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Abstract. In interactive graphical applications we often require that objects do
not overlap. Such non-overlap constraints can be modelled as disjunctions of
arithmetic inequalities. Unfortunately, disjunctions are typically not handled by
constraint solvers that support direct manipulation, in part because solving such
problems is NP-hard. We show here that is in fact possible to (re-)solve systems
of disjunctive constraints representing non-overlap constraints sufficiently fast to
support direct manipulation in interactive graphical applications. The key insight
behind our algorithms is that the disjuncts in a non-overlap constraint are not dis-
joint: during direct manipulation we need only move between disjuncts that are
adjacent in the sense that they share the current solution. We give both a generic
algorithm, and a version specialised for linear arithmetic constraints that makes
use of the Cassowary constraint solving algorithm.

1 Introduction

In many constraint-based interactive graphical applications, we wish to declare that sev-
eral objects should not overlap. When reduced to arithmetic inequality constraints, this
becomes a disjunction. As a motivating example, consider the diagram in Figure 1(a) of
a 4�3 box and a 2�2 right triangle. The positions of the box and right triangle are given
by the coordinates of the lower left-hand corners ((xB ; yB) and (xT ; yT )). A user edit-
ing this diagram might well want to constrain the box and triangle to never overlap. We
can model this using a disjunction of linear constraints that represent the five (linear)
ways we can ensure that non-overlapping holds. These are illustrated in Figure 1(b),
and depict the five constraints

xT � xB + 4 _ yT � yB + 3 _ yT � yB � 2 _
xT � xB � 2 _ xT + yT � xB + yB � 2

During direct manipulation of, say, the triangle, the solver is allowed to move it to
any location that does not cause overlap. For instance, the triangle can be moved around
the box. However, if it is moved directly to the left, then once it touches the box, the
box (assuming it is unconstrained) will also be pushed left to ensure that overlap does
not occur.

Unfortunately, current constraint solving technology for interactive graphical appli-
cations cannot handle such disjunctive constraints. In part this is because solving such
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Fig. 1. Simple constrained picture, and five ways to ensure non-overlap.

disjunctive systems is, in general, NP-hard. Thus, it seems very difficult to develop
constraint solving algorithms that will be sufficiently fast for interactive applications
and, in particular, support direct manipulation. An additional difficulty is that we wish
to solve such disjunctive constraints in combination with the sort of constraints that
are currently provided for interactive graphical applications. As an example, consider
the state chart-like diagram shown in Figure 8(a). 1 In a constraint-based editor for such
diagrams, we would like to combine non-overlap constraints with containment and con-
nection constraints.

In this paper, we show that is in fact possible to (re-)solve systems of disjunctive
constraints representing non-overlap constraints sufficiently fast to support direct ma-
nipulation in interactive graphical applications. The key insight behind our algorithms
is that the disjuncts in a non-overlap constraint are not disjoint: during direct manip-
ulation we need only move between adjacent disjuncts. At any given time one of the
disjuncts will be active (and hence enforced by the solver). As we move to a new solu-
tion in which we must make one of the other disjuncts active instead, at the transition
point the solution will satisfy both the current disjunct and the new one. This reflects
that we want the graphical objects to behave sensibly and continuously during direct
manipulation, and so we do not allow transitions through unsatisfiable regions, i.e., we
do not allow objects to magically move through one another.

The paper includes three main technical contributions. The first is a general algo-
rithm for solving such non-overlap constraint problems. The algorithm is generic in
the choice of the underlying solver used to solve conjunctions of constraints. It is a
true extension of the underlying solver, since it allows disjunctions in combination with
whatever conjunctive constraints are provided by the underlying solver. We also show
how the algorithm extends naturally to the case where the non-overlap constraints are
preferred rather than required (Section 2). The second contribution is a specialisation
of our generic algorithm to the case when the underlying solver is the Cassowary linear
arithmetic constraint solver [3] (Sections 3 & 4). Cassowary is a simplex-based solver,
and we can use the information in the simplex tableau to guide the search between dis-
juncts. Our final contribution is an empirical evaluation of this algorithm (Section 5).
We investigate both the speed of resolving and the expressiveness of disjunctions of
linear constraints.

