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Assessing the Discordance of Multiple
Sequence Alignments

Amol Prakash and Martin Tompa

Abstract—Multiple sequence alignments have wide applicability in many areas of computational biology, including comparative
genomics, functional annotation of proteins, gene finding, and modeling evolutionary processes. Because of the computational
difficulty of multiple sequence alignment and the availability of numerous tools, it is critical to be able to assess the reliability of multiple
alignments. We present a tool called StatSigMA to assess whether multiple alignments of nucleotide or amino acid sequences are
contaminated with one or more unrelated sequences. There are numerous applications for which StatSigMA can be used. Two such
applications are to distinguish homologous sequences from nonhomologous ones and to compare alignments produced by various
multiple alignment tools. We present examples of both types of applications.

Index Terms—Multiple sequence alignment, discordance, alignment accuracy, Karlin-Altschul statistics, biology and genetics, life and

medical sciences, computer applications.

1 BACKGROUND

VER the last two decades, multiple sequence alignments
have contributed to our understanding of molecular
biology, whether through comparison of homologous
genomic regions or analysis of protein families based on
sequence similarity. However, multiple sequence alignment
is a difficult computational problem [46]. Many different
heuristic tools are available, and these tools often produce
incomparable results. Because of this, a number of recent
reviews and articles [3], [17], [20], [21] have made
compelling pleas for methods to assess the accuracy of
multiple sequence alignments and to compare the align-
ments produced by different tools.
There is a large body of work to try to address this
important problem, particularly in the context of multiple
protein alignment:

1. One approach to measuring the accuracy of multiple
sequence alignment tools is to use artificial se-
quences resulting from a simulation of evolutionary
processes [5], [25], [26], [31], [42]. Since the experi-
menter can track all evolutionary events, identifying
the truly homologous characters is straightforward.
One can then align the simulated sequences using
any multiple sequence alignment tool and use the
known homologies to measure the accuracy of this
alignment. An obvious drawback of this simulation
approach is its sensitivity to assumptions about the
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underlying evolutionary processes, which are not at
all well understood.

2. Another approach is to run the alignment program
on a set of sequences in which certain features are
known a priori to be homologous and measure the
accuracy with which these known homologous
features are aligned. This approach was used in
genome-size alignment studies by Brudno et al. [6],
Margulies et al. [20], and Wang et al. [45]. The most
obvious choice for the known homologous features
is a set of coding exons. However, this choice suffers
from the shortcoming that such features are usually
well conserved and easy to align, and most
algorithms do so quite accurately. In addition to
using coding exons, Margulies et al. [20] also tested
alignment accuracy using ancestral repeats, and
Wang et al. [45], using noncoding RNA, both of
which tend to be more challenging to align correctly
than coding exons. For this general approach
though, many known sets of homologous sequences
have been discovered using some alignment algo-
rithm, which leads to circularity if then used to test
the accuracy of an alignment algorithm.

3. A number of papers have suggested methods that
inspect multiple sequence alignments, judging re-
gions of the alignment that show good conservation
across the aligned sequences to be well aligned and
even removing sequences from the alignment that
show lack of good conservation [8], [23], [43], [44].
While good conservation often implies good align-
ment, the converse need not be true. It is certainly
the case that perfectly aligned sequences will vary
greatly in conservation from column to column and
region to region, rendering conservation a question-
able predictor of alignment quality.

4. Lassmann and Sonnhammer [18] proposed a mea-
sure to assess alignment quality by comparing
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several multiple sequence alignments, assuming that
regions identically aligned by multiple tools are
more reliable than regions differently aligned. This
method requires several auxiliary alignments in
order to evaluate the alignment of interest. In the
same general class are methods that employ other
auxiliary information such as the protein secondary
structure in order to assess alignment quality [11].

We pursue a statistical approach quite different from any
of these, by extending the theory of Karlin and Altschul
[14], [15] from pairwise to multiple sequence alignments.
Our method can be used to assess the reliability of any
given multiple sequence alignment, which is not true of the
methods in categories 1 and 2 above.

1.1 A Statistical Theory of Sequence Relatedness

In the case of pairwise alignment, the most common
method to assess relatedness (functional or evolutionary)
of a pair of sequences is by aligning them and then testing
the null hypothesis that there would be an equally good
local alignment in a random pair of unrelated sequences.
Karlin and Altschul [14] introduced statistics for this
purpose that were later employed in the popular tool
BLAST [2]. Unfortunately, for the case of more than a few
sequences, there has been little progress in extending such
an assessment to multiple sequence alignments. Prakash
and Tompa [29] presented initial ideas to extend the BLAST
statistics to multiple alignments. The main challenges were
to develop a realistic null hypothesis and an appropriate
score function. Both these problems and their solutions are
described in detail in that paper and also summarized next.

