.56

1.38

1.71

17.44

0

1

2

3

fft inversek2j jmeint jpeg kmeans sobel GEOMEAN

E
ne

rg
y

sa
vi

ng
s

(b) Energy savings

Figure 5: Performance and energy benefit of SNNAP acceleration over an all-CPU baseline execution of each benchmark.

1.34

1.711.75

0.42

0.540.56

1.43

1.83
1.9

0.41

0.530.56

1.08

1.33
1.38

1.31

1.64
1.71

14.12 16.36 17.44

0

1

2

3

fft inversek2j jmeint jpeg kmeans sobel GEOMEAN

E
ne

rg
y

sa
vi

ng
s

Power domain:
Core logic only
Zynq+DRAM only
Whole Board

Figure 6: Energy savings breakdown.

tive to the total power draw of the system, making the relative
energy benefit of acceleration larger.

Dynamic instruction subsumption. Figure 7 shows the
number of dynamic instruction of each accelerated benchmark
normalized to the instruction count of the CPU-only version.
Instructions are divided into those executed by both the origi-
nal and accelerated programs, and those used to communicate
with the NPU.

The reduction in instruction count is closely related to the
speedup obtained from NPU acceleration. The fastest bench-
mark, inversek2j, is an ideal application for the NPU. The
region to be accelerated accounts for 99 percent of the original
dynamic instruction count—each invocation executes many

0.0

0.5

1.0

1.5

fft inversek2j jmeint jpeg kmeans sobel GEOMEANN
or

m
al

iz
ed

 D
yn

am
ic

 In
st

ru
ct

io
n

C
ou

nt

Instruction type:
Application
NPU invocation

Figure 7: Number of dynamic instructions executed with NPU
acceleration normalized to the original program.

trigonometric functions—and the inputs and outputs are small
(two single-precision floating point numbers each). In con-
trast, kmeans is a bad fit for NPU-based acceleration. Its
target region accounts for only 40 percent of the original dy-
namic instruction count, and the actual region of code to be
accelerated (a Euclidean distance calculation) is can be exe-
cuted with a handful instructions but requires the movement
of seven single-precision floating point numbers. The num-
ber of instructions required just to invoke one instance of the
computation on the NPU is more than the instruction count to
perform the computation on the CPU.

However, the dynamic instruction count does not tell the

9

whole story. Since the processor sleeps while the accelerated
region is executing on the NPU, the instruction count does not
reflect the latency of the NPU computation. This is illustrated
by jmeint, where the target region accounts for nearly all the
original dynamic instructions, but the neural network required
for the computation is complex and adds significant latency to
the computation while the CPU is sleeping.

0.81

1.82
1.92

4.63

0.37

0.570.59

1.62

1.99

2.17

0.21

0.60.64

0.45

1.381.44

0.77

1.77
1.89

17.95 20.18

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel GEOMEAN

S
pe

ed
up

Invocation type
Single invocation
Batch invocation
Zero−latency limit

Figure 8: Impact of batching on speedup.

Impact of batching. Figure 8 compares the performance of
batched SNNAP invocations, single invocations, and an esti-
mate of the speedup if there were no communication latency
between the CPU and the NPU.

Overlapped, batched invocations are required to obtain a
speedup in all but two cases due to the latency in communicat-
ing with the NPU. inversek2j and jpeg see a speedup since
their regions to be accelerated are large enough to overlap
the latency of each invocation. As discussed previously, the
accelerated region in inversek2j includes many expensive
trigonometric functions. The accelerated region in jpeg is
similarly computationally heavy.

Comparing with the zero-latency estimate, we find that
batch invocations are effective at amortizing this latency across
many invocations. The 32-invocation batch size we have cho-
sen gets us to within 7% of the zero-latency case.

Design statistics. The SNNAP design uses less than 5% of
the FPGA resources on the Zynq part we used, as shown in
table 3. The small design footprint helps reduce the power and
indicates that our design could be replicated on a significantly
smaller FPGA die.

We managed to close timing of our design at 222MHz,
maintaining a 1/3 integer ratio with CPU’s 666MHz frequency.

Logic Utilization Used Available Util

Occupied Slices 625 13300 4%
Slice Registers 2055 106400 2%
Slice LUTs 1650 53200 3%
RAMB18E1 13 280 4%
RAMB36E1 4 140 2%
DSP48E1 8 220 3%

Table 3: Post-place-and-route FPGA utilization.