Starting with Sutherland [14], there has been considerable work on developing con-
straint solving algorithms for supporting direct manipulation in interactive graphical
applications. These approaches fall into four main classes: propagation based (e.g. [13,

1 State charts, introduced by David Harel [7], are now part of the Unified Modelling Lan-
guage [12], rapidly becoming the industry standard for object-oriented design.



15]); linear arithmetic solver based (e.g. [3]); geometric solver-based (e.g. [4, 8]); and
general non-linear optimisation methods such as Newton-Rapson iteration (e.g. [5]).
However, none of these techniques support disjunctive constraints for modelling non-
overlap. The only work that we know of that handles non-overlap constraints is that
of Baraff [1], who uses a force based approach, modelling the non-overlap constraint
between objects by a repulsion between them if they touch. Our approach differs in
that it is generic and in that it handles non-overlap constraints in conjunction with
other sorts of constraints. Subsequently, Harada, Witkin, and Baraff [6] extended the
approach of [1] to support application-specific rules that allow temporary violation of
non-overlap constraints in direct manipulation, so that the user can, if necessary, pass
one object through another. Such application-specific rules could also be built on top of
our algorithms.

2 A General Algorithm for Solving Disjunctions

We are interested in rapidly (re)-solving systems of constraints to support direct ma-
nipulation in interactive graphical applications. Graphical objects are displayed on the
screen, with their geometric attributes represented by constrainable variables. Usually,
the required constraints in such applications are not enough to uniquely fix a solution,
i.e. the system of constraints is underconstrained. However, since we need to display a
concrete diagram, the constraint solver must always determine an assignment � to the
variables that satisfies the constraints. Since we do not want objects to move unneces-
sarily over the screen, we prefer that the objects (and hence their attributes) stay where
they are.

Such preferences can be formalised in terms of constraint hierarchies [2], one for-
malism for representing soft constraints. The idea is that constraints can have an asso-
ciated strength that indicates to the solver how important it is to satisfy that constraint.
There is a distinguished strength required which means that the constraint must be satis-
fied. By convention, constraints without an explicit strength are assumed to be required.

Given constraint hierarchies, it is simple to formalise the constraint solving required
during direct manipulation. We have a conjunctive system of constraints C, some of
which may be required, some of which may be not. We have some variables, typically
one or two, say x and y, that correspond to the graphical attributes such as position that
are being edited through direct manipulation. Let the remaining variables be v 1; : : : ; vn
and let the current value of each vi be ai. The constraint solver must repeatedly resolve
a system of form

C ^ v1 =stay a1 ^ � � � ^ vn =stay an ^ x =edit b1 ^ y =edit b2:

for different values of b1 and b2. The stay constraints, v1 =stay a1^ � � �^vn =stay an,
indicate our preference that attributes are not changed unnecessarily, while the edit
constraints, x =edit b1 ^ y =edit b2, reflect our desire to give x and y the new values
b1 and b2, respectively. Clearly the edit strength should be greater than the stay strength
for editing to have the desired behaviour.

We can now describe our generic algorithm disj solve for supporting direct manip-
ulation in the presence of disjunctive constraints modelling non-overlap. It is given in



disj solve(C,active[])
let C be of form C0 ^D1 ^ � � � ^Dn where
C0 is a conjunction of constraints, and each Di is of form
D1
i _ � � � _ Dni

i

repeat
� := csolv (C0 ^

Vn

i=1
Dactive[i]
i )

�nished := true

for i := 1; : : : ; n do
current := active[i]
active[i] := dchoose(D1

i _ � � � _ Dni

i ; current ; �)
if active[i] 6= current then

�nished := false

break % Exit ‘for’ loop.
endif

endfor
until �nished
return �

Fig. 2. Generic algorithm for handling non-overlap constraints.

Figure 2. It is designed to support rapid resolving during direct manipulation by be-
ing called repeatedly with different desired values for the edit variables. The algorithm
is parametric in the choice of an underlying conjunctive constraint solver csolv . The
solver takes a conjunction of constraints, including stay and edit constraints, and re-
turns a new solution �. The algorithm is also parametric in the choice of the function
dchoose which chooses which disjunct in each disjunction is to be made active.