The motivating problem is to identify when a multiple
sequence alignment is contaminated with unrelated se-
quences. To build a scalable yet robust methodology, we
assume that there is an unrooted phylogenetic tree relating
the sequences. Our null hypothesis consists of those cases
where a single phylogeny branch (whose removal partitions
the sequences into two disjoint subsets) exhibits “unrelated
behavior,” that is, the two subsets are each homologous
within themselves but independent of each other. For each
such branch of the phylogeny, we compute the p-value of the
score of the pairwise alignment of the two disjoint subsets of
the multiple alignment. This tests the null hypothesis that
the two subsets are independent. Finally, the assumption
made is that when we reject all the cases of the null
hypothesis (one case for each branch of the phylogeny), this
is sufficient evidence that the multiple alignment shows all
the sequences to be related. There are two justifications for
this assumption. First, the cases of unrelated sequences that
are hardest to detect are the ones where the error occurs on
only one branch of the phylogeny, the remaining subalign-
ments being correct. Second, since most multiple alignment
tools follow a progressive alignment strategy over a
phylogeny, such errors also seem the most common. Thus,
by this approach, we anticipate capturing the most common
and the hardest cases. See Fig. 1 (explained in Section 3.1) for
the experimental justification of this assumption.

In this paper, we bring together these ideas in a tool
called Statistical Significance of Multiple Alignments
(StatSigMA) that can be used to assess whether multiple
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Fig. 1. Cumulative distribution function of the discordances computed by
StatSigMA for many (a) human/chimp/mouse/rat and (b) human/chimp/
mouse/rat/chicken promoter sets. (a) Graphs are plotted for the
4,215 orthologous promoter sets, 5,000 random promoter sets having
unrelated behavior on a single branch of the phylogeny, and
5,000 promoter sets created using random partitions of the species.
The curves for the latter two types of promoter sets are so close that they
are difficult to distinguish. (b) Graphs are plotted for the 777 orthologous
promoter sets, 5,000 random promoter sets having unrelated behavior
on a single branch of the phylogeny, and 5,000 promoter sets created
using random partitions of the species.

alignments of nucleotide or amino acid sequences are
contaminated with one or more unrelated sequences.
StatSigMA provides biologists with a principled way to
assess the relatedness of sequences in multiple sequence
alignments produced by any alignment tool. Just as BLAST
E-values provide a measure for ranking pairwise align-
ments, StatSigMA’s “discordance” scores provide a mea-
sure for ranking multiple alignments. We describe changes
that have been made to this method since its introduction
[29] to make it more sound and accurate both in theory and
practice and also to make it more efficient. We present new
results using StatSigMA to compare the output of various
multiple alignment tools and to assess the reliability of
protein alignments. The applicability to protein multiple
alignments is new: the earlier method [29] was too
inefficient for use in proteins.

StatSigMA measures the reliability of a multiple align-
ment by its highest scoring collection of columns (see
Section 2). This is analogous to using BLAST to find a
significant match to a query sequence, since BLAST also
reports the significance of the best local alignment (or
collection of local alignments) between query and subject.
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Even in the case of pairwise alignment, there is a theory of
local alignment significance but no known theory of global
alignment significance. StatSigMA builds on this theory of
local alignment significance.

We have recently extended the methods described here
in order to apply them to whole-genome multiple
alignments [30], which is a more complex problem. The
method described in this paper is intended to be used on
relatively short multiple sequence alignments (for in-
stance, protein alignments or promoter alignments); it
produces a single “discordance” value that measures how
well aligned the best collection of alignment columns is,
much as BLAST produces a single E-value for a pairwise
alignment that measures how related the best collection of
alignment columns is. In contrast, our recent extension to
whole-genome multiple alignments [30] assigns such a
discordance value to every region of the alignment, so that
the user can see which regions are trustworthy and which
ones are less so. That extension relies in many places on
the technical details presented here, such as the detailed
p-value formulas (see Section 2), which are not repeated in
the extension paper.

1.2 Alignment Correctness versus Conservation
Many methodologies have been suggested for distinguish-
ing conserved regions from nonconserved ones, for
example, binCons [19], phastCons [36], GERP [9], and
Gumby [27]. Each of these takes a multiple alignment and
identifies well-conserved regions in it, assuming that the
alignment is correct. In contrast, StatSigMA assesses the
reliability of the multiple alignment itself. This should be
applied to any multiple alignment before any of the tools
listed above are applied to identify well-conserved
elements.

Some researchers have proposed using conservation
thresholds as a surrogate for filtering out poorly aligned
regions. As mentioned earlier, while good conservation
often implies good alignment, the converse certainly need
not be true. Conservation measures are designed to detect
regions under purifying selection; those evolving at neutral
rates will exhibit much lower conservation scores, even
though they may be perfectly aligned. To make matters
worse, good conservation need not even imply good
alignment: Prakash and Tompa [30] have shown that
misalignment of one sequence can often be found even in
regions where conservation scores are very high due to
strong conservation in the remaining sequences.

