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Abstrat

Understanding the mehanisms that determine the

regulation of gene expression is an important and

hallenging problem. A fundamental subproblem

is to identify DNA-binding sites for unknown reg-

ulatory fators, given a olletion of genes believed

to be oregulated, and given the nonoding DNA

sequenes near those genes. We present an enu-

merative statistial method for identifying good

andidates for suh transription fator binding

sites. Unlike loal searh tehniques suh as Ex-

petation Maximization and Gibbs samplers that

may not reah a global optimum, the method pro-

posed here is guaranteed to produe the motifs

with greatest z-sores. We disuss the results of

experiments in whih this algorithm was used to

loate andidate binding sites in several well stud-

ied pathways of S. erevisiae, as well as gene lus-

ters from some of the hybridization miroarray ex-

periments.

Keywords: sequene analysis, motif, transrip-

tion fator, binding site, promoter, spaer, z-sore.

1. Transription Fator Binding

Sites

1.1. Identifying Eukaryoti Regulatory

Sequenes

One of the major hallenges faing biologists is to

understand the mehanisms for the regulation of

gene expression. In partiular, for any given bio-

hemial pathway, there are often omplex intera-

tions among its set of genes and their produts.

There have been a number of reent studies that

used DNA miroarrays to identify the sets of genes

�
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involved in ertain pathways of the yeast S. ere-

visiae (DeRisi et al. (1997), Chu et al. (1998),

Spellman et al. (1998)). These studies divided the

set of genes into subsets whose expression patterns

suggest that they may be oregulated.

The next step in unraveling the regulatory inter-

ations is to identify ommon binding sites in the

regulatory regions of these oregulated genes and,

from these binding sites, identify the regulatory fa-

tor that binds there (Chu et al. (1998), Roth et

al. (1998), Spellman et al. (1998), Tavazoie et al.

(1999)). It is preisely this problem of identifying

unknown transription fator binding sites that we

address.

The analysis of nonoding regions in eukaryoti

genomes in order to identify regulatory sequenes

is a diÆult problem, and one that is by no means

well understood. There are several reasons for this

diÆulty:

1. The regulatory sequenes may be loated quite

far from the orresponding oding region, either

upstream or downstream or in the introns.

2. The regulatory sequenes need not be in the same

orientation as the oding sequene or eah other.

3. There may be multiple binding sites for a single

fator in a single gene's regulatory region.

4. There an be great variability in the binding sites

of a single fator, and the nature of the allowable

variations is not well understood.

In S. erevisiae, the �rst of these problems is not

severe: nearly all transription fator binding sites

are believed to lie within 800 bp upstream of the

translation start site (Zhu and Zhang (1999)). The

three remaining onfounding problems are, how-

ever, present.

1.2. Previous Methods for Finding

Regulatory Motifs

A number of algorithms to �nd general motifs have

been proposed previously. (See, for example, Bai-
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ley and Elkan (1995), Fraenkel et al. (1995), Galas

et al. (1985), Hertz and Stormo (1999), Lawrene

et al. (1993), Lawrene and Reilly (1990), Rigout-

sos and Floratos (1998), Roke and Tompa (1998),

and Staden (1989).) Many of these algorithms are

designed to �nd longer and more general motifs

than are required for identifying transription fa-

tor binding sites. The types of general motif used in

the ited referenes inlude weight matries, align-

ments, and gapped alignments. The prie paid for

this generality is that many of the ited algorithms

are not guaranteed to �nd globally optimal solu-

tions, sine they employ some form of loal searh,

suh as Gibbs sampling, expetation maximization,

and greedy algorithms, that may end in a loal op-

timum. There have been a few studies that have

applied these loal searh tehniques spei�ally

to the problem of identifying transription fator

binding sites in S. erevisiae (Chu et al. (1998),

Roth et al. (1998), Spellman et al. (1998), Tava-

zoie et al. (1999)), with some suess.

The number of well onserved bases in the olle-

tion of binding sites of a single S. erevisiae tran-

sription fator is typially six to ten (Wingender et

al. (1996), Zhu and Zhang (1999)). This number is

small enough that, for this partiular problem, one

need not rely on suh general loal searh heuris-

tis. Instead, one an a�ord to use enumerative

methods that guarantee global optimality. This is

the approah taken by the urrent paper, whose

method is most losely allied to that of van Helden

et al. (1998) and Tompa (1999).

Van Helden et al. (1998) used an enumerative

statistial method to takle the same problem of

�nding transription fator binding sites in S. ere-

visiae. Their method proved reasonably suess-

ful at �nding short, ontiguous transription fator

binding sites. However, their method su�ers from

some drawbaks that we retify:

1. They onsider only exat mathes, disallowing

variations in the binding site instanes of a given

transription fator.