This algorithm is extremely simple. It takes a system of constraints C consisting of
conjunctive constraints C0 conjoined with disjunctive constraints D1; : : : ; Dn, and an
array active such that for each disjunction Di, active[i] is the index of the currently
active disjunct in Di. We require that the initial active value have a feasible solution.
The algorithm uses csolv to compute the solution � using the currently active disjunct
in each disjunction. Then dchoose is called for each disjunction, to see if the active
disjunct in that disjunction should be changed. If so, the process is repeated. If not, the
algorithm terminates and returns �. The algorithm is correct in that � must be a solution
of C since it is a solution of C0 and one disjunct in each disjunction Di. In practice,
for efficiency csolv should use incremental constraint solving methods, since csolv is
called repeatedly with a sequence of problems differing in only one constraint.

Clearly, the choice of dchoose is crucial to the efficiency and quality of solution
found by disj solve, since it guides the search through the various disjuncts. A bad
choice of dchoose could even lead to looping and non-termination, unless some other
provision is made. One simple choice for the definition of dchoose(D 1_ � � �_Dn; i; �)
is to return j for some j 6= i where � is a solution of D j and Dj has not been active
before, or else i if no such j exists. A problem with this definition is that, even if
a disjunction is irrelevant to the quality of solution, the algorithm may explore other
disjuncts in the disjunction. We can improve this definition by only choosing a different
disjunct fromDi if Di is “active” in the sense that by removing it we could find a better
solution. Another improvement is only to move to another disjunct if we can ensure that



this leads to a better solution. Regardless, the key to the definition of dchoose is that it
only chooses a j such that � is a solution ofDj . This greatly limits the search space and
means that we use a hill-climbing strategy. Importantly, it means that we only move
smoothly between disjuncts, giving rise to continuous, predictable behaviour during
direct manipulation.

It is simple to modify the algorithm to handle the case of overlap constraints that
are not required but rather are preferred with some strength w. We simply rewrite each
such disjunction Di to include an error variable for that disjunction e i, and then conjoin
the constraint ei =w 0 to C0. For instance, if we prefer that the triangle and box from
our motivating example do not overlap with strength strong then we can implement this
using the constraints

(e =strong 0)
^ ( xT � xB + 4 + e _ yT � yB + 3 + e _ yT � yB � 2 + e

_ xT � xB � 2 + e _ xT + yT � xB + yB � 2 + e )

The only difficulty is that we need to modify dchoose to allow disjuncts to be swapped
as long as the associated error does not increase.

It is instructive to consider the limitations of our approach. First, there is no guar-
antee that it will find the globally best solution. In the context of interactive graphi-
cal applications, this is not as significant a defect as it might appear. As long as di-
rect manipulation behaves predictably, the user can search for the best solution in-
teractively. Second, there is an assumption that disjuncts in a disjunction are not dis-
joint. This means that we cannot directly handle a “snap to grid” constraint such as
x = 1 _ x = 2 _ � � � _ x = n in which we require that position attributes can take
only a fixed number of values, since there is no way to move between these disjuncts.
(One way of handling such constraints is using integer programming techniques; see
e.g. [11].)

3 Simplex Optimisation and the Cassowary Algorithm

We now give an instantiation of our generic algorithm for the case when the under-
lying solver is simplex based. We shall first review the simplex optimisation and the
Cassowary Algorithm.

The simplex algorithm takes a conjunction of linear arithmetic constraints C and a
linear arithmetic objective function f which is to be minimised. These must be in basic
feasible solved form. More exactly, f should have form h +

Pm

j=1 djyj and C should
have form

Vn

i=1 xi = ki+
Pm

j=1 aijyj . The variables y1; : : : ; ym are called parameters,
while the variables x1; : : : ; xn are said to be basic. All variables are implicitly required
to be non-negative, and the right-hand side constants (the k i’s) are required to be non-
negative.2 Although the constraints are equations, linear inequalities can be handled
by adding a slack variable and transforming to an equation. Any set of constraints in
basic feasible solved form has an associated variable assignment, which, because of the
definition of basic feasible solved form, must be a solution of the constraints. In the

2 See e.g. [3] for efficient handling of unrestricted-in-sign variables.



simplex(C, f , active[])
repeat

let f have form h+
Pm

j=1
djyj and

let C have form
Vn

i=1
xi = ki +

Pm

j=1
aijyj

% Choose variable yJ to become basic.
if 8[j 2 f1; : : : ;mg] (dj � 0 or 9i:yj 2 active[i]) then

return (C, f) % An optimal solution has been found.
endif
choose J 2 f1; : : : ; mg such that dJ < 0 and 8i:yj 62 active[i]