Other existing alignment scoring methods (such as
sum of pairs or percent identity) are also measures of
sequence conservation, though in these cases, there is not
even a phylogeny upon which to model evolutionary
conservation.

2 IMPLEMENTATION

StatSigMA takes as input a multiple sequence alignment.
The sequences in the multiple alignment are used to infer a
phylogeny relating those sequences. (Alternatively, the user
can provide a phylogeny.) The algorithm followed by
StatSigMA is outlined below. Each of the steps is described
and discussed in detail later.

Input: Multiple sequence alignment.

1. Create a phylogeny from the sequence data (unless
the user has supplied a phylogeny).

2. For every branch k of the phylogeny do the
following steps:

a. Create the scoring function corresponding to
unrelated behavior on branch .

b. Using the scoring function, estimate Karlin-
Altschul parameters Kj, Ay, and Hj, [14].

c. Using the scoring function, identify the max-
imal scoring segments of the input multiple
alignment.

d. Using the Karlin-Altschul parameters Kj, A,
and H; identify the set of maximal scoring
segments resulting in the least p-value pj.

3. Output max;, py, as the discordance.
Analogous to a p-value, the discordance is between zero
and one, and the lower its value, the better the alignment
(in the sense of not being contaminated with unrelated
sequences).

2.1 Creating a Phylogeny

As described earlier, our approach is based on the
assumption that there is an unrooted phylogeny relating
the sequences of the multiple alignment. Each case of the
null hypothesis corresponds to unrelated behavior on a
single branch & of that phylogeny. The term “unrelated
behavior” refers to independent sequences that should not
be aligned, as follows: The removal of branch k separates
the phylogeny into two subtrees ¢; and t¢;. The null
hypothesis assumption is that the sequences at the leaves
of ¢; are related according to the multiple alignment, as are
the sequences at the leaves of t,, but these two subalign-
ments are independent of each other. (Another way to state
the null hypothesis would be to treat the branch exhibiting
unrelated behavior as if it were of infinite length. This is a
more traditional way of formulating the null hypothesis in
molecular phylogenetics.) The assumption we make then is
that rejecting all the single-branch null-hypothesis cases is
sufficient evidence that the multiple alignment shows all
the sequences to be related. The justifications for this
assumption were presented above.

If the user does not supply a phylogeny, we use the
phylogeny generated by MUSCLE [10]. While neighbor-
joining trees [33] are closer to the real evolutionary trees, we
use the default option of UPGMA trees [38] in MUSCLE, as
they are closer to what most alignment tools use in practice.

Note that methods have been proposed previously for
comparing two sequence profiles. If ¢; and ¢, are the two
subtrees separated by the removal of the branch & that
exhibits unrelated behavior, we could have constructed
profiles from each of the two sets of sequences at the leaves
of t; and ¢, respectively, and then applied Karlin-Altschul
statistics to these two profiles to test whether or not they
should be aligned together. However, such profiles neces-
sarily ignore the underlying phylogeny. What we will do
instead in the next sections is to apply Karlin-Altschul
statistics to scores based on an evolutionary model that
respects the phylogeny.
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2.2 Scoring Function

Suppose we have S sequences in a multiple alignment of
length N related by a phylogenetic tree 7' (having branch
lengths). Let 71,72,...,7s be the residues observed at a
particular column of the multiple alignment. Suppose we
want to test the hypothesis that there is unrelated behavior
on branch k. Suppose the removal of branch k separates T’
into subtrees ¢; (having residues 3, (s, ..., §; at the leaves)
and t, (having residues 3,1, Bit2,. .., Bs at the leaves). Let
M be the evolutionary model. Then, analogous to the
Karlin-Altschul log-likelihood score [14], the score for
observing this column of the multiple alignment is given
as follows:

SCkV(’YM e >V5|Ta ]\1)
:log< Pr(yi, ..., 5|7, M) )
Pr(ﬂl:"'7ﬂi‘t17]\/[)Pr(/3i+1’"'7/65|t27M) '

We precompute this score for all possible tuples at the
leaves of the tree. If the alphabet size is «, this requires
precomputing and storing o° scores. This is infeasible
when either « is large (e.g., for proteins) or when there is
a large number of sequences. In such cases, we pre-
compute the scores for only the tuples present in ¢; and ¢,
in the multiple alignment. If the two subalignments each
have length N, then N? tuples can be formed by aligning
the N tuples from either of the subtrees with each other.
We assume that these N? tuples constitute a good sample
of the background. In the case when the alignment length
is very small, we add a pseudocount (1/N) to all integral
scores to correct for the small sample size. Estimating the
p-value in this way, by sampling from the sequence itself,
is known as composition-based statistics [35], [34] and has
been shown to be more sensitive than a standard back-
ground distribution. In either case, we precompute only
min(N?, ) scores.

