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Abstract

We compare the accuracy of three motif-finding al-
gorithms for the discovery of novel transcription fac-
tor binding sites among co-requlated genes. Omne of
the algorithms (YMF') uses a motif model tailored for
binding sites and an enumerative search of the mo-
tif space, while the other two (MEME and AlignACE)
use a more general motif model and local search tech-
niques. The comparison is done on synthetic data
with planted motifs, as well as on real data sets of
co-requlated genes from the yeast S. cerevisiae. More
often than not, the enumerative algorithm is found to
be more accurate than the other two on the yeast data
sets, though there is a noticeable exclusivity in the ac-
curacy of the different algorithms. The experiments on
synthetic data reveal, not surprisingly, that each algo-
rithm outperforms the others when motifs are planted
according to its motif model.

1 Introduction

One of the major challenges facing biologists is to
understand the mechanisms governing the regulation
of gene expression. An important step in unraveling
the regulatory interactions is to identify common bind-
ing sites in the regulatory regions of potentially co-
regulated genes. This gives rise to the motif-finding
problem: Given a set of sequences (promoter regions),
detect overrepresented motifs that are good candidates
for being transcription factor binding sites.

There are numerous motif-finding programs from
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which to choose, including MEME [1], Consensus [5],
AlignACE [8], Oligo-Analysis [11], YMF [9, 10], Ann-
Spec [12], and Projection [4], and little guidance to
select among them. The only previous performance
comparisons that have been done for some of these
programs are by Pevzner and Sze [7] and by Buhler
and Tompa [4], using simulated data generated ac-
cording to a motif model that may not be accurate for
transcription factor binding sites.

In this paper, we compare the accuracy of an enu-
merative motif-finding algorithm YMF [9, 10] to that
of two popular contenders, MEME [1] and AlignACE
[8]. The comparison is done on real data sets from
yeast, and on synthetic data with planted motifs.
(See Blanchette et al. [2] for an analogous perfor-
mance comparison among phylogenetic footprinting
algorithms.) The experiments on synthetic data in-
dicate that each algorithm’s accuracy depends on the
fit between the stochastic process planting the motifs
and the algorithm’s underlying motif model. On real
data sets in yeast, YMF is more accurate than the
other two algorithms more often than not.

The three programs we have chosen represent three
very different types: an enumerative method, a Gibbs
sampler, and a local search based on Expectation-
Maximization. We wanted to include Oligo-Analysis
[11], but it does not seem to be available for down-
loading.

2 Motif Models and Algorithms

Both MEME and AlignACE model motifs as a
weight matriz. This is a matrix with one row for each
of the 4 bases, and one column for each position in the



motif. The number in the i** row and j** column is
the frequency with which the i*? base is found in the
4t position of the motif.

MEME uses statistical modelling techniques to au-
tomatically choose the best width, number of oc-
currences, and description of each motif. It uses
an Expectation-Maximization algorithm to fit a two-
component finite mixture model to the sequence data,
the two components being the motif and the nonmotif
(background) parts of the sequences. AlignACE uses
a variant of Gibbs sampling [6].

YMF uses a consensus model of motifs. A mo-
tif for this program is a string over the alphabet
{4,C,G,T,R,Y,S,W,N}, with consecutive N’s only at the
center, and a limited number of R (A or G), Y (C or T),
S (Cor G), and W (A or T) characters. The character N
is called a spacer and the characters R, Y, S, and W are
called degenerate symbols. The number of nonspacer
characters in a motif is called the significant length
of the motif. YMF searches the entire space of mo-
tifs and reports the motifs sorted by their z-scores [9].
For each reported motif, YMF also reports the signif-
icance of its z-score, which is the probability that a
motif with that z-score or higher is found in random
sequences of the same length and number as the in-
put. A program called FindExplanators (Blanchette
and Sinha [3]) is used to remove redundant motifs from
the output of YMF'. This program takes a list of motifs
output by YMF and reports a user-specified number
of independently significant motifs from this list.