% Choose variable xI to become non-basic
choose I 2 f1; : : : ; ng such that

�kI=aIJ = min f�ki=aiJ j i 2 f1; : : : ; ng and aiJ < 0g
e := (xI � kI �

Pm

j=1;j 6=J
aIjyj)=aIJ

C [I] := (yJ = e)
replace yJ by e in f
for each i 2 f1; : : : ; ng

if i 6= I then replace yJ by e in C [i] endif
endfor

endrepeat

Fig. 3. Simplex optimization.

case of C above it is

fx1 7! k1; : : : ; xn 7! kn; y1 7! 0; : : : ; ym 7! 0g:

The Simplex Algorithm is shown in Figure 3, and takes as inputs the simplex tableau
C and the objective function f . The underlined text in the algorithm should be ignored
for now. The algorithm repeatedly selects an entry variable yJ such that dJ < 0. (An
entry variable is one that will enter the basis, i.e., it is currently a parameter and we want
to make it basic.) Pivoting on such a variable cannot increase the value of the objective
function (and usually decreases it). If no such variable exists, the optimum has been
reached. Next we determine the exit variable xI . We must choose this variable so that
it maintains basic feasible solved form by ensuring that the new k i’s are still positive
after pivoting. That is, we must choose an I so that �kI=aIJ is a minimum element of
the set

f�ki=aiJ j aiJ < 0 and 1 � i � ng:

If there were no i for which aiJ < 0 then we could stop since the optimization
problem would be unbounded and so would not have a minimum: we could choose
yJ to take an arbitrarily large value and thus make the objective function arbitrarily
small. However, this is not an issue in our context since our optimization problems will
always have a non-negative lower bound. We proceed to choose x I , and pivot xI out
and replace it with yJ to obtain the new basic feasible solution. We continue this process
until an optimum is reached.

One obvious issue is how we convert a system of equations into basic feasible solved
form. Luckily the Simplex Algorithm itself can be used to do this. An incremental



version of this algorithm is described in [10]. The only point to note is that adding a
new constraint may require that simplex optimisation must be performed.

In the special case that we have constraints in a basic solved form which is infeasible
in the sense that some right-hand side constants (the k is) may be negative, but which
is optimal in the sense that all coefficients in the objective function are non-negative,
we can use the Dual Simplex Algorithm to restore feasibility. This is similar to the
Simplex Algorithm, except that the role of the objective function and the right-hand
side constants are reversed.

The Simplex Algorithm and the Dual Simplex Algorithm provide a good basis for
fast incremental resolving of linear arithmetic constraints for interactive graphical ap-
plications. One simplex-based algorithm for solving direct manipulation constraints is
Cassowary [3]. The key idea behind the approach is to rewrite non-required constraints
(such as edit and stay constraints) of form x =w k into x + Æ+x � Æ�x = k and add the
term cw� Æ+x + cw� Æ�x to the objective function, where Æ+x and Æ�x are error variables,
and cw is a coefficient reflecting the strength w. The Dual Simplex Algorithm can now
be used to solve the sequence of problems arising in direct manipulation, since only the
right hand side constants are changing.

4 A Disjunctive Solver Based on the Cassowary Algorithm

We now describe how to embed the Cassowary Algorithm into the generic algorithm
given earlier. We could embed it directly by simply using it as the constraint solver csolv
referenced in Figure 2, but we can do better than this. It is moderately expensive to in-
crementally add and delete constraints using the simplex method. For this reason, we
keep all disjuncts in the solved form, rather than moving them in and out of the solved
form whenever we switch disjuncts. Since we only want one disjunct from each dis-
junction to be active at any time, we represent each disjunction using linear constraints
together with error variables representing the degree of violation of each disjunct. As
long as one error variable in the disjunction has value zero, the disjunctive constraint is
satisfied. (The other error variables can be disregarded.)