The various probability terms in (1) are computed
using the dynamic programming algorithm of Felsenstein
[12]. In our evolutionary model, gaps are treated as single-
character deletions. Masked sites, incomplete information
about some sites, and unaligned sites (e.g., in TBA [5]
alignments) are treated as characters drawn randomly
from the alphabet with background probabilities. These
characters were called ¢ by Prakash and Tompa [29]. For
the tree T', the score of a tuple containing e is the same as
the score of the tuple over a tree with the leaf having e
removed.

Treating gaps as single-character deletions penalizes
long gaps heavily. We chose this approach as it gives us a
first handle on gaps for multiple sequences. Proper
handling of gaps remains a hard problem to solve even
for pairwise alignment statistics [24].

(1)

2.3 Estimating Karlin-Altschul Parameters

Karlin and Altschul [14] gave approximation methods to
compute the parameters K, A\, and H, given the probability
distribution of the scores. The parameters K and A can be
thought of simply as natural scales for the search space
size and the scoring system, respectively. The parameter H
accounts for edge effects. Using the precomputed scores,
and the probabilities of seeing those scores in independent

sequences (Pr(8y,...,0; | t1, M) x Pr(Bi1,...,0s | ta, M) in
(1)), and the code to compute the Karlin-Altschul
parameters (provided by Stephen Altschul), we estimate
the parameters.

The methods suggested by Karlin and Altschul [14]
require integral scores. Equation (1) outputs real numbers.
Using a large multiplier for these scores, followed by
conversion to integers, leads to small rounding errors. As
suggested by Schéffer et al. [34], a larger multiplier results
in more accurate parameters, but the time complexity of the
methods used to estimate the Karlin-Altschul parameters is
cubic in the value of the multiplier. Thus, a large multiplier
slows down the computation significantly. The code
provided by Stephen Altschul uses a vector to store the
background probabilities of the various scores (all integral
scores between the minimum and maximum scores). The
length of this vector is proportional to the multiplier used.
Instead, we implement this vector as a sparse list. This
provides significant savings in computation time, thus
making the use of a large multiplier feasible. We use a
multiplier of 1,000, which results in negligible rounding
errors. A dense score vector (which can be the result of a
large tree, a complex evolutionary model, varying back-
ground probabilities for the various residues, etc.) can slow
down this process considerably.

2.4 Identifying Maximal Scoring Segments

Once the scoring function has been precomputed, we can
give a score to each column of the multiple alignment. Any
contiguous set of columns in the multiple alignment is
uniquely identified by a starting and an ending column. The
score of such a set of contiguous columns is just the sum of
the scores of its individual columns. We use the algorithm
of Ruzzo and Tompa [32] to identify all maximal positively
scoring segments in this alignment. This is a linear-time
algorithm that finds all the best nonoverlapping contiguous
sets of columns having positive scores, where the kth best
segment is defined recursively to be the one that maximizes
its score among all segments disjoint from the k — 1 best
segments.

Summing column scores corresponds to assuming that
the columns of the multiple alignment are independent.
While this assumption is unrealistic, there is no good
understanding of how to avoid this assumption even in the
pairwise case. Thus, tools such as BLAST make the same
assumption.

2.5 P-Value for a Single Branch

Once we have estimated the parameters Kj, \;, and Hj
corresponding to the branch k, we can compute the
p-value of the score using the sum statistics of Karlin and
Altschul [15] as follows: Let sci1,scy2,...,sc, be the
scores of the r highest scoring nonoverlapping segments.
Let scj 1, 8¢9, - - -, 8¢, be the respective normalized scores,
where for the ith segment

sy = Npscrs — ln(Kk(N - Hk)g), 2)

where N is the length of the alignment.
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Define totaly, = (7, s¢,;) — In(r!). Then, the p-value
of totaly, for the null-hypothesis case k is given as
follows [15]:

p-value(zy,, |k, r) = Pr(totaly, >z, |k, r)

00 e—t 00 -
_ v r— _oly=t)/r
/Z“ r!(r—2)!</0 Yy exp( e )dy)dt.

3)

The expression in (3) is precomputed using MATLAB for the
score range —100 to 100 and for a maximum of 50 segments.
This result is then used to compute the p-value of totaly,.

For deciding the best value of r, we choose the value that
results in the least p-value. For this, we consider segments in
decreasing order of their scores. We continue including
segments as long as we observe a decrease in the
Bonferroni-corrected p-value. Multiple-hypothesis correc-
tion (Bonferroni correction) is performed using the ideas of
Altschul [1], and thus, we multiply the p-value of total;,, by
2" to give a conservative estimate of the p-value:

p-value(zy 1, 252, - . . |k) = min (p-value(z, |k, 7) x 27).  (4)
: "

This choice of r corresponds to the most significant

collection of segments.