2. Their motifs do not inlude \spaers", whih

preludes their algorithm from �nding suh well

known binding sites as that of Gal4p, whose on-

sensus is CGGNNNNNNNNNNNCCG (Wingender et al.

1996; Zhu & Zhang 1999).

3. In their statistial model, they assume that o-

urrenes of a motif at distint sequene posi-

tions are probabilistially independent, whereas

in reality overlapping ourrenes (in both ori-

entations) have rather omplex dependenies

(Niod�eme et al. (1999)).

4. Their measure of statistial signi�ane of a motif

s is based on the frequeny of ourrene of s

over all regulatory regions of the genome. This

is problemati for those motifs that appear rarely,

beause there may be insuÆient data to support

reliable statistis. (See Salzberg et al. (1998)

for a disussion.) The more standard Markov

hain model that we employ an be based on the

frequenies of shorter (and hene more frequent)

oligonuleotides.

Br�azma et al. (1998) employed a similar teh-

nique for identifying binding sites. They did allow

their motifs to ontain up to three ourrenes of

the N harater.

Tompa (1999) used an enumerative method simi-

lar to that of van Helden et al. (1998), but for �nd-

ing ribosome binding sites in prokaryoti genomes.

We adopt some of that work's statistial onsid-

erations here, in partiular, the use of a Markov

hain to model the bakground genomi distribu-

tion, the use of z-sore as the measure of statistial

signi�ane, and attention to the autoorrelation

of overlapping motif instanes. However, Tompa's

algorithm also su�ers some shortomings for the

present appliation:

1. Tompa's algorithm also did not allow for spaers

in the motifs, sine they seemed irrelevant in the

prokaryoti ribosome binding site problem.

2. The allowable variability among binding site in-

stanes that proved suÆient for the prokaryoti

ribosome binding site problem, namely zero or

one substitution from some onsensus sequene,

proved insuÆient in the present appliation.

3. The possibility of multiple binding sites for a sin-

gle fator in a single gene's regulatory region does

not arise in the prokaryoti ribosome binding site

problem. This ompliates the motif autoorre-

lation omputation.

2. Motifs and Their Signi�ane

2.1. Variability Among Binding Site

Instanes

The �rst question that must be addressed is \What

onstitutes a motif?" for the appliation of tran-

sription fator binding sites in S. erevisiae. An

inspetion of transription fator databases (suh

as TRANSFAC (Wingender et al. 1996) or SCPD

(Zhu & Zhang 1999)), or of the relevant literature

(partiularly Jones et al. (1992), whih is rih in

examples, and also Blaiseau et al. (1997), Mai and

Breeden (1997), MInerny et al. (1997), Nurrish

and Treisman (1995), Oshima et al. (1996), and

Wemmie et al. (1994)) reveals that there is sig-

ni�ant variation among the binding sites of any

single transription fator, so that it is overly rigid

to insist on exat mathes among motif instanes.

Moreover, the nature of the variability itself varies
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from fator to fator, so that the \orret" motif

model is far from lear.

Certain trends that must be inorporated in the

motif model do, however, emerge:

1. Like the Gal4p binding site onsensus mentioned

in Setion 1.2, many of the motifs have spaers

varying in length from 1 to 11 bp. The spaer

usually ours at the middle of the motif, often

beause the fators bind as dimers.

2. The number of well onserved bases (not inlud-

ing spaers, of ourse) is usually in the range 6{

10.

3. When there is variation in a onserved motif po-

sition, it is often a transition (that is, the substi-

tution of a purine for a purine, or a pyrimidine for

a pyrimidine) rather than a transversion. This is

beause of the similarity in nuleotide size nees-

sary to �t the transription fator's �xed DNA-

binding domain. Somewhat less often, the vari-

ation in a given position may be between a pair

of omplementary bases. Other positional varia-

tions are rarer.

4. Insertions and deletions among binding sites are

unommon, again beause of the �xed struture

of the fator's DNA-binding domain.

Based on these observations, a motif for our

appliation will be a string over the alphabet

fA; C; G; T; R; Y; S; W; Ng, with 0-11 onseutive N's at

the enter, and a limited number of R's (purine),

Y's (pyrimidine), S's (strong), and W's (weak). We

hoose suh a onsensus model rather than (say)

a weight matrix in order to be able to enumerate

motifs. Note that there is little need to allow fur-

ther variation in motif instanes, sine the variation

is already inorporated in the motif's allowane of

R,Y,S,W,N. An examination of 50 binding site on-

sensi inluded in SCPD (Zhu & Zhang 1999) re-

vealed that the number of onsensi that exatly �t

this haraterization is 31 (62%). About 10 more �t

the haraterization if very slight di�erenes from

the exat onsensus are tolerated.