The compared versions of these three tools are as
follows:

1. For MEME, we used version 3.0.4 available at
ftp.sdsc.edu/pub/sdsc/biology/meme/.

2. For AlignACE, we used the Linux version avail-
able at atlas.med.harvard.edu/download/.

3. For the YMF-FindExplanators suite,
we used the versions available at
bio.cs.washington.edu/software.html.

3 Comparison Outline

We use the following score for measuring the per-
formance of a motif-finding algorithm. Let § =
{51,52,...5,} be the set of n input sequences. For
any motif m, let I,,,; be the set of positions in sequence
S; that are occupied by an occurrence of m (which may
occur 0 or more times in S;). Assume that we know
the occurrences of the “true” motif m*, and are eval-
uating the motif m" reported by an algorithm. The

performance score ® is defined as follows:

Z?:l |Im’°z N Imril

E?:1 |Im’°i U Imri| -

In other words, it is the number of positions, over all
sequences, where occurrences of the known and re-
ported motifs overlap, divided by the total number of
positions at which the known or the reported motif oc-
curs. This measure was proposed by Pevzner and Sze
[7] for similar purposes. Note that if the reported oc-
currences exactly concur with the known occurrences,
the score is 1, and when the reported and known oc-
currences have no position in common, it is 0.

®(S,mkF,m") =

Fach experiment begins with a set of sequences,
and locations of occurrences of the known motif m*
in these sequences. Each of the three algorithms is
executed on the sequences, and required to report 7'
motifs, T being a parameter. Each of these T' motifs
is treated in turn as the reported motif m”, and the
performance score ® is computed as described above.
The best of the T performance scores thus obtained
is considered as the score of the corresponding algo-
rithm in the current experiment. Our experiments use
T € {1,3}. On real data sets, we allowed T' > 1 to
avoid penalizing an algorithm that finds the known
motif, but not necessarily as the highest ranked. This
resulted in improving the relative accuracy of Align-
ACE significantly.

MEME can be made to report the T' best motifs by
using the parameter nmotifs. AlignACE has an inter-
nal control on the number of motifs to report. How-
ever, its motifs are ordered by their “MAP” scores,
which can be used to pick the top T motifs. The
YMF-FindExplanators suite of programs is executed
as follows. YMF is run three times, with parameter
values (I = 6, = 11,6 = 2,t = 1000), (I = 7,\ =
0,6 =2,t=1000), and (I =8,A = 0,6 = 2,t = 1000),
respectively, where [ is the significant length, A is the
maximum number of spacers allowed in the motif, §
is the maximum number of degenerate symbols, and
t is the number of motifs to report. FindExplana-
tors is then executed separately on each list of ¢ mo-
tifs reported by YMF, and the 7' best motifs are se-
lected in each execution, for a total of 37 motifs.
These are then sorted by the significance of their z-
scores, and the best T" motifs from the sorted list of
3T are reported. We henceforth refer to the YMF-
FindExplanators suite as YMF.

4 Comparison on Synthetic Data

In this section, we describe experiments where se-
quences are generated at random, a randomly cho-



sen motif is planted in these sequences, and the ac-
curacy of the three motif-finders is evaluated on the
sequences. The planted motif is chosen either accord-
ing to a consensus model or a weight matrix model.
In each of these experiments, n sequences, each of
length 1000, are generated according to a 37? order
Markov model trained on the promoter regions of all
yeast genes.

4.1 Motifs of the Consensus Model

In one class of experiments, the planted motif m*
follows the consensus model that YMF uses. (See Sec-
tion 2.) FEach experiment is parameterized by the
number n of sequences, the number T of motifs re-
ported by each algorithm, the motif m* to be planted,
and z, the strength with which it is planted. m* is of
length 8, has no spacers, and has up to 2 degenerate
symbols. The relevant details of the experiments are
as follows.

1. We compute the number N of times that m*
needs to occur in the n generated sequences so
that its z-score [9] is the value of the parameter
z. mF is then planted at N random positions in
the n sequences. Each occurrence is planted inde-
pendently in a sequence chosen at random (with
replacement), at a random position, while ensur-
ing that previously planted occurrences are not
overwritten. The planting process ensures that
there are exactly N planted occurrences of the
motif, including chance occurrences. If m* has
any degenerate symbol, it is instantiated into one
of its two possibilites with equal probability. All
occurrences are planted in the same orientation,
since each of the algorithms tested looks at both
strands for motif occurrences.