Output quality degradation. We measure the application
output quality degradation on the benchmarks running on
SNNAP using application-specific error metrics as is standard
in the approximate computing literature [19,20,40,43]. Table 1
lists the error metrics.

We observe less than 10% application output error for all
of the benchmarks except for jmeint. For that benchmark,
we were unable to reproduce the low error rates from Es-
maeilzadeh et al. [20] using the same neural-network topology,
even when executing the neural network in software.

Among the remaining applications, the highest output er-
ror occurs in sobel. The output image has a 8.57% mean
absolute pixel error with respect to a precise execution. To
put this error in context, Figure 9 shows the output from the
original and SNNAP-accelerated executions of the benchmark.
Qualitatively, the program still produces reasonable results.

6. Related Work

Our design builds on related work in the broad areas of ap-
proximate computing, acceleration, and neural networks.

Approximate Computing A wide variety of applications
can be considered approximate: occasional errors during ex-
ecution do not obstruct the usefulness of the program’s out-
put. Recent work has proposed to exploit this inherent re-
siliency to trade off output quality to improve performance
or energy consumption using software [3, 4, 28, 33, 34, 43] or
hardware [8,15,19,20,30,31,35,40] techniques. SNNAP repre-
sents the first work (to our knowledge) to exploit this trade-off
using on-chip programmable logic to realize these benefits in
the near term. FPGA-based acceleration using SNNAP offers
efficiency benefits that complement software approximation,
which is limited by the overheads of general-purpose CPU
execution, and custom approximate hardware, which cannot
be realized on today’s chips.

Neural Networks as Accelerators Previous work has rec-
ognized the potential for hardware neural networks to act as
accelerators for approximate programs, either with automatic
compilation [20] or direct manual configuration [5, 10, 46].
This work has typically assumed special-purpose neural-
network hardware; SNNAP represents an opportunity to real-
ize these benefits in the near term.

10

(a) Precise Output (b) Approximate Output

Figure 9: Output of sobel for a 220x220 pixel image.

Hardware Support for Neural Networks There is an ex-
tensive body of work on hardware implementation of neural
networks both in digital [17, 37, 53] and analog [6, 29, 42, 45]
domains. Recent work has proposed higher-level abstractions
for implementation of neural networks [27]. Other work has
examined fault-tolerant hardware neural networks [26, 46]. In
particular, Temam [46] uses datasets from the UCI machine
learning repository [22] to explore fault tolerance of a hard-
ware neural network design. There is also significant prior
effort on FPGA implementations of neural networks ([53]
contains a comprehensive survey).

Even though our work involves efficient implementation
of neural networks on FPGAs, our contribution focuses on
providing mechanisms that automatically leverages that imple-
mentation for approximate acceleration without engaging the
programmers in hardware design.

Recent work explored using GPUs for large-scale neural
networks [14] and showed significant performance improve-
ments over general purpose processors. Indeed, GPUs are
highly parallel (as our systolic array is) and therefore a good
match for the kind of computation involved in neural networks.
The neural acceleration transformation for general purpose
approximation could use GPUs as the backend, however there
are likely at least two issues: (1) the invocation cost of a neural
network is much higher on GPUs [32], so code regions have
to be either very coarse or very parallel, limiting its applicabil-
ity and code coverage; and (2) GPUs are much more power
hungry. We consider exploring these issues out of the scope
of this paper.

FPGAs as Accelerators This work also relates to work on
configurable computing, synthesis, specialization, and acceler-
ation that focuses on compiling traditional, imperative code
for efficient hardware structures. One key research direction
seeks to synthesize efficient circuits or configure FPGAs to
accelerate general-purpose code [13, 21, 38, 39]. Similarly,
static specialization has shown significant efficiency gains for
irregular and legacy code [47,48]. More recently, configurable
accelerators have been proposed that allow the main CPU

to offload certain code to a small, efficient structure [23, 24].
These techniques, like NPU acceleration, typically rely on
profiling to identify frequently executed code sections and
include compilation workflows that offload this “hot” code to
the accelerator. This work differs in its focus on accelerating
approximate code by converting regions of code to neural net-
works. Furthermore, automatic hardware synthesis results in
suboptimal hardware design [1, 16], especially on FPGAs due
to their low frequency and lack of information about dynamic
behavior (e.g., memory dependences) often limit the quality
of the output design.

In contrast, we manually design our neural accelerator and
optimize it as a library component that is abstracted away from
the programmer and used automatically.