2.2. Measure of Statistial Signi�ane

Given some set of (presumably oregulated) S. ere-

visiae genes, the input to our problem is the or-

responding set of upstream sequenes, eah having

length 800 bp and having its 3

0

end at the gene's

translation start site.

A good measure for omparing motifs must take

into aount both the absolute number of our-

renes of the motif in the input sequenes, and

the bakground genomi distribution. (See Tompa

(1999) for a detailed disussion.) For eah motif

s, let N

s

be the number of ourrenes of s in the

input sequenes, allowing an arbitrary number of

ourrenes per upstream sequene. A reasonable

measure of s as a motif, then, would reet how

unlikely it would be to have N

s

ourrenes, if the

sequenes were instead drawn at random aording

to the bakground distribution.

More spei�ally, let X be a set of random

DNA sequenes of the same number and lengths

as the input sequenes, but generated by a Markov

hain of order m, whose transition probabilities

are determined by the (m + 1)-mer frequenies in

the full omplement of 6000+ upstream regions

(eah of length 800 bp) in S. erevisiae. (In our

experiments, we hose m = 3 in order for the

bakground model to inlude the TATA, AAAA, and

TTTT sequenes that are ubiquitous throughout the

genome's upstream regions (van Helden, Andr�e, &

Collado-Vides 1998).) Let the random variable X

s

be the number of ourrenes of the motif s in X ,

and let E(X

s

) and �(X

s

) be its mean and standard

deviation, respetively. Then the z-sore assoiated

with s is

z

s

=

N

s

�E(X

s

)

�(X

s

)

: (1)

The measure z

s

is the number of standard devia-

tions by whih the observed value N

s

exeeds its

expetation, and is sometimes alled the \normal

deviate" or \deviation in standard units". See Le-

ung et al. (1996) for a detailed disussion of this

statisti. The z-sore z

s

obeys, in the asymptoti

limit, a normal distribution. This is known to be

the ase when X is a singleton set: see Niod�eme

et al. (1999, Theorem 2). The result extends to an

arbitrary �nite set X (with equal sized regions) by

a Central Limit Theorem due to Lindeberg (Feller

1993, Setion X.1, Formula 1.4). The measure z

s

is

normalized to have mean 0 and standard deviation

1, making it suitable for omparing di�erent motifs

s.

What remains to disuss, then, is how to ompute

the mean E(X

s

) and standard deviation �(X

s

).

The former is straightforward but the latter, be-

ause of the possibility of overlap of a motif with

itself (in either orientation), is not. Fortunately,

this problem of pattern autoorrelation has been

well studied, beginning with its introdution by

Guibas and Odlyzko (1981). (See the exellent

overview by Niod�eme et al. (1999).) In partiu-

lar, a method for omputing the standard deviation

�(X

s

) that is more eÆient than using the general

reurrene formulae of Niod�eme et al. (1999) was

presented by Kle�e and Borodovsky (1992) for �rst-

order Markov hains and the ase in whih the motif

s is a single string. We have generalized their for-

mulae to our ase, in whih s represents a �nite set

of strings. (See also R�egnier (1998).) Note that, in

this ase, one must take into aount all possibilities
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of one string in the set overlapping with any other.

Our extension allows higher order Markov hains,

spaers to be handled at no extra run-time ost,

and the possibility of a motif ourring in either

orientation, none of whih were relevant onsidera-

tions for Kle�e and Borodovsky. All these hanges

taken together result in a substantial modi�ation

of the formulae of Kle�e and Borodovsky: see the

Appendix for details.

2.3. Algorithm Summary

The omplete algorithm is summarized as follows.

The inputs to the algorithm are

1. a set of upstream sequenes,

2. the number of nonspaer haraters in the motifs

to be enumerated, and

3. the transition matrix for an order m Markov

hain onstruted from the full omplement of

upstream sequenes of S. erevisiae.

The algorithm �rst makes a pass over the input

sequenes, tabulating the numberN

s

of ourrenes

of eah motif s in either orientation. For eah mo-

tif s for whih N

s

> 0, it then uses the method

desribed in the Appendix to ompute E(X

s

) and

�(X

s

), and uses Equation (1) to ompute the z-

sore z

s

. It outputs the motifs sorted by z-sore.