2. YMF is run as described in the previous section,
except that the significant length of motifs is re-
stricted to 8. Let ®, denote the performance
score.

3. MEME is run with the following parameter val-
ues: the exact length of the motifs is 8 (set using
parameters w = 8, and nomatrim), multiple oc-
currences are allowed per sequence (mod = tcm)
since this is true of the planting process, and the
background distribution is the 3"% order Markov
model used to generate the random sequences
(bfile = Markov). Let ®,, be the performance
score obtained.

4. AlignACE is run with motif length 8 (using the
parameters numcols and nocols). The oversam-
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Figure 1: Performance of three motif-finding algo-
rithms (YMF, MEME, and AlignACE) on 10 se-
quences of length 1000 each, with planted consensus
motifs. Each point represents the average of the per-
formance scores for a particular algorithm and for a
specific z-score of the planted motif, the average being
over 100 experiments, each using a different planted
motif.

ple parameter, which controls the fraction of the
motif space searched, is set to 2 to allow more
exhaustive search than the default case. Let &,
denote the performance score.

The experiment was repeated for different values of
T, n and z, and for each (T, n, z) triplet, 100 different
motifs were chosen at random and used as m*. Fig.
1 summarizes the results for 7' = 3 and n = 10. It
shows, for each z, the average of ®,,®,,, ®, over the
100 different runs for that value of z. YMF is more
accurate than both MEME and AlignACE in these
experiments. Further experiments showed that the
performance gap increases for n = 20, since more se-
quences imply a greater likelihood of the local search
algorithms not reaching the global optimum. The
same trend was observed for T = 1. We did not do
rigorous comparisons for n > 20, since MEME takes
prohibitively long to complete its execution for such
large values of n. We also noted that the running time
of YMF scales better with increasing n. On a Pentium
ITT machine with 512 MB RAM, and for n = 10, YMF,
MEME and AlignACE ran for an average of 100 sec,
323 sec, and 84 sec respectively. For n = 20, these
average running times were 147 sec, 956 sec, and 310
sec respectively.



We also compared four different versions of MEME
among each other, in the same experimental frame-
work as above. These variants differed in the values of
the mod parameter, which may be set to tcm (multiple
occurrences per sequence) or zoops (at most one oc-
currence per sequence), and the bfile parameter, which
may be set to Markov or to default, the latter using sin-
gle nucleotide frequencies in the input sequences. The
mod = tem and bfile = Markov combination was the
most accurate, which is why it was used in the com-
parison to other motif finders. In the case of Align-
ACE, we compared the accuracy of two variants with
the oversample parameter set to 1 and 2 respectively.
The latter was found to perform marginally better.
Since AlignACE executes relatively fast, allowing it
more computational time by setting this parameter is
justified.

Note that YMF has an intrinsic advantage over
the other two algorithms in this experimental set-up,
because the planted motifs exactly match its motif
model. The results of this section show that if the
YMF motif model is accurate for the application of in-
terest, then YMF should perform significantly better
than the weight matrix based local search approaches,
even for few sequences. The results also reveal the ef-
fects of different parameter settings on the accuracy
of MEME and AlignACE.