7. Conclusion

We presented SNNAP, a system that enables the use of pro-
grammable logic to accelerate general purpose programs with-
out requiring hardware design. SNNAP leverages prior work
on using neural networks to emulate regions of approximable
code. Since neural networks are amenable to efficient hard-
ware implementations, this leads to better performance and
energy efficiency.

We implemented SNNAP on the Zynq system-on-chip,
which contains a significant amount of programmable logic
on chip. We developed a systolic-array-based multi-layer per-
ceptron design, which uses a small fraction of the available
on-chip programmable logic but yields 1.7× speedup and
energy savings on average.

This exercise demonstrates that approximate computing
techniques can enable effective use of programmable logic
for general purpose acceleration without involving custom
logic design, nor direct high-level synthesis or frequent FPGA
reconfiguration.

8. Acknowledgments

This work was supported by the Qualcomm Innovation Fel-
lowship, the NSF, the NSERC, the Google Ph.D. Fellowship

11

and the Weil Family. We thank Eric Chung from Microsoft
Research for his help on building a custom AXI mastering
interface.

References
[1] “A parameterized graph-based framework for high-level test synthesis,”

Integration, the VLSI Journal, vol. 39, no. 4, pp. 363 – 381, 2006.
[2] Altera Corporation, “Altera SoCs.” Available: http://www.altera.com/

devices/processor/soc-fpga/overview/proc-soc-fpga.html
[3] J. Ansel, C. P. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. P. Amarasinghe, “PetaBricks: a language and compiler for
algorithmic choice,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2009.

[4] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2010.

[5] B. Belhadj, A. Joubert, Z. Li, R. Heliot, and O. Temam, “Continuous
real-world inputs can open up alternative accelerator designs,” in In-
ternational Symposium on Computer Architecture (ISCA), 2013, pp.
1–12.

[6] B. E. Boser, E. Säckinger, J. Bromley, Y. Lecun, L. D. Jackel, and
S. Member, “An analog neural network processor with programmable
topology,” J. Solid-State Circuits, vol. 26, no. 12, pp. 2017–2025,
December 1991.

[7] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in Object-
Oriented Programming, Systems, Languages & Applications (OOP-
SLA), 2013, pp. 33–52.

[8] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology,” in
Design, Automation and Test in Europe (DATE), 2006, pp. 1110–1115.

[9] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6t/8t hybrid
sram architecture for aggressive voltage scaling in video applications,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 21, no. 2,
pp. 101–112, 2011.

[10] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti,
A. Nere, S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad po-
tential application scope of hardware neural network accelerators?” in
IEEE International Symposium on Workload Characterization (IISWC),
2012, pp. 36–45.

[11] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory
architecture for fpga-based computing,” in FPGA, 2011.

[12] J.-H. Chung, H. Yoon, and S. R. Maeng, “A systolic array exploiting
the inherent parallelisms of artificial neural networks,” vol. 33,
no. 3. Amsterdam, The Netherlands, The Netherlands: Elsevier
Science Publishers B. V., May 1992, pp. 145–159. Available:
http://dx.doi.org/10.1016/0165-6074(92)90017-2

[13] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruc-
tion set customization,” in International Symposium on Microarchitec-
ture (MICRO), 2004, pp. 30–40.

[14] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y.
Ng, “Deep learning with cots hpc systems,” 2013.

[15] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An archi-
tectural framework for software recovery of hardware faults,” in In-
ternational Symposium on Computer Architecture (ISCA), 2010, pp.
497–508.

[16] G. de Micheli, Ed., Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[17] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie,
“Neural network stream processing core (NnSP) for embedded systems,”
in International Symposium on Circuits and Systems (ISCAS), 2006,
pp. 2773–2776.

[18] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2011.

[19] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012, pp. 301–312.

[20] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in International
Symposium on Microarchitecture (MICRO), 2012, pp. 449–460.

[21] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the compu-
tation gap between programmable processors and hardwired acceler-
ators,” in International Symposium on High Performance Computer
Architecture (HPCA), 2009, pp. 313–322.

[22] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
Available: http://archive.ics.uci.edu/ml

[23] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in International
Symposium on High Performance Computer Architecture (HPCA),
2011, pp. 503–514.

[24] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in International Symposium on Microarchitecture (MICRO),
2011, pp. 12–23.

[25] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
dark silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, July–Aug.
2011.