For a single motif s, the running time to ompute

z

s

is O(

2

k

2

), where k is the number of nonspaer

haraters in s, and  is the number of possible

instantiations of R, Y, S, and W symbols in s. Be-

ause the number of motifs is exponential in k, we

an a�ord this enumerative method only for mod-

est values of k. Note, however, that the dependene

on genome size is linear, so that the method sales

very well to large genomes.

Moreover, the O(

2

k

2

) time z-sore omputation

does not need to be omputed for most of the mo-

tifs. A very signi�ant redution in running time

is ahieved by the following optimization: We note

that the dominant part of a motif's z-sore om-

putation is the variane alulation. We also note

that z

s

an be bounded by the expression

z

s

�

N

s

�E(X

s

)

p

E(X

s

)�E(X

s

)

2

(2)

sine �(X

s

)

2

� E(X

s

)�E(X

s

)

2

. (See Equation (4)

in the Appendix.) Hene, before omputing �(X

s

),

we ompute E(X

s

) and use Inequality (2) to exam-

ine if it may be worthwhile to go into the variane

omputation. (We ompare this expression to the

lowest z-sore among the top ranking motifs dis-

overed so far.) If not, the variane omputation

for s is aborted, and the next motif is examined.

A similar bounding tehnique is used to opti-

mize the variane omputation itself. Noting that

the dominant part of the variane omputation is

omputing the overlap term

P

jCW j

i=1

E(X

(CW )

i

) (see

Equation (5) in the Appendix), whih is nonnega-

tive, we ompute the remaining terms of the vari-

ane �rst, and ompute the overlap term only if

there is a possibility of getting a high enough z-

sore. (The overlap term ontributes to the de-

nominator of the expression in Equation (1), so the

z-sore is maximized when the overlap term is 0.)

Our experiments showed that these two optimiza-

tions redue the running time of the algorithm dras-

tially.

3. Experimental Results

3.1. Known Regulons

We implemented and ran the program desribed in

Setion 2.3 on seventeen well studied oregulated

sets of genes in S. erevisiae. For eah of these sev-

enteen sets of upstream sequenes, there is a known

transription fator with a known binding site on-

sensus, so that the suess of the experiments an

be assessed.

In all but two of these experiments, our algorithm

sueeded in determining the known onsensus, in

the following sense: In nine of them, the known on-

sensus was one of the three highest soring motifs;

and in six others a very similar looking motif was in

the top three. Tables 1 { 8 give examples of some of

these suesses. In eah table, the known onsen-

sus is given in the aption, and its instanes in the

program's output are italiized. As an be seen, of-

ten the known onsensus and its lose relatives are

prominent in the �ve highest-soring motifs. (We

hose the number of nonspaer haraters in order

to make the omparison with the known onsensus

easier. Choosing a slightly di�erent number pro-

dues similar results.)

Note the unusually high z-sores in many of these

tables; one would not expet sores so many stan-

dard deviations above the mean in random data.

To verify this assertion, for eah family we ran the

program on several independent sets of simulated

data generated by the 3rd order Markov hain de-

sribed for the random variable X in Setion 2.2.

For eah suh simulated input, we omputed the

maximum z-sore, and then the mean of these max-

ima. We all this the mean max z-sore for the

family, and inlude it in the aption of eah table.

Note the disparity between this mean max z-sore

and the atual z-sores of the top motifs in most of

the tables.

In the remaining two experiments (ACE2 and

ADR1, both being families with very few genes in
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s N