4.2 Motifs of the Weight Matrix Model

In this class of experiments, the planted motif mF*
follows the weight matrix model that is used by both
MEME and AlignACE. Each experiment is param-
eterized by the number n of sequences, the number
T of motifs reported by each algorithm, the number
N of occurrences of the motif, the relative entropy
R of the weight matrix motif to be planted, and a
flag called “uneven”, which indicates how the rela-
tive entropy is distributed among the positions of the
motif. The planted motif is of length [ = 8. Once
the n random sequences (of length 1000 each) have
been generated, the motif is planted as follows. Com-
pute the distribution of the relative entropy (R bits)
in the ! columns: if the uneven parameter is false,
then each column contributes an equal amount of rel-
ative entropy (R/! bits); if the parameter is true, then
| R/Tmaz] randomly chosen positions contribute 74z
bits each to the relative entropy, where r,,,, is the
maximum possible relative entropy of any column,
and the remaining bits are evenly distributed over
the remaining columns. Construct an alignment of
N strings (over the alphabet {A,C,G,T}) of length I,
one column at a time, each column having relative en-
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Figure 2: Performance of YMF, MEME, and Align-
ACE on 10 sequences of length 1000 each, with planted
weight matrix motifs. Each point represents the av-
erage of the performance scores for a particular algo-
rithm and for a specific strength of the planted motif,
the average being over 50 experiments, each using a
different planted motif.

tropy as decided in the previous step. Such a column
is chosen at random from all columns of IV entries that
have the same relative entropy. This step gives us the
N motif occurrences that are then planted at random
positions in the n sequences, allowing multiple occur-
rences per sequence.

The three algorithms were parameterized as in Sec-
tion 4.1. The experiment was done for n € {10, 20},
T =3, N =20, Re {811,14,17}, and both val-
ues of uneven. For each choice of parameter values,
50 experiments were performed with different planted
motifs. Figure 2 summarizes the results for n = 10
and uneven = false. We notice that both MEME and
AlignACE are more accurate than YMF, because the
planted motifs match their motif model. The same
trend is observed for uneven = true, and for n = 20.

5 Comparison on Yeast Regulons

The database SCPD [13] reports several regulons in
yeast, each regulon being a set of co-regulated genes
whose promoters share binding sites for the same tran-
scription factor. For each regulon, the known bind-
ing sites are tabulated in the database. The following
sequence of steps was performed to obtain the per-
formance scores on each regulon. There is a single
parameter T', which is the number of motifs each al-
gorithm is allowed to report.

1. Extract 800 bp long promoter regions of genes
in the regulon. Let these be S = {S1,S52,...5,}.



Use the tabulated occurrences of the known bind-
ing site for this regulon as the motif mF.

2. Run YMF on S, as described in Section 3, to
obtain 7" motifs. Let the performance score be
denoted by @,.

3. Run MEME on S to obtain 7' motifs of length
between 6 (parameter minw) and 17 (parame-
ter mazw). MEME is able to decide the best
width of the motif itself, but since YMF uses
the prior knowledge that yeast binding sites are
usually between 6 and 17 in length, we supplied
this information to the MEME algorithm, for fair-
ness. Multiple occurrences are allowed per se-
quence (mod = tem) and the background distri-
bution used is the 3"¢ order Markov model trained
on all yeast promoters (bfile = Markov). Let ®,,
be the performance score.

4. Run AlignACE on S to obtain the top T motifs
with 6 conserved columns (numcols = 6), with the
oversample parameter set to 2 to allow more ex-
haustive sampling of the search space than the de-
fault case. Let ®, denote the performance score.

The experiment was performed for all 34 regulons in
SCPD that have at least three genes. Some of them
do not have a catalogued consensus sequence for the
transcription factor binding sites, often because the
tabulated binding sites do not have a good consensus,
in the sense of YMF’s motif model. (It is possible
that a weight matrix is the superior model for these
binding sites.) These experiments truly represent the
typical scenario for the transcription factor binding
site problem. The results, for T = 3, are presented
in Table 1. For each regulon, we declare an algorithm
the “winner” if it has the highest performance score for
that regulon, and this score is above 0.10. Each row of
the table corresponds to a separate regulon, and the
score of the “winning” algorithm for that regulon is
underlined.

In Table 2, we see the pairwise comparison between
YMF and each of several different variants of MEME
and AlignACE. The results for both T =3 and T' =1
are tabulated. Notice that the best performing vari-
ants of MEME and AlignACE are those considered in
Table 1.

6 Discussion

YMF outperforms both MEME and AlignACE on
11 of the 34 regulons in Table 1, MEME winning 9
times and AlignACE 5 times. (In the remaining nine

Table 1: Performance comparison of different motif
finders on yeast regulons. “Size” is the number of
genes in the regulon. The columns labelled “time”
report the time to completion for each algorithm, in
seconds.

