Constraints: An International Journal, 3, 1-26 (1998)
© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Ultraviolet: A Constraint Satisfaction Algorithm
for Interactive Graphics

ALAN BORNING borning@cs.washington.edu

Department of Computer Science € Engineering, University of Washington, Box 352350, Seattle,
WA 98195-2350

BJORN FREEMAN-BENSON bnfbQ@oti.com
Object Technology International Inc., R. Buckminster Fuller Laboratory, 201 - 506 Fort St.,
Victoria, BC,CANADA V8W I1E6

Abstract. Ultraviolet is a constraint satisfaction algorithm intended for use in interactive graph-
ical applications. It is capable of solving constraints over arbitrary domains using local propa-
gation, and inequality constraints and simultaneous linear equations over the reals. To support
this, Ultraviolet is a hybrid algorithm that allows different subsolvers to be used for different
parts of the constraint graph, depending on graph topology and kind of constraints. In addition,
Ultraviolet and its subsolvers support plan compilation, producing efficient compiled code that
can be evaluated repeatedly to resatisfy a given collection of constraints for different input values.

Keywords: constraints, user interfaces, hybrid constraint satisfaction algorithms

1. Introduction

Many key aspects of interactive graphical systems can be conveniently described us-
ing constraints, including layout and other kinds of geometric relations, consistency
between application data and views, consistency of multiple views, and animation.
In selecting the kinds of constraints to be supported in a user interface toolkit or
other interactive graphical system there are various tradeoffs between simplicity
and power. Some of these tradeoffs are:

e numeric constraints only, or other domains allowed as well

e one-way or multi-way constraints

e functional constraints only, or more general kinds of relations
e required constraints only, or constraint hierarchies

e acyclic constraint graphs only, or cycles allowed

Numeric constraints are the mainstay of interactive graphical applications. How-
ever, other constraints are useful as well, such as constraints on colors, strings, or
fonts. A constraint is one-way if each constraint has a distinguished output variable,
and if the solver is only allowed to change that variable to satisfy the constraint,
while a constraint is multi-way if in general the solver is free to change any of the
constraint’s variables to satisfy that constraint. A constraint is functional if, for

each of its constrained variables v not annotated as read-only, there is a unique
value for v that will satisfy the constraint, given values for the other variables. A
constraint hierarchy is a set of constraints labelled by strengths. The constraints
labelled as required must be satisfied, while those labelled with weaker strengths
are merely preferences [4]. One important application of constraint hierarchies is in
representing our desire that parts of a graphical object don’t move unnecessarily, by
placing weak stay constraints on them. This allows us to give a simple declarative
semantics for constraint satisfaction in the presence of state and change over time.
We can also use constraint hierarchies for expressing other kinds of preferences, for
example, that a figure track the mouse if possible (but not if it bumps up against
an immoveable object). The final tradeoff concerns the constraint graph rather
than individual constraints. We can view the constraints and constrained variables
as forming a bipartite graph. Each variable and each constraint is represented by
a node, with an edge from a constraint node to a variable node if the variable is
constrained by the constraint [11]. The constraint graph is acyclic iff this bipartite
graph is acyclic.

All of these properties are declarative attributes of the constraints or the con-
straint graph, rather than of the constraint satisfaction algorithm. Naturally, how-
ever, the different properties place different requirements on the algorithm. One
class of algorithm that has been explored by a number of researchers, and used in a
variety of systems, is that of local propagation algorithms for multi-way constraints,
constraint hierarchies, functional constraints only, and no cycles. These algorithms
provide a good balance between expressiveness and efficiency.

In local propagation algorithms, each constraint has a set of methods that can
be used to satisfy the constraint. When a method is executed, it sets one of the
constrained variables to a value such that the constraint is satisfied. The algorithm
itself imposes no restriction on the domain of the variables — constraints over
domains such as strings, colors, and so forth can be accommodated in a straightfor-
ward fashion as long as the local propagation methods are provided. However, all
of the constraints in a traditional local propagation algorithm must be functional,
since otherwise one couldn’t provide the methods for that constraint.

There are two major limitations of local propagation algorithms. First, they
don’t support cycles (for example, constraints representing simultaneous linear
equations). Our experience has been that most UI problems can be represented us-
ing acyclic constraint networks — problems that intrinsically involve simultaneous
equations are not so common. However, cycles do often arise when the program-
mer adds redundant constraints, and it is an added burden for the programmer
to avoid this. Further, it is clearly contrary to the spirit of the whole enterprise
to require programmers to be constantly on guard to avoid cycles and redundant
constraints; after all, one of the goals in providing constraints is to allow program-
mers to state what relations they want to hold in a declarative fashion, leaving it
to the underlying system to enforce these relations. The second major limitation
is that standard local propagation algorithms don’t support inequality constraints.
Inequality constraints are useful in a variety of user interface applications, partic-
ularly in layout. For example, we might want a constraint that one window be to

the left of another, or that a figure be contained within a rectangle. However, since
inequality constraints aren’t functional, they aren’t supported by traditional local
propagation algorithms. Consider the constraint a < b: given b we can’t uniquely
determine a.

The Ultraviolet algorithm is intended to address these two limitations. It can
handle simultaneous equations, acyclic collections of inequalities, and some collec-
tions of simultaneous linear inequality constraints, while still supporting constraints
over arbitrary domains. To accomplish this, Ultraviolet is actually a hybrid algo-
rithm, which supports a number of subsolvers, including ones for traditional local
propagation, for interval-based local propagation, for simultaneous linear equations,
and an incomplete solver for simultaneous linear inequalities. Ultraviolet has been
implemented in OTT Smalltalk.

This paper represents a snapshot of an ongoing research project on using con-
straints in interactive graphical applications, and there have been a number of
significant recent developments, which as of this writing have not been reflected in
the Ultraviolet implementation. The conclusion (Section 7) includes some discus-
sion of the strengths and weaknesses of the algorithm, based on experience with the
algorithm and in light of these new developments, and suggests avenues for future
work.

2. Related Work

There is a long history of using constraints for interactive graphics. The first
constraint-based system, as well as the first interactive computer graphics system,
was Ivan Sutherland’s Sketchpad [31] from 1963, a constraint-based drawing system.
Sketchpad provided multi-way constraints and interactive response, and paved the
way for many subsequent systems.

Many constraint-based systems have employed one-way constraints; recent exam-
ples of toolkits and algorithms that use one-way constraints are Amulet [27], sub-
Arctic [21], and Hudson’s ultra-lightweight constraint system [22]. The other most
common sort of constraint satisfaction algorithm for interactive graphics is a local
propagation algorithm for multi-way constraints (thus restricting the constraints
to functional constraints only and acyclic constraint graphs). Recent examples in-
clude DeltaBlue [30], SkyBlue [29], and QuickPlan [32]; these three algorithms also
support constraint hierarchies.

The DETAIL system [20] is quite closely related to Ultraviolet. Like Ultraviolet, it
is designed for user interface applications, and is a kind of meta-solver that supports
different subsolvers. It supports multi-way constraints and constraint hierarchies,
using local propagation when possible, and grouping constraint cycles into cells,
which are then solved by an appropriate subsolver. The most recent version of
DETAIL [19] also includes an experimental solver for inequality constraints as well
as functional constraints.

Ultraviolet uses the Indigo algorithm [1] for acyclic collections of inequality con-
straints. Indigo is an interval propagation algorithm; there has been considerable
work on interval constraints in other areas of computer science, particularly artificial

intelligence and constraint logic programming. Davis [9] discusses the completeness
and running time for interval propagation algorithms, as well as for other kinds of
labels. Hyvonen [23, 25, 24] presents a number of interval constraint satisfaction
algorithms, and also describes the generalization of interval propagation to division
propagation. (A division is a union of ordered, non-overlapping intervals.)

Two algorithms that provide efficient support for simultaneous linear equality
and inequality constraints are QOCA and a more recent variation named Cas-
sowary [17, 6]. Both algorithms are derived from the simplex algorithm. They
maintain the constraints in a solved form that allows new solutions to be computed
rapidly as input variables are changed, and also allow efficient incremental addition
and deletion of constraints. The major difference between the two algorithms is
that QOCA finds least-squares solutions (i.e. solutions that minimize the squares
of the errors of conflicting constraints), while Cassowary finds locally-error-better
solutions (see Section 3 for a definition of locally-error-better). A toolkit that uses
the QOCA algorithm has been used in a diagram parser and editor [8] and for
layout of trees and graphs [16], while Cassowary has been used in a web authoring
tool [5].

Other systems that allow for inequality constraints and cycles often use numeric
algorithms. Notable examples are Juno [28], Juno-2 [18], and Briar and Bramble,
which use a differential solver [12, 13, 14]. An earlier version of Ultraviolet — which
doesn’t include support for inequality constraints — is described in [3].

3. Constraint Hierarchy Solutions

As described in the introduction, constraint hierarchies allow both required and
preferential constraints. A solution to a constraint hierarchy is a mapping from vari-
ables to domain elements. Given a constraint hierarchy, if not all of the preferential
constraints can be satisfied, we need a way to select which solutions are desired.
In our previous work on DeltaBlue and SkyBlue we’ve used the locally-predicate-
better comparator, in which we are concerned only whether or not a constraint is
satisfied in a given solution. This comparator has proven quite satisfactory for func-
tional constraints. However, for inequality constraints, an alternative comparator,
locally-error-better, is superior. (As an aside, while the specification for DeltaBlue
and SkyBlue is that the algorithms produce locally-predicate-better solutions, in
fact for these particular algorithms we can prove that the solutions produced are
locally-error-better as well.)

We give a brief, informal description of these comparators here; for a formal defi-
nition see reference [4]. We will need to consider the error in satisfying a constraint.
This error is 0 if and only if the constraint is satisfied, and becomes larger the fur-
ther away the solution is from a satisfying one. For example, the error in satisfying
the constraint a + b = ¢ is |a + b — ¢|. For constraints over domains that aren’t
metric spaces, we typically use a simple 0/1 error function that returns 0 if the
constraint is satisfied and 1 if it is not.

A solution S is locally-error-better if there is no other solution 7' that is better
than S. Informally, T" is better than S if there is some level & in the hierarchy such

that the errors for all the constraints in levels 0 to £ — 1 are exactly the same for T’
and S, and at level k the errors in satisfying each constraint using 7" are less than or
equal to the errors using S, and strictly less for at least one constraint. There may
be more than one locally-error-better solution to a given hierarchy. Ultraviolet’s
task is to find one of these solutions (not all).

Locally-predicate-better is the same as locally-error-better, except that we use
the simple 0/1 error function for all constraints, including numeric ones.

To illustrate why locally-error-better gives more satisfactory results for inequality
constraints in UI applications, consider an object constrained to lie within a fixed
rectangle. Suppose the user is moving the object with the mouse, and tries to move
it outside the rectangle. We’ll make the mouse movement constraint strong but not
required, so that the object will stop moving if it bumps up against an immovable
obstacle, rather than giving an error. Using locally-predicate-better, if the user
moves the object slowly, it will move as far as the side of the rectangle and then
stop. However, if the user moves the mouse quickly (so that at one time the cursor
is well within the rectangle and the next time outside), the figure will remain at
the old location and not bump up against the side at all. (Since we can’t satisfy
the mouse constraint exactly, using locally-predicate-better we don’t try to satisfy
it at all.) Further, if the user tries to move the figure along the side of the rectangle
it won’t move unless the user gets the cursor positioned just on the boundary (but
not outside it).

In contrast, with locally-error-better, the figure will follow the cursor until the
cursor moves outside the rectangle. After that, the figure will move along the wall
of the rectangle so that it is as close to the cursor as possible, as if the object were
magnetically attracted to the cursor.

4. Architecture of the Ultraviolet Algorithm

As described in Section 1, one of our goals for the solver is to support local prop-
agation constraints over arbitrary domains, as well as inequality constraints and
simultaneous linear equality and inequality constraints over the reals. Devising an
efficient, single solver for this range of constraints and constraint network types is
difficult if not impossible. Instead, Ultraviolet supports multiple cooperating sub-
solvers, with a flexible architecture that allows new subsolvers to be introduced.
The subsolvers currently available are:

e a local propagation solver for functional constraints (Blue)

e a local propagation solver for constraints on the reals, including inequalities
(Indigo)

e a solver for simultaneous linear equations (Purple)
e a solver for simultaneous linear equations and inequalities (Deep Purple)

These subsolvers are discussed in Section 5. In the remainder of this section
we describe the overall architecture of the Ultraviolet algorithm, including how
constraints are sent to different subsolvers and how the subsolvers communicate.

As described in the introduction, we can view the constraints and constrained
variables as forming a bipartite graph. The first step is to partition this graph into
connected subgraphs. Each connected subgraph is solved independently.

Each connected subgraph is partitioned into cyclic and acyclic regions. The
acyclic regions are further partitioned into regions containing numeric constraints
and regions containing non-numeric constraints. We can view each region as itself a
node in a larger graph; the overall graph will be acyclic. Each region has a marker
indicating whether it is cyclic or acyclic, and