s

z

s

TCANNNNNNACG 27 9.67

TCRNNNNNNACG 34 9.36

YCANNNNNNACG 34 8.58

TCANNNNNNWCG 37 8.39

YCANNNNNNWCG 52 8.31

Table 1: Five highest soring motifs for the 19-

gene family ABF1, whose known onsensus is

TCANNNNNNACG (Zhu & Zhang 1999). Mean max

z-sore on simulated data : 6.37

s N

s

z

s

CGGNNNNNNNNNNNCCG 28 32.72

CGGNNNNNNNNNNNSCG 31 28.72

CGGNNNNNNNNNNNCSG 28 26.03

CGGNNNNNNNNNNNCCS 28 25.52

CGGNNNNNNNNNNNYCG 29 25.13

Table 2: Five highest soring motifs for the 6-

gene family GAL4, whose known onsensus is

CGGNNNNNNNNNNNCCG (Zhu & Zhang 1999). Mean

max z-sore on simulated data : 6.84

s N

s

z

s

ACGCGT 26 19.24

ACGCGW 35 17.63

ACGCGY 30 15.74

ACGSGT 30 14.39

CGCGTY 31 14.38

Table 3: Five highest soring motifs for the 12-gene

family MCB, whose known onsensus is ACGCGT

[Chris Roberts, personal ommuniation℄. Mean

max z-sore on simulated data: 6.48

s N

s

z

s

TCCGYGGA 14 38.02

TCCGCGGA 8 34.16

TCCRYGGA 20 33.53

TCCGYGGR 15 32.02

TCCRCGGR 15 31.81

Table 4: Five highest soring motifs for the 7-gene

family PDR3, whose known onsensus is TCCGYGGA

(Zhu & Zhang 1999). Mean max z-sore on simu-

lated data: 14.32

s N

s

z

s

CACGTGGG 3 16.75

CCGCNNNNNNNNNTGCC 3 16.66

CACGTGSG 4 16.56

CCGGNNNNCGGC 2 16.36

CACGTGGR 5 16.34

Table 5: Five highest soring motifs for the 5-gene

family PHO, whose known onsensus is GCACGTGGG

or GCACGTTTT (Oshima, Nobuo, & Harashima

1996). Mean max z-sore on simulated data: 16.0

s N

s

z

s

CACGAAA 10 15.92

CCGNNNNCGGA 4 15.11

CRCGAAA 12 14.95

CWCGAAA 12 13.37

CGTNNNNNNCGCA 4 13.21

Table 6: Five highest soring motifs for the 3-gene

family SCB (or SWI), whose known onsensus is

CNCGAAA (Zhu & Zhang 1999). Mean max z-sore

on simulated data: 10.98

s N

s

z

s

TGAAACA 15 9.17

AACNNNNNNNWRAC 22 8.91

TGAAACR 18 8.61

TRAAACA 23 8.59

TRAAWCA 30 8.35

Table 7: Five highest soring motifs for the 9-gene

family STE12, whose known onsensus is TGAAACA

[Chris Roberts, personal ommuniation℄. Mean

max z-sore on simulated data: 8.9

s N

s

z

s

TCACGTG 19 23.63

TCRCGTG 20 20.33

TCACGYG 20 20.07

ATANAYAT 62 19.28

ATANNNAYAT 57 18.87

Table 8: Five highest soring motifs for the 11-gene

family MET, whose known onsensus is TCACGTG or

AAAACTGTGG (van Helden, Andr�e, & Collado-Vides

1998). Mean max z-sore on simulated data: 8.26
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s N

s

z

s

ACGCGT 104 34.88

ACGCGW 149 34.02

ACGCGY 121 28.57

RCGCGW 172 26.77

CGCGTY 119 24.63

Table 9: Five highest soring motifs for the 57-gene

luster CLN2 (Spellman et al. 1998). The luster is

regulated by MCB, SCB and the binding site ould

be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang

1999). See also Table 3.

them), the known onsensus was in the top twenty

reported motifs.

3.2. Coexpressed Gene Clusters

We also ran our program on eight of the oex-

pressed gene lusters disovered by Spellman et al.

(1998) and Tavazoie et al. (1999).

Tables 9 { 12 summarize the results from the best

four of these experiments (three from (Spellman et

al. 1998) and one from (Tavazoie et al. 1999)).

Again, the top �ve motifs in eah family have very

high z-sores and math the binding site onsensus

of the transription fator believed to regulate the

family. In three out of four of these experiments,

the authors found a very similar motif. The fourth

experiment is on the Y

0

luster from Spellman et

al. (1998), whose regulation is not well understood,

and for whih the authors reported no striking mo-

tif. Table 10 does reveal some very onspiuous and

high soring motifs. These turn out to be part of

a repeated 168- to 173-mer, whih ours in lose

variations in 18 of the 31 upstream regions.

4. Future Work

The results of our approah have been most promis-

ing. There are several issues and aspets that war-

rant further researh:

� The urrent motif haraterization is still limited.

In some true binding sites, spaers may not be

entered, or there may be more than one run of

spaers. We do not handle suh motifs yet.

� We are investigating how muh of the work done

in the enumerative loop of the algorithm an

be moved to the preproessing step, before the

oregulated gene sequenes are input. We be-

lieve the program an be made muh faster this

way.