Regulon Size YMF MEME AlignACE
b, time D, time ()8 time
ABF1 19 0.33 171 0.01 1645 0.00 280
BAS1 6 0.02 176 0.03 246  0.02 162
CARI1 12 031 151 025 771 020 183
CPF1 3  _0.62 110 0.49 86 0.02 72
CSRE 4 0.28 125  0.32 149  0.25 75
GAL4 6 0.61 176 0.66 232 0.61 171
GATA 4 0.57 128 0.19 149  0.54 124
GCN 38 _0.25 414 0.00 8523 0.00 641
GCRI1 6 0.05 196 0.20 252 0.31 78
GLN3 3 0.00 129 0.00 83 0.00 100
HAP1 5 0.15 139 0.12 208 0.10 110
HAP2 4 0.00 93 0.00 150  0.02 93
HSE 6 _0.39 158 0.23 247  0.31 216
MATA1 3 019 101 0.20 85 0.11 75
MATA2 7 0.06 197 0.36 359 0.03 175
MCB 6 0.54 122 0.15 238 0.55 222
MCM1 23 0.32 557 0.51 3532 0.50 243
MIG1 9 0.28 188 0.00 505  0.29 230
PDR3 7 0.73 174 0.43 357 0.47 134
PHO?2 3 0.00 126 0.00 84  0.00 89
PHO4 5 0.26 161 0.05 209 0.22 123
RAP1 16 0.09 645 0.31 2036 0.23 260
REB1 14  0.39 396 0.34 1628 0.01 164
ROX1 3 0.00 90 0.03 83 0.00 25
RPA 3 0.20 99 0.15 80 0.00 84
SCB 3 0.60 137 0.61 85 0.84 75
SFF 3 0.00 136 0.00 80 0.05 111
STE12 4 0.60 176 0.02 144 0.71 124
TBP 17 0.00 379 0.00 2253 0.00 277
UASCAR 3 0.02 178  0.13 85 0.06 71
UASH 18 0.00 180 0.01 2301 0.00 393
UASPHR 17 0.01 556 0.02 2205 0.06 302
UlIs 3 001 124 043 82 0.20 104
URS1H 13 0.57 388 0.73 1386 0.42 192
Wins 11 9 5
F##scores > 0.2 18 16 16
##scores > 0.33 11 9 8
#scores > 0.5 8 4 6




Table 2: Comparison of YMF with different variants of
MEME and AlignACE on yeast regulons. M1: MEME
with mod = tem and bfile = Markov. M2: MEME
with mod = zoops and bfile = Markov. M3: MEME
with mod = zoops and bfile = default. A-6, A-8, A-10:
AlignACE with oversample = 2 and numcols = 6,8,10
respectively. The numbers in parentheses indicate how
many of the wins/losses were by a margin more than
0.1.

Var. T=3 T=1
YMF win  YMF loss | YMF win YMTF loss

M1 14 (10) 11 (7) 10 (10) 10 (4)
M2 15 (10) 6 (6) 12 (9) 6 (5)
M3 14 (12) 8 (7) 13 (11) 4 (3)
A-6 14 (8) 9 (6) 12 (11) 6 (4)
A-8 16 (10) 5 (2) 13 (11) 5 (1)
A-10 16 (14) 9 (6) 14 (13) 4 (3)

regulons, all algorithms had scores below 0.1.) The
last three rows of the table also suggest that YMF
has an edge over the other algorithms. For each of
three different thresholds of success (0.2, 0.33, and
0.5), YMF has more successes than MEME or Align-
ACE. Table 2 shows that there is a substantial gap
between YMF and AlignACE (with numcols = 6) in
terms of the number of wins, in favour of the former,
for both T = 3 and T = 1, the gap being slightly
greater for T' = 1. If we declare a win to be a “clear”
win if the winning score is at least 0.1 more than the
losing score, we find a similar performance gap be-
tween these two algorithms in terms of the number of
“clear” wins, and the gap increases significantly from
T =3 to T = 1. There is a smaller performance gap
between YMF and MEME (with mod = tcm and bfile
= Markov) for T = 3 (again, in favour of the former),
and both perform equally well for 7" = 1. However,
in terms of “clear” wins, YMF has a sizeable advan-
tage. These statistics indicate that YMF is more accu-
rate than the other two algorithms (on yeast regulons)
more often than not.

As we can see from Table 2, typically a large frac-
tion of the wins of any of the three algorithms are
“clear” wins. Thus there is substantial exclusivity in
the accuracy of the algorithms. For instance, if we con-
sider all regulons in Table 1 where at least one of the
algorithms had a score above 0.33, we find that there
are 14 such regulons, and only four of them have all
three algorithms crossing the 0.33 threshold. A sim-
ilar observation is made for the 0.5 score threshold.
We believe that this exclusivity in accuracy is largely
because the motifs in different regulons are more or

less suited to a specific algorithm’s motif model. For
example, YMF has “clear” wins for regulons ABFI,
CPF1l, GCN, and PDR3, which have the binding site
consensi TCRNNNNNNACG, TCACGTG, TGANTN, and
TCCGYGGA respectively. Note that all of these, with
the slight exception of TGANTN (GCN), belong to the
YMF motif model. On the other hand, MEME has
clear wins on MATA2, UIS, and URS1H. SCPD tab-
ulates the binding site consensus of MATA2 as CRT-
GTWWWW, which allows positional variations that can
be better captured by a weight matrix than a consen-
sus motif. SCPD tabulates no consensus for UIS and
URS1H, again for the same reason.

Another noteworthy observation in Table 1 is the
time taken by the three programs. In 27 of the 34
cases, MEME has the longest completion time, and in
all cases with 9 or more genes, it takes more than twice
the time taken by the next fastest algorithm. The con-
vergence criterion in the program may be configured
to require less computation time, and we have not in-
vestigated the effect of such configuration on the per-
formance comparison. We also note that AlignACE
is often the fastest of the three algorithms, although
YMF usually has a similar time to completion.

We noted that the different variants of AlignACE
(with numcols € {6,8,10}, respectively) had some ex-
clusivity in accuracy among themselves. While YMF
and MEME both have an internal control over the
length of the motif to be reported, a single run of
AlignACE reports motifs with the same number of
conserved columns. We believe that the performance
scores of AlignACE would improve if the program
was able to choose from motifs with different num-
bers of conserved columns. Another observation about
AlignACE is that the performance score fluctuates
markedly between executions that use different ran-
dom number seeds, and a method that combines the
results from such executions might boost the accu-
racy of the algorithm. Different variants of MEME
also showed some degree of exclusivity. For instance,
the variant with mod = zoops secured a “clear” win
over the mod = tcm variant for the regulons CARI,
CPF1, CSRE, PHO4, and RAP1, while the opposite was
true for GAL4, GCR1, MATA2, scB, and UIS. (Data
not shown.) With the exception of PHO4, all of the
former regulons have an average of 1.5 or fewer bind-
ing sites per sequence, while all of the latter regulons
have more than 1.5 sites per sequence.

Our experiments with synthetic sequences and
planted consensus motifs showed that the accuracy
of MEME and AlignACE degrades relative to that of



YMF as the number of sequences increases. This may
be the result of the former algorithms getting stuck at
local optima. However, this effect was not pronounced
in the experiments with yeast regulons — in the 10
regulons with more than 10 genes, YMF secured four
wins while MEME was the winner in three cases. On
the other hand, both MEME and Align ACE have very
low performance scores (0.01 or below) for the ABF1
and GCN regulons, which are two of the three largest
regulons considered.

7 Conclusion

We have compared the accuracy of YMF for finding
transcription factor binding sites to that of two algo-
rithms MEME and AlignACE that use a more power-
ful motif model. Each class of algorithms was found
to be more accurate than the other when the planted
motif follows its motif model more closely. On real
data sets in yeast, YMF is the most accurate algo-
rithm more often than not, though there is substantial
exclusivity in the accuracy of the various algorithms.
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