More formally, the error form of an equation a1x1 + : : : + anxn = b is a1x1 +
: : : + anxn + e� � e+ = b where e+ and e� are two non-negative error variables,
representing the degree to which the equation is satisfied, while the error form of an
inequality a1x1+ : : :+anxn � b is a1x1+ : : :+anxn+s�e = b where s is the slack
variable and e is the error variable. Both s and e must be non-negative. Note that for
any values of x1; : : : ; xn there is a solution of the error form of each linear constraint.
Note also that if we constrain the error variables for some linear constraint c to be zero,
then the error form of c is equivalent to c.

The conjunctive version of a disjunctive constraint D is the conjunction of the er-
ror forms of the disjuncts D1; : : : ;Dn in D. The conjunctive version of a disjunctive
constraint D does not ensure that D is satisfied. In order to ensure that the disjunc-
tive constraint is satisfied we must ensure that, for some disjunct D i in D, the error
variable(s) of the error form of D i take value 0.

The conjunctive version of our example disjunctive constraint is

xT + e1 = xB + 4 + s1 ^ yT + e2 = yB + 3 + s2 ^ yT + s3 = yB � 2 + e3
^ xT + s4 = xB � 2 + e4 ^ xT + yT + s5 = xB + yB � 2 + e5



where the error variables e1; : : : ; e5 and slack variables s1; : : : ; s5 are required to be
non-negative. As long as one of the error variable takes value zero in a solution, then
it is a solution of the original non-overlap constraint. A solution (corresponding to Fig-
ure 1(a)) is

fxB 7! 2; yB 7! 1; xT 7! 8; yT 7! 2; s1 7! 2; s2 7! 0; s3 7! 0; s4 7! 0; s5 7! 0;

e1 7! 0; e2 7! 2; e3 7! 3; e4 7! 8; e5 7! 9g

We must modify the Simplex Algorithm shown in Figure 3 to ensure that the error
variable from the active disjunct in each disjunction is always kept zero. The changes
are shown as underlined text in the figure. They are rather simple: we ensure that such
active error variables are always kept as parameters and are never chosen to become
basic. Thus, we must pass an extra argument to the Simplex Algorithm, namely active,
the array of currently active error variables. For each disjunction D i, active[i] is the
set of active error variables in the error form of the the active disjunct in D i. Note
that active[i] will contain one variable if the disjunct is an inequality and two if it is an
equation. When choosing the new basic variable yJ , we ignore any active error variables
in the objective function: they cannot be chosen to become basic, and are allowed to
have a negative coefficient in the objective function. We can modify the Dual Simplex
Algorithm similarly.

The generic algorithm can be readily specialised to call the modified Simplex and
Dual Simplex Algorithms. It is shown in Figure 4. The algorithm takes the current
basic feasible solved form of the constraints C and objective function f as well as the
active error variables. The main syntactic differences between the generic algorithm
and this specialised algorithm result from the need to call the Dual Simplex Algorithm
rather than the Simplex Algorithm when the algorithm is first entered. This is because
we assume that only the right-hand side constants have been modified as the result of
changing the desired values for the edit variables. (See [3] for further details.)

The function simplex choose for switching between disjuncts uses information in
the objective function in the solved form to assist in the choice of disjunct. The coeffi-
cient of an active error variable in the objective function provides a heuristic indication
of whether it would be advantageous to switch away from that disjunct: we try to switch
away only if the coefficient is negative, indicating that the objective function value can
be decreased by making the variable basic (if it results in a non-zero value). When
choosing which disjunct to switch to, the value of the error variables in the inactive
disjuncts indicate which disjuncts are satisfied by the current solution. This is another
advantage of keeping the error form of all disjuncts in the solved form.

If a newly chosen active variable is basic, we first make it a parameter before re-
optimizing. If an error variable is basic and takes value 0 in the current solution, the
right-hand side constant must be 0. This means that we can pivot on any parameter
other than active error variables in the solved form, making that parameter basic. For
example, if the disjunct is an inequality, it is always possible to pivot on the slack
variable. The only difficult case is if the left hand side in the solved form consists
entirely of active disjunctive error variables. The simplest way of handling this case is
to split the equality into two inequalities, thus ensuring that each of the two rows has a
slack variable that can be made basic.