[26] A. Hashmi, H. Berry, O. Temam, and M. H. Lipasti, “Automatic abstrac-
tion and fault tolerance in cortical microarchitectures,” in International
Symposium on Computer Architecture (ISCA), 2011, pp. 1–10.

[27] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuro-
morphic ISAs,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2011,
pp. 145–158.

[28] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[29] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking
neurons design: Analog or digital?” in International Joint Conference
on Neural Networks (IJCNN), 2012, pp. 1–7.

[30] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010.

[31] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving dram refresh-power through critical data partitioning,” in In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011, pp. 213–224.

[32] D. Lustig and M. Martonosi, “Reducing gpu offload latency via fine-
grained cpu-gpu synchronization,” in HPCA, 2013.

[33] S. Misailovic, D. Kim, and M. Rinard, “Parallelizing sequential pro-
grams with statistical accuracy tests,” MIT, Tech. Rep. MIT-CSAIL-
TR-2010-038, Aug. 2010.

[34] S. Misailovic, D. M. Roy, and M. C. Rinard, “Probabilistically accurate
program transformations,” in Static Analysis Symposium (SAS), 2011.

[35] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in Design, Automation and Test in Europe (DATE),
2010, pp. 335–338.

[36] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer, “Triggered instructions: A control paradigm
for spatially-programmed architectures,” in International Symposium
on Computer Architecture (ISCA), 2013.

[37] K. Przytula and V. P. Kumar, Eds., Parallel Digital Implementations of
Neural Networks. Prentice Hall, 1993.

[38] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan,
“CHiMPS: A high-level compilation flow for hybrid CPU-FPGA archi-
tectures,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), 2008, pp. 261–261.

[39] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in International Sym-
posium on Microarchitecture (MICRO), 1994, pp. 172–180.

[40] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011, pp. 164–174.

[41] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in International Symposium on Microarchi-
tecture (MICRO), 2013.

[42] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in International Joint Conference on Neural
Networks (IJCNN), 2008, pp. 431–438.

[43] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Foundations of Software Engineering (FSE), 2011.

12

http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://dx.doi.org/10.1016/0165-6074(92)90017-2
http://archive.ics.uci.edu/ml

[44] S. Sirowy and A. Forin, “Where’s the beef? why fpgas are so fast,”
Microsoft Research, Tech. Rep. MSR-TR-2008-130, Sep. 2008.

[45] S. Tam, B. Gupta, H. Castro, and M. Holler, “Learning on an analog
VLSI neural network chip,” in Systems, Man, and Cybernetics (SMC),
1990, pp. 701–703.

[46] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in International Symposium on Computer
Architecture (ISCA), 2012, pp. 356–367.

[47] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reduc-
ing the energy of mature computations,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2010, pp. 205–218.

[48] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson,
and M. Taylor, “QsCores: Trading dark silicon for scalable energy
efficiency with quasi-specific cores,” in International Symposium on
Microarchitecture (MICRO), 2011, pp. 163–174.

[49] M. Weber, M. Putic, H. Zhang, J. Lach, and J. Huang, “Balancing
adder for error tolerant applications,” in International Symposium on
Circuits and Systems (ISCAS), 2013, pp. 3038–3041.

[50] Xilinx, Inc., “All programmable SoC.” Available: http://www.xilinx.
com/products/silicon-devices/soc/

[51] Xilinx, Inc., “Zynq UG479 7 series DSP user guide.” Available:
http://www.xilinx.com/support/documentation/user_guides/

[52] Xilinx, Inc., “Zynq UG585 technical reference manual.” Available:
http://www.xilinx.com/support/documentation/user_guides/

[53] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in International Conference on Field
Programmable Logic and Applications (FPL), 2003, pp. 1062–1066.

13

http://www.xilinx.com/products/silicon-devices/soc/
http://www.xilinx.com/products/silicon-devices/soc/
http://www.xilinx.com/support/documentation/user_guides/
http://www.xilinx.com/support/documentation/user_guides/

	Introduction
	Programming
	Neural Acceleration Overview
	Low-Level Interfaces

	Architecture
	Design Overview
	Zynq PSoC Specifics
	The ARM processors and FPGA fabric.
	CPU–FPGA communication.

	Hardware Design
	Multi-Layer Perceptrons With Systolic Arrays
	SNNAP's Systolic Array Design

	Evaluation
	Experimental setup
	Performance and Energy
	Characterization

	Related Work
	Conclusion
	Acknowledgments