2.6 Discordance for the Entire Tree

Once we have computed the p-value of the score for every
branch of the phylogeny, we report the maximum p-value
among all branches as the discordance of the multiple
alignment. This corresponds to the p-value of the weakest
branch. The idea behind taking the maximum p-value is that
even if one branch has a p-value greater than the least level
of significance at which the null hypothesis is rejected, the
null hypothesis should not be rejected.

2.7 Improvements in StatSigMA

As mentioned earlier, the implementation described above
contains several improvements to the method since its
introduction [29] that make it more accurate and efficient.
This section summarizes those changes.

Perhaps the greatest improvement is the method now
used to estimate the Karlin-Altschul parameters. In the
previous version, these were estimated by simulation,
which in retrospect was inaccurate and inefficient, as
further described in Section 3. We now use the hill-climbing
method proposed by Karlin and Altschul [14]. This change
makes the estimates not only much more accurate but also
now efficient enough to allow the application of StatSigMA
to protein alignments, which was infeasible in the earlier
version. The large multiplier and sparse vector implemen-
tation discussed earlier for estimating these parameters is
also new, as is the incorporation of the edge effect
parameter H.

The earlier version gave the discordance for the whole
tree as the average, rather than the maximum, of the single-
branch p-values; the new method is more sound. The use of
the Ruzzo-Tompa algorithm [32] for identifying maximal
scoring segments is new. The multiple hypothesis correc-
tion for single-branch p-values is also new.

2.8 Time Complexity

To estimate the parameters, we first need to build the scoring
function. Suppose there are S sequences in the multiple
alignment. Let NV be the length of the multiple alignment and
a be the alphabet size. As described in Section 2.2, we
precompute min(N?2 o) scores. Each such computation
requires computing the log likelihood ratio in (1) using the
algorithm by Felsenstein [12]. This dynamic programming
step takes time O(«) for every node of the tree 7" and for each
possible residue at the node. Thus, computing one score takes
time O(Sa?), and the total time required to compute the
scoring function is O(Sa? min(N?, ).

After computing the scoring function, the estimation of
parameters is also time consuming, and it is dependent on
the density of the sparse score vector (described in
Section 2.3). Let the time taken to estimate the parameters
be T,uam- Once the parameters have been computed,
identifying the maximal scoring segments takes time
O(N). We repeat the entire process for all branches, that
is, O(S) iterations. Thus, the time complexity of StatSigMA
is O(S2a? min(N?, o) + STparam + SN).

To give a few instances of execution times observed in
practice, StatSigMA takes 2 seconds on an alignment of four
DNA sequences, each of length 1,000, and 2-3 minutes on an
alignment of nine DNA sequences, each of length 1,000. For
protein sequences, an alignment of five sequences each of
length 50 requires 1-2 minutes, and an alignment of five
sequences each of length 400 requires about 25-30 minutes.
Thus, this tool slows down considerably for protein
alignments. Less than 5 percent of the time is spent in
estimating the parameters (ST qn in the time complexity
given in the previous paragraph). All experiments were run
on 2.6-GHz Intel Xeons with Linux as the platform.

3 RESuLTS
3.1 Comparative DNA Sequence Benchmark

In another study [28], we collected large sets of high-
confidence orthologous promoter regions from human,
chimp, mouse, rat, and chicken. This was done by collecting
orthologous genes and filtering out those that did not
have identifiably orthologous transcription start sites.
The upstream sequences were masked for repeats using
RepeatMasker [37] and DUST [39]. This left us with 4,215 sets
of orthologous promoter regions from human, chimp, mouse,
and rat and 777 promoter sets from human, chimp, mouse,
rat, and chicken. For each of these, we aligned the length-
1,000 sequences upstream of the transcription start sites
using MUSCLE [10] and then computed the discordance of
each alignment using StatSigMA. Fig. 1a plots the cumulative
distribution function of the discordances for the human/
chimp/mouse/rat promoter sets, and Fig. 1b plots the
cumulative distribution function of the discordances for the
human/chimp/mouse/rat/chicken promoter sets.

Using these promoter sets, we also created 5,000 promo-
ter sets having one randomly chosen branch of the
phylogeny exhibiting unrelated behavior, for instance, a
promoter set having orthologous sequences from the two
primates and orthologous sequences from the two rodents,
but these two pairs taken from two randomly and
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independently chosen promoter sets. We also created 5,000
promoter sets based on random partitions of the species, for
instance, orthologous human and mouse sequences, but
chimp and rat sequences taken from promoter sets chosen
randomly and independently of each other and of the
chosen human-mouse promoter set. Similar random pro-
moter sets were created from the promoter sets that include
chicken. The sequences in each of these random promoter
sets were also aligned using MUSCLE [10], and then,
StatSigMA was used to compute the alignment’s discor-
dance. The cumulative distribution function of the dis-
cordances of the alignments of these sets is also plotted in
Fig. 1.