disj simplex solve(C, f , active[])
(C; f) := dual simplex(C, f , active)
tried := ;
repeat

let � be the solution corresponding to C
prevf := �(f)
�nished := true
let C be of form C0 ^D1 ^ � � � ^Dn where
C0 is a conjunction of constraints and
each Di is the conjunctive version of a disjunction
for i := 1; : : : ; n do

current := active[i]
active[i] := simplex choose(Di; current ; f; �; tried)
if active[i] 6= current then

tried := tried [ active[i]
if some y 2 active[i] is basic then make y a parameter endif
�nished := false

(C; f) := simplex(C, f , active)
if �(f) < prevf then tried := ; endif
break % Exit ‘for’ loop.

endif
endfor

until �nished = true

return �

simplex choose(D, current , f , �, tried )
let D be of form c1 ^ � � � ^ cm
if 9y 2 current s.t. y has a negative coefficient in f then

for i := 1; : : : ;m do
let E be the error variables in ci
if 8[e 2 E]: �(e) = 0 and e 62 tried and e 6= current then

return E
endif

endfor
endif
return current

Fig. 4. Algorithm for handling non-overlap constraints in the linear case.

The algorithm maintains a set of tried active error variables, which is reset to empty
whenever we improve the objective function. This prevents us looping infinitely trying
different combinations of active constraints without improving the solution.

To illustrate the operation of the algorithm consider our running example. For sim-
plicity let us fix the position of the box at (2,1) and add constraints that the triangle
attempt to follow the mouse position (xM ; yM ). Using the Cassowary encoding, we
add the edit constraints

xT = xM + Æ+x � Æ�x ^ yT = yM + Æ+y � Æ�y
where Æ+x ; Æ

�

x ; Æ
+
y ; Æ

�

y � 0, and minimise the objective function Æ+x + Æ�x + Æ+y + Æ�y
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Fig. 5. Motion of the triangle during the mouse movement.

minimize Æ+x + Æ�x + Æ+y + Æ�y minimize 1 + s1 � e1 + 2Æ�x + Æ+y + Æ�y
xT = 5 +Æ+x �Æ�x xT = 6 +s1 �e1
yT = 2 +Æ+y �Æ�y yT = 2 +Æ+y �Æ�y
s1 = �1 +Æ+x �Æ�x +e1 Æ+x = 1 +Æ�x +s1 �e1
e2 = 2 �Æ+y +Æ�y +s2 e2 = 2 �Æ+y +Æ�y +s2
e3 = 3 +Æ+y �Æ�y +s3 e3 = 3 +Æ+y �Æ�y +s3
e4 = 5 +Æ+x �Æ�x +s4 e4 = 6 +s1 �e1 +s4
e5 = 6 +Æ+x �Æ�x +Æ+y �Æ�y +s5 e5 = 7 +s1 �e1 +Æ+y �Æ�y +s5

active : e1 active : e1
(a) (b)

minimize 1 + s1 � e1 + 2Æ�x + Æ+y + Æ�y minimize Æ+x + Æ�x + Æ+y + Æ�y
xT = 6 +s1 �e1 xT = 5 +Æ+x �Æ�x
yT = 5 +Æ+y �Æ�y yT = 5 +Æ+y �Æ�y
Æ+x = 1 �Æ�x +s1 �e1 e1 = 1 �Æ+x +Æ�x +s1
s2 = 1 +Æ+y �Æ�y +e2 s2 = 1 +Æ+y �Æ�y +e2
e3 = 6 +Æ+y �Æ�y +s3 e3 = 6 +Æ+y �Æ�y +s3
e4 = 6 +s1 �e1 +s4 e4 = 5 +Æ+x �Æ�x +s4
e5 = 10 +s1 �e1 +Æ+y �Æ�y +s5 e5 = 9 +Æ+x �Æ�x +Æ+y �Æ�y +s5

active : e1 active : e2
(c) (d)

Fig. 6. Tableaus resulting during the edits of Figure 5.

where for simplicity we assume that the coefficient for the edit strength is 1:0. The mo-
tion of the triangle is illustrated in Figure 5, with the mouse pointer indicated by an
arrow. When there is a change of active constraints, the intermediate point is shown as
a dashed triangle.