� The auray of the results ould be improved

by �ltering out well known repeats from the up-

stream regions of the genes before running our

tool on them.

s N

s

z

s

GACGNNNNNNGGAC 23 56.33

CTGCNNNNNGCAG 36 55.85

GCAGNNNCTGC 36 55.67

CAGANTCTG 36 51.93

CAGANNCTGC 36 50.29

Table 10: Five highest soring motifs for the 31-

gene luster Y

0

(Spellman et al. 1998). The regu-

lator and binding site for the luster are unknown.

s N

s

z

s

RARCCAGC 23 14.82

ARCCAGCA 17 13.75

ARCCAGCR 20 12.94

RRCCAGCA 20 12.33

ARAANAARA 138 12.23

Table 11: Five highest soring motifs for the 27-

gene luster SIC1 (Spellman et al. 1998). The

luster is regulated by Swi5p/Ae2p and the bind-

ing site is believed to be RRCCAGCR.

s N

s

z

s

ACGCGW 51 10.19

ACGCGT 32 9.77

CGCGTY 49 9.02

ACGCGW 175 29.87

ACGCGT 114 28.77

RCGCGW 207 23.48

ACGCGT 116 29.33

ACGCGW 164 27.68

ACGCGY 140 24.51

Table 12: Three highest soring motifs for eah of

three subsets of the the 186-gene luster 2, whih is

involved in repliation and DNA synthesis (Tava-

zoie et al. 1999). The three subsets mimi the au-

thors' ross-validation experiment. The luster is

regulated by MCB, SCB and the binding site ould

be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang

1999). See also Tables 3 and 9.
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� More experiments need to be done to determine

a good threshold for signi�ant z-sores. This

threshold should depend on the number of non-

spaer haraters as well as the size of the input

sequenes.

� We are experimenting with more gene families for

whih the binding site is not yet known, inluding

families from other eukaryoti genomes.

� In some of the experiments some motifs with very

high signi�ane were disovered, but they are

not doumented as binding sites. These motifs

need loser examination.
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A. Appendix

This setion desribes how we ompute E(X

s

) and

�(X

s

) for a given motif s, when X is a single region

of length n. The motif s is assumed to be a string of

length l over the alphabet fA,C,G,T,R,Y,S,W,Ng.

For simpliity, the Markov model assumed here is

of 1st order; in Setion A.4 the hanges neessary

to aommodate higher orders are desribed.

The motif s is �rst onverted into a set W of

strings, whih ontains strings of length l over the

alphabet fA,C,G,T,Ng, by replaing the R's, Y's,

S's, and W's by all possible ombinations of the ap-

propriate bases. Then for eah string in W , its

reverse omplement is also added to W . (As a re-

sult, W may be a multiset.) Notie that motif s

ours at a given position in X (on either strand) if

and only if some string in the set W ours at that

position.

A.1. Number of Ourrenes

X

s

is de�ned as the sum of the number of our-

renes (in X) of eah member of W . (Overlapping

instanes are ounted as separate.) Sine palin-

dromes our twie in W , we are e�etively ount-

ing two for eah ourrene of every suh palin-

drome. The reason for this is that an ourrene

of a palindrome on one strand aounts for two o-

urrenes of the motif when both strands are on-

sidered.

We denote members of W by W

i

, and jW j by T

(ounting dupliate elements as distint).

De�ne X

ij

, for i 2 f1; 2; : : : ; Tg and j 2

f1; 2; : : : ; n� l+ 1g, as a 0=1 indiator variable for

the ourrene of W

i

at position j, i.e.,

X

ij

=

�

1; if W

i

ours at position j of X

0; otherwise

:

Also,

X

sj

def

=

T

X

i=1

X

ij

;

X

i

def

=

n�l+1

X

j=1

X

ij

;

X

s

def

=

T

X

i=1

X

i

:

This de�nition of X

s

is onsistent with the de�-

nition in Setion 2.2. X

s

ounts the total number

of ourrenes of the motif s in X , taking both

strands into aount, and onsidering the speial

ase of palindromes also.

(Note that X

s

=

P

T

i=1

X

i

=

P

T

i=1

P

n�l+1

j=1

X

ij

=

P

n�l+1

j=1

P

T

i=1

X

ij

=

P

n�l+1

j=1

X

sj

.)

A.2. Expetation

By de�nitions and the linearity of expetation, we

have

E(X

s

) =

T

X

i=1

E(X

i

);

E(X

i

) =

n�l+1

X

j=1

E(X

ij

);

E(X

ij

) = Pr(X

ij

= 1) = p

j

(a

i1

)p

�

(W

i

);

where p

j

() is the probability of ourrene of base

 at position j, a

im

is the mth harater of string

W

i

and p

�

(W

i

) is the probability of W

i

starting at

any position, given that a

i1

ours at that position.

Assuming p

j

to be a onstant independent of j,

we an denote p

j

by p and rewrite the formula above

as E(X

ij

) = p(a

i1

)p

�

(W

i

), from whih we get

E(X

i

) = (n� l + 1)p(a

i1

)p

�

(W

i

): (3)

The assumption that p

j

is independent of j is

disussed and justi�ed by Kle�e and Borodovsky

(1992). The vetor p is the so-alled stationary dis-

tribution of the Markov hain.