As can be seen in Fig. 1, StatSigMA can clearly
distinguish homologous promoter sets from ones that are
contaminated with unrelated sequences. Using a discor-
dance threshold such as 0.1 (the vertical line in Fig. 1), we
have significant alignments for more than 90 percent of the
orthologous human/chimp/mouse/rat promoter sets,
more than 85 percent of the orthologous promoter sets
including chicken, and approximately 8 percent-9 percent
of one-branch random promoter sets. As for the one-branch
random promoter sets, we should expect 10 percent of the
promoter sets to have a discordance less than 0.1 and
1 percent to have a discordance less than 0.01, because this
data fits our null hypothesis. The plot in Fig. 1 shows a good
fit to these points. The plot for random partitions validates
our assumption of approximating the superexponential
number of possible partitions by the linear number of one-
branch partitions [29]. The discordances for random
partitions are slightly greater (that is, the alignments look
slightly worse) than the ones for one-branch random
promoter sets.

Comparing Fig. 1 with the plot for the same promoter
sets analyzed earlier [29], we see substantial differences,
particularly in the one-branch random graphs: see Fig. 2. In
the earlier study [29], we estimated the Karlin-Altschul
parameters using simulation, via TBA [5] alignments on a
large number of one-branch random promoter sets. In these
simulations, TBA often produced poor alignments, which is
not surprising as these are nonhomologous promoter sets.
Thus, the Karlin-Altschul parameters estimated were
inaccurate, causing subsequent discordance calculations to
be inaccurate. In fact, as the parameters were based on poor
alignments, when we used these incorrect parameters for
alignments over one-branch random promoter sets, we
severely underestimated the p-values. In the current work,
we use the hill-climbing methods suggested by Karlin and
Altschul [14] to estimate the parameters rather than
simulation, obtaining much more accurate (and efficient)
estimates. This is one of the major improvements that
StatSigMA incorporates.

3.2 Comparison of Multiple Alignment Tools

The next result shows the application of StatSigMA to
compare multiple alignment tools. We took the orthologous
promoter sets described in the previous section (with and
without chicken) and compared the discordances of
ClustalW [7] and TBA [5] alignments. ClustalW is a
classical global multiple alignment tool, using a progressive
alignment based on the algorithm of Needleman and
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Fig. 2. Cumulative distribution function of the discordances computed
by StatSigMA for orthologous human/chimp/mouse/rat promoter sets
and for random promoter sets having unrelated behavior on a single
branch of the phylogeny. Graphs are shown both for the old method
of estimating Karlin-Altschul parameters by simulation and for the
new method by hill climbing. For consistency with the earlier study
[29], all alignments in this figure use TBA rather than MUSCLE. This
explains small discrepancies between Fig. 1a curves and those
labeled “New” here.

Wunsch [22]. TBA is a more modern local alignment
method that uses an anchor-based approach. Very highly
conserved regions are first identified as anchors and then
extended to produce an alignment between these anchors.
To be fair to the alignment tools, we considered only those
promoter sets that have at least 700 unmasked residues.
This left us with 2,134 promoter sets for human/chimp/
mouse/rat and 364 promoter sets including chicken.

It may seem at first that StatSigMA is not the appropriate
tool to compare two different alignments of the same
sequences. After all, StatSigMA identifies sequences that are
unrelated to the remainder, and the alignments being
compared both involve the same set of sequences. How-
ever, when one or more sequences are badly misaligned,
StatSigMA will identify them as not belonging. This is
entirely analogous to the Karlin-Altschul statistics for
comparing two pairwise alignments of the same sequences:
if one of them is badly misaligned, these statistics will
assign it a much greater E-value.

For each promoter set, we computed the log ratio of
1) StatSigMA'’s discordance for the alignment produced
by TBA and 2) StatSigMA'’s discordance for the align-
ment produced by ClustalW. Fig. 3 plots the histogram of
these log ratios. The plot for human/chimp/mouse/rat
shows that for most promoter sets, both ClustalW and
TBA produce similar quality alignments, but for about
20 percent of the promoter sets, ClustalW produces much
less discordant alignments. This includes 10 percent of
the promoter sets having a log ratio greater than 20. For
another 20 percent of the promoter sets, TBA produces
less discordant alignments. The plot for human/chimp/
mouse/rat/chicken, however, shows that ClustalW pro-
duces less discordant alighments on more than 60 percent
of the promoter sets, which was unexpected.

Analyzing these alignments in detail, we found that
there are many instances when TBA fails to find good



PRAKASH AND TOMPA: ASSESSING THE DISCORDANCE OF MULTIPLE SEQUENCE ALIGNMENTS 7

@ Human/ChimpMouse/Rat |
W Human/Chimp/Mouse/Rat/Chicken

o
©

o
©

o
-

o
o

1
~

Fraction of promoter sets
o
o

o
w

o
[N)

-10to -1 -1to1 1to 10 10to 20 220
10g(TBA iscordance/ClustalWiiscordance)

<20 -20to-10

Fig. 3. Discordances of ClustalW and TBA alignments for 2,134 ortholo-
gous human/chimp/mouse/rat and 364 orthologous human/chimp/
mouse/rat/chicken promoter sets are computed using StatSigMA. The
histogram plots log,, (discordance(TBA)/discordance(ClustalW)) against
the fraction of promoter sets.

anchors to start with, especially in chicken. Thus, it fails to
align those promoter sets, thereby producing alignments
with discordance 1. As we have a lot of trust in the
orthology of these promoter sets (Prakash and Tompa [28]
and Fig. 1b), we expect to see a good alignment. ClustalW,
which is not anchor based and always produces a global
alignment including all species, is able to find those good
alignments. As chicken is quite distant from the mammals,
on more than 40 percent of the promoter sets, TBA failed to
find anchors to start with, whereas ClustalW produced a
low-discordance alignment (log ratio greater than 20).
Analyzing the promoter sets where TBA did better than
ClustalW, we find that these promoter sets are such that the
alignment is very skewed: for example, the beginning part
of the human sequence aligns with the end part of the
mouse sequence. ClustalW, trying to produce a global
alignment, tends to produce a discordant one on these
promoter sets. These results show that different multiple
alignment tools have their weaknesses and strengths, and
StatSigMA provides an unbiased measure of which tool
produces the better alignment. It is possible that by using a
different set of parameters for TBA, we may be able to find
anchors in more promoter sets and thus produce less
discordant alignments, but then, we need a method to
evaluate the various alignments produced at different
choices of parameters. This could also be done using
StatSigMA.

A point to note is that our result differs from previous
studies that showed TBA to perform better than ClustalW
[5], [28]. Blanchette et al. [5] were using simulated data
among mammals. Prakash and Tompa [28] were evaluating
alignments for the purposes of identifying small well-
conserved regulatory elements. In both scenarios, TBA
would be able to find anchors to start with (the well-
conserved elements) and thus produce a good alignment.
This result is consistent with our findings. But we also
report that there are many other real orthologous data sets
that do not have small strongly conserved elements. On
these, ClustalW performs better than TBA. Pollard et al. [25]
obtained results similar to ours. They showed that global

alignment tools such as ClustalW have a higher sensitivity
on the entire sequence, but the local alignment tools have a
higher specificity.

In addition, one should notice that the comparison in
Fig. 3 is based on the insistence that the alignment include
all species. For instance, it is quite possible that TBA
produces a very reliable alignment of the mammals but
refuses to align chicken, for which it would be penalized in
this comparison. This points out that there are various
possible criteria one could use for such a comparison.

In this work, we have shown the comparison of only two
multiple alignment tools. A much more systematic compar-
ison of many more tools on a variety of data sets using
StatSigMA is planned for the future. As a note of caution,
StatSigMA’s assessment is of local multiple alignments.
Currently, the statistics of global alignments are not well
understood even for the pairwise case. Therefore, when we
compare the various multiple alignment tools, we are
comparing them by the quality of the local alignments they
produce. For global alignment tools such as ClustalW, we
find the set of best induced local alignments and then
compare to TBA’s local alignment. Our method should not
be applied beyond this, that is, comparing various global
alignment tools for the best global alignment is not
something that can be achieved by StatSigMA. As most
studies use multiple alignment tools to create an alignment
and then study locally well-conserved regions, we believe
that StatSigMA provides a very useful (and the first)
statistical methodology to compare various tools for this
purpose.

3.3 Protein Alignments

The next result shows the performance of StatSigMA on
protein alignments. BAIIBASE (version 2.0) [41] is a
database of manually refined protein multiple sequence
alignments specifically designed for the evaluation and
comparison of multiple sequence alignment programs. It
consists of databases categorized by sequence length and
similarity. Fig. 4 plots the cumulative distribution function
of the discordances computed by StatSigMA for the
alignments of three of these databases (referred to as Refl
in BAIiBASE).

The sequences in each of these protein sets are
equidistant, that is, the percent identity between two
sequences is within a specified range, and the sequences
are of similar length with no large insertions or extensions.
The sequence identity among the various Refl protein sets
varies from less than 25 percent to more than 35 percent.
The short alignments have a length of approximately
50 amino acids, the medium alignments have a length of
100-200 amino acids, and the long alignments have a length
of 300-400 amino acids. As shown in Fig. 4, long alignments
are less discordant than short ones for similar percent
identity. This is not surprising, since long alignments are
more likely than short alignments to have some higher
scoring segment or multiple high scoring segments.

The figure also plots the cumulative distribution of the
discordances for one-branch random protein sets. For this,
we took a BAIiBASE protein set, calculated the phylogeny
using MUSCLE [10], picked a branch, and replaced the
subtree on one side of the branch by a similar-sized subtree
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Fig. 4. Cumulative distribution function of the discordances computed by
StatSigMA for BAIIBASE protein alignments (Ref1), for various protein
sets having different lengths. A graph is also plotted for 1,000 protein
sets artificially created having a single unrelated branch.

chosen from a random BAIBASE protein set. The leaf
sequences were then realigned using MUSCLE, and the
discordance of this alignment was computed using
StatSigMA. The resulting cumulative distribution is similar
to the ones in Fig. 1. Fig. 4 shows that StatSigMA can
clearly distinguish true protein families from a mixture of
two families, even for short proteins. Note that this is true
even though StatSigMA measures the alignment discor-
dance by its maximal scoring local segments alone.

We also plot the discordances of the BAIiBASE protein
sets as a scatter plot. Fig. 5 plots the discordances of
various BAIIBASE Refl protein sets with varying lengths
and percent identities. Another type of protein set (referred
to as Ref2 in BaliBASE) aligns up to three orphan sequences
(less than 25 percent identical) from Refl with a family of
at least 15 closely related sequences. As expected, a higher
percent identity and longer sequences both result in less
discordant alignments. The discordances of Ref2 align-
ments are on the higher side, and this is due to Ref2
incorporating orphan sequences into a family of closely
related sequences. This suggests that there is sometimes
not enough information in an alignment of the primary
sequences alone to decide whether some of the sequences
are unrelated. This is consistent with the construction of
BAIiBASE [41], where structural information was used to
create the alignments.

4 CONCLUSIONS

In this work, we presented some results that involved
assessing the discordance of multiple alignments using
StatSigMA. We believe that StatSigMA can be used for
many other applications:

1. StatSigMA can be used to identify homologous
regions in various genomes. As demonstrated in
Fig. 1, StatSigMA can distinguish between homo-
logous promoter regions and an alignment generated
from unrelated sequences. A filtering-based solution
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Fig. 5. Scatter plot for discordances of various BAIIBASE protein sets;
with varying percent identities (Ref1). Scatter plots are also shown for
Ref2, which includes some orphan (very low similarity) protein
sequences along with the sequences from a single family. In each
case, the protein sets are further classified into sets having short
sequences, medium-length sequences, and long sequences. The
discordances are thresholded at 10-2°.

was presented for this problem by Prakash and
Tompa [28].

2. A related project in progress is to use StatSigMA to
evaluate the quality of the whole-genome align-
ments available on the UCSC [16] and Ensembl [4]
Web browsers. ENCODE [40] regions make an
interesting data set for this problem as well, as there
are more than two dozen species sequenced for these
regions and multiple alignments of these sequences
by four different methods [20]. We have preliminary
results [30] on the UCSC 17-vertebrate alignment
using StatSigMA.

3. StatSigMA can be used to compare the alignments
produced by various multiple alignment tools. In
Fig. 3, we presented the results of comparing
ClustalW and TBA on the basis of the alignments
that they produce for high-quality homologous
promoter regions. The same ideas can be extended
to compare the performance of various tools and
various choices of parameters (of the multiple
alignment tools) on any set of sequences.

4. StatSigMA can also be used to assess the quality of
databases such as HomoloGene [47] that use multi-
ple alignment similarity to infer functional or
ancestral relationship. Figs. 3 and 4 showed the
result of a similar test performed on BAIiBASE.

5. Tools such as TBA [5] and PROTONET [13] produce
a multiple alignment in some form or another in
their output. In the process of calculating their
result, these tools make decisions about when to
merge two multiple alignments into a single align-
ment. The decision made is based on thresholds
whose values impact the output significantly. Ideas
from StatSigMA can be used to choose such thresh-
olds in a principled manner, thus giving an accurate
estimate of the quality of the result produced.
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Incorporating a more realistic gap model is a future
need for StatSigMA. The current model treats gaps as
single-character deletions, which penalizes long gaps very
heavily. Incorporating an affine gap model for multiple
alignments should improve StatSigMA’s accuracy. Doing
so requires a detailed understanding of the evolution of
gaps that no one yet has.

As discussed earlier, StatSigMA is currently slow to run
on alignments involving long or many protein sequences.
Both of these are very interesting cases, so improving
StatSigMA'’s runtime on such cases is desirable.

5 AVAILABILITY

StatSigMA is freely available for download at http://
bio.cs.washington.edu/software.html. It has been imple-
mented in C++ under the GNU license on a Linux
platform.
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