We assume the mouse begins at (8,2), the initial position of the triangle, and the
initial basic feasible solved form is

minimize Æ+x + Æ�x + Æ+y + Æ�y
xT = 8 +Æ+x �Æ�x
yT = 2 +Æ+y �Æ�y
s1 = 2 +Æ+x �Æ�x +e1
e2 = 2 �Æ+y +Æ�y +s2
e3 = 3 +Æ+y �Æ�y +s3
e4 = 8 +Æ+x �Æ�x +s4
e5 = 9 +Æ+x �Æ�x +Æ+y �Æ�y +s5

active : e1



This corresponds to the position in Figure 5(a). The special entry active: e 1 indicates
that e1 is an active error constraint and so is not allowed to enter the basis.

Suppose now we move the mouse to (5,2). The modified solved form is shown
in Figure 6(a). We call disj simplex solve, which calls the dual simplex algorithm.
Since the solved form is no longer feasible, but still optimal, the Dual Simplex Algo-
rithm recovers feasibility by performing a pivot that removes s 1 from the basis and
enters Æ+x into the basis. This gives the tableau in Figure 6(b), whose corresponding so-
lution gives position (6,2) for the triangle, illustrated in Figure 5(b). We now call sim-
plex choose for the single disjunction in the original constraint set. The appearance of
�e1 in the objective function means that a better solution could be found if we allowed
e1 to enter the basis, and so if possible we should switch disjuncts. However, since no
other error variables are zero, we cannot switch disjuncts. Thus simplex choose re-
turns fe1g, and, since the active error variables have not changed, disj simplex solve
returns with this solved form.

Now the user moves the mouse to (5,5). The solved form is modified, giving a in-
feasible optimal solution. The call to disj simplex solve calls dual simplex. This time
we have e2 as the exit variable and s2 as the entry variable, resulting the tableau shown
in Figure 6(c). Now we have a corresponding optimal solution positioning the triangle
at (6,5) (the dashed triangle in Figure 5(c)) for this choice of active disjuncts. We call
simplex choose for the single disjunction in the constraint set. Again the appearance
of �e1 in the objective function means that a better solution could be found if we al-
lowed e1 to enter the basis, and so if possible we should switch disjuncts. This time,
since e2 is now a parameter, it takes value zero in the current solution, so we can make
this disjunct active. Thus simplex choose returns fe2g. We therefore make this the
active error variable and call simplex to optimise with respect to this new disjunct. It
performs one pivot, with entry variable e1 and exit variable Æ+x , giving the tableau in
Figure 6(d). Notice how we have moved to position (5,5) and changed which of the
disjuncts is active (the final position in Figure 5(c)). Now, since there are no active error
variables in the objective function, simplex choose does not switch disjuncts and so
disj simplex solve returns with the solution corresponding to the solved form.

5 Empirical Evaluation

In this section we provide a preliminary empirical evaluation of disj simplex solve.
Our implementation is based on the C++ implementation of the Cassowary Algorithm
in the QOCA toolkit [9]. All times are in milliseconds measured on a 333MHz Celeron-
based computer. (Granularity of maximum re-solve times is 10ms.)

Our first experiment compares the overhead of disj simplex solve with the under-
lying Cassowary Algorithm. Figure 7(a) shows n boxes in a row with a small gap be-
tween them. Each box has a desired width but can be compressed to half of this width.
The rightmost box has a fixed position. The others are free to move, but have stay
constraints tending to keep them at their current location. For the disj simplex solve
version of the problem we add a non-overlap constraint between each pair of boxes. In
the Cassowary version of the experiment there is a constraint to preserve non-overlap
of each pair of boxes by keeping their current relative position in the x direction. This
corresponds to the active constraints chosen in the disj simplex solve version.
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Fig. 7. Experiments for (a) overhead and (b) performance of disjunctive solving.

Cassowary disj simplex solve
n Cons AveR MaxR Cons AveR MaxR

20 190 1 10 760 6 20
40 780 3 10 3120 31 90
60 1770 7 20 7080 86 250
80 3160 12 30 12640 184 530

(a)

n Cons Swaps AveR MaxR
200 800 1.4 7 50
400 1600 2.6 18 90
600 2400 3.7 31 130
800 3200 4.7 47 170

1000 4000 5.5 66 230
1200 4800 6.3 85 260

(b)

Table 1. Results for (a) overhead and (b) disjunctive swap speed.

The experiment measures the average and maximum time required for a resolve dur-
ing the direct manipulation scenario in which the leftmost box is moved as far right as
possible, squashing the other boxes together until they all shrink to half width, and then
moved back to its original position. The results shown in Table 1(a) gives the number
n of boxes, for each version the number of linear constraints (Cons) in the solver, the
average time (AveR), and maximum time (MaxR) to resolve during the direct manip-
ulation (in milliseconds). Note that in this experiment no disjuncts change status from
active to inactive or vice versa. The results show that there is a surprising amount of
overhead involved in keeping non-active disjuncts in the solved form. We are currently
investigating why: even with the same number of constraints in the solved forms, the
original Cassowary seems significantly faster.

Our second experiment gives a feel for the performance of disj simplex solve
when disjunct swapping takes place. Figure 7(b) shows n fixed size boxes arranged in a
rectangle and a single box on the left-hand side of this collection. There is a non-overlap
constraint between this box and each box in the collection. The experiment measures the
average and maximum time required for a resolve during the direct manipulation sce-
nario in which the isolated box is moved around the rectangle of boxes, back to its orig-
inal position. Table 1(b) gives the number n of boxes, the number of linear constraints
in the solver, the average and maximum time for each resolve, and the average number
of disjunct swaps in each resolve. The results here show that disj simplex solve is suf-



(a) (b)

C

A

B

O

(c)

Fig. 8. Experiments to demonstrate expressiveness of disjunctive linear constraints.

ficiently fast for supporting direct manipulation for systems of up to 5000 constraints
and disjuncts.

Our third and fourth experiments give a feel for the expressiveness of disjunctions
of linear constraints. In the third experiment we use the solver to model the constraints
in the state chart-like diagram shown in Figure 8(a). It has non-overlap constraints be-
tween boxes in the same box, and containment constraints between boxes and their
surrounding box. This gives rise to 20 linear constraints. For such a small number of
constraints, re-solve time is negligible (0.04ms average; the maximum is not accurately
measurable).

In the fourth experiment we demonstrate non-overlap with non-convex polygons.
One way of modelling this is as simple convex polygons whose sides are “glued” to-
gether using constraints. Dotted lines in the Figure 8(b) show a simple convex decom-
position of the E, requiring 24 linear constraints plus 4 disjunctions. However, one
can model the situation using fewer constraints by allowing disjuncts to be conjunc-
tions, perhaps even containing other disjunctions. Figure 8(c) illustrates the embedded-
conjunction approach, which uses 12 linear constraints plus 2 disjunctions, implicitly
defining the relation between the small “chevron” object O and the three objects A (the
bounding box of E), B (the open sided rectangular gap in the E) and C (the middle bar
of E), modelling the non-overlap of the E and O as

nonoverlap(O;A) _ (inside(O;B) ^ nonoverlap(O;C)):

In the test case, we have 8 “E” shapes and one “chevron” shape, all constrained to
lie within a screen rectangle and constrained not to overlap each other. This yields 226
linear constraints and 36 disjunctions. The test case movements were constructed by
manually dragging the shapes about each other, bumping corners against each other as
much as possible. There were on average 0.3 disjunct swaps per re-solve. The average
re-solve time was 0.6ms; the maximum was 20ms.



6 Conclusions

We have described an algorithm for rapidly resolving disjunctions of constraints. The
algorithm is designed to support direct manipulation in interactive graphical applica-
tions which contain non-overlap constraints between graphical objects. It is generic in
the underlying (conjunctive) constraint solver. We also give a specialisation of this al-
gorithm for the case when the underlying constraint solver is the simplex-based linear
arithmetic constraint solver, Cassowary.

Empirical evaluation of the Cassowary-based disjunctive solver is very encouraging,
suggesting that systems of up to five thousand constraints can be solved in less than 100
milliseconds. We have also demonstrated that the solver can support non-overlap of
complex non-convex polygons, and complex diagrams such as State Charts that contain
non-overlap as well as containment constraints.

However, our experimental results indicate that keeping inactive disjuncts in the
solved form has significant overhead. Thus, we intend to investigate a “dynamic” ver-
sion of the Cassowary-based disjunctive solver in which disjuncts are only placed in
the solver when they become active. Preliminary investigation by Nathan Hurst is very
promising.
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