We ompute p

�

(W

i

) by following the Markov

hain for l� 1 steps starting with a

i1

. In following

the Markov hain, we have to \skip over" any spa-

ers by using higher powers of the transition matrix

(whih an be preomputed for eÆieny).

8th Intl. Conf. on Intelligent Systems for Moleular Biology, Aug. 2000 7



A.3. Variane

The variane of X

s

is, by de�nition,

�(X

s

)

2

= E(X

2

s

)�E(X

s

)

2

;

where

E(X

2

s

) = E((

n�l+1

X

i=1

X

si

)

2

)

=

n�l+1

X

j=1

n�l+1

X

k=1

E(X

sj

X

sk

)

=

n�l+1

X

i=1

E(X

2

si

)

+2

n�l+1

X

j=1

n�l+1

X

k=j+1

E(X

sj

X

sk

):

Let B be the �rst summation in this expression,

and 2C be the remaining terms. We �rst onsider

the term C.

C =

n�l+1

X

j=1

n�l+1

X

k=j+1

E(X

sj

X

sk

)

=

n�l+1

X

j=1

j+l�1

X

k=j+1

E(X

sj

X

sk

)

+

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

)

=

n�l+1

X

j=1

l�1

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;j+k

) +A;

where

A =

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

):

Now let CW be the set of all overlapping on-

atenations of pairs of strings from W . That is,

CW = fxyz j W

i

1

= xy and W

i

2

= yz; for some

i

1

; i

2

; and nonempty x; y; zg:

We denote members of CW by CW

i

. Like W , CW

an potentially be a multiset.

Also, de�ne

X

(CW )

ij

=

�

1; if CW

i

ours at position j

0; otherwise

:

Notie that there is a one-to-one orrespondene

between

f(k; i

1

; i

2

) j X

i

1

;j

X

i

2

;j+k

= 1 and 0 < k < lg

and

fi j X

(CW )

ij

= 1g;

for any j. Note also that the eventX

i

1

;j

X

i

2

;j+k

= 1

is idential to the event X

(CW )

ij

= 1, for the orre-

sponding i.

Therefore,

l�1

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;j+k

) =

jCW j

X

i=1

E(X

(CW )

ij

)

where jCW j denotes the ardinality of CW.

We an thus write

C =

n�l+1

X

j=1

jCW j

X

i=1

E(X

(CW )

ij

) +A

=

X

i

n�jCW

i

j+1

X

j=1

E(X

(CW )

ij

) +A;

where jCW

i

j denotes the length of the string CW

i

.

Let X

(CW )

i

=

P

n�jCW

i

j+1

j=1

X

(CW )

ij

. Then we have

n�jCW

i

j+1

X

j=1

E(X

(CW )

ij

) = E(X

(CW )

i

);

whih an be omputed just as any E(X

i

) is om-

puted. (See Equation (3).) Let p

k

(

2

j

1

) denote the

probability of �nding the harater 

2

k steps (of

the Markov hain) after 

1

. De�ning q = n�2l+2,

we an then write C as

C =

jCW j

X

i=1

E(X

(CW )

i

) +A;

where

A =

n�2l+1

X

j=1

n�l+1

X

k=j+l

E(X

sj

X

sk

)

=

q�1

X

j=1

q�j

X

k=1

T

X

i

1

=1

T

X

i

2

=1

E(X

i

1

;j

X

i

2

;k+j+l�1

)

=

X

j

X

k

X

i

1

X

i

2

p

j

(a

i

1

;1

)p

�

(W

i

1

)p

k

(a

i

2

;1

ja

i

1

;l

)p

�

(W

i

2

)

=

X

i

1

X

i

2

p

�

(W

i

1

)p

�

(W

i

2

)S

i

1

i

2

;

where

S

i

1

i

2

=

q�1

X

j=1

q�j

X

k=1

p

k

(a

i

2

;1

ja

i

1

;l

)p

j

(a

i

1

;1

):

By imitating the omputation shown in the proof

of Theorem 1 in Kle�e and Borodovsky (1992),
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and making appropriate approximation (replaing

a ertain power series sum by its asymptoti limit,

as explained in Kle�e and Borodovsky (1992)), we

�nally get

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QPe

a

i

2

1

� e

0

a

i

1

l

QP

2

Qe

a

i

2

1

g:

Here, e

a

i

1

l

and e

a

i

2

1

are elementary unit vetors

of length 4 that have a 1 in the position or-

responding to the last harater of W

i

1

and the

�rst harater of W

i

2

respetively, P is the 4 � 4

transition probability matrix of the Markov hain

and Q is (P� I� 1p

0

)

�1

, as de�ned in Kle�e and

Borodovsky (1992). (The notations e

0

and p

0

de-

note the transpose of those vetors, and the vetor

1 is the olumn vetor with all 1s.)

Now onsider the term B de�ned earlier.

B =

n�l+1

X

j=1

E(X

2

sj

)

=

X

j

E(

T

X

k=1

X

2

kj

+

T

X

q=1

X

r 6=q

X

qj

X

rj

)

=

X

j

X

k

E(X

2

kj

) +

X

j

X

q

E(

X

r 6=q

X

qj

X

rj

)

=

X

j

X

k

E(X

kj

) +

X

j

X

q

E(

X

r 6=q

X

qj

X

rj

):

To simplify the seond term, when r 6= q,

� X

qj

X

rj

= 1 if W

q

and W

r

are strings that an

both be instantiated at position j, and

� X

qj

X

rj

= 0 otherwise.

The simplest ase in whih X

qj

X

rj

= 1 is when

W

q

and W

r

are two opies of the same palindrome,

and it ours starting at position j. An example of

the more general ase is the motif s = AASANNSTT.

Two of its four instantiations in W would be

W

1

= AACANNCTT

and

W

2

= AAGANNGTT:

The reverse omplement of W

1

would then also be

added to W , namely

W

5

= AAGNNTGTT:

Now it is possible for both W

2

and W

5

to be in-

stantiated starting at position j, even though W

2

and W

5

are not idential. We will say that W

2

and

W

5

an be superimposed.

If W

q

and W

r

an be superimposed, with r 6= q,

then they annot both be instanes of the motif

s, or both be reverse omplements of instanes of

s. Hene, for every q, there is at most one r 6= q

suh that W

q

and W

r

an be superimposed. Let

PAL be the set of indies q suh that W

q

an be

superimposed with W

r

, for some r 6= q.

Rather than heking all pairs inW to �nd whih

an be superimposed, it is more eÆient to iden-

tify suh pairs diretly from the motif s. This is

easily done by reading s from both ends at one.

For eah pair of superimposable stringsW

q

andW

r

so identi�ed, it is also easy to determine the most

general ommon instantiation P

q

of both W

q

and

W

r

. For the example strings W

2

and W

5

above,

P

2

= P

5

= AAGANTGTT. For q 2 PAL, let

Y

qj

=

�

1; if P

q

ours at position j

0; otherwise

:

and

Y

q

=

n�l+1

X

j=1

Y

qj

:

Then we an write

B =

n�l+1

X

j=1

T

X

k=1

E(X

kj

) +

n�l+1

X

j=1

X

q2PAL

E(Y

qj

)

= E(X

s

) +

X

q2PAL

E(Y

q

):

E(Y

q

) an be omputed just as any E(X

i

) is om-

puted, using Equation (3).

In summary, the variane of X

s

an be obtained

from the following set of formulae:

�(X

s

)

2

= E(X

2

s

)�E(X

s

)

2

;

E(X

2

s

) = B + 2C;

B = E(X

s

) +

X

q2PAL

E(Y

q

); (4)

C =

jCW j

X

i=1

E(X

(CW )

i

) +A; (5)

A =

T

X

i

1

=1

T

X

i

2

=1

p

�

(W

i

1

)p

�

(W

i

2

)S

i

1

i

2

;

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QPe

a

i

2

1

�

e

0

a

i

1

l

QP

2

Qe

a

i

2

1

g:

A.4. Higher Order Markov Model

This setion outlines how to extend the alulations

above to handle higher order Markov hains. In the
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expetation alulations of Setion A.2, p

j

() now

denotes the probability of ourrene of the m-mer

 at position j, a

i1

in Equation (3) is now the �rst

m-mer ofW

i

, and p

�

(W

i

) is omputed, as before, by

following the Markov hain, starting with a

i1

. The

transition matrix P is now a 4

m

�4

m

matrix, where

the rows and olumns are indexed by the possible

m-mers, and P

ij

is the probability that the m-mer

j starts at position t + 1, given that the m-mer i

starts at position t. Thus, eah row in P has at

most 4 nonzero entries.

The variane alulations given in Setion A.3

remain the same, exept for S

i

1

i

2

, whih depends

on m. For the ase m = 3 used in our experiments,

it is given by

S

i

1

i

2

= p(a

i

1

;1

)f

q(q + 1)

2

p(a

i

2

;1

)�

(q � 1)e

0

a

i

1

l

QP

3

e

a

i

2

1

�

e

0

a

i

1

l

QP

2

QP

2

e

a

i

2

1

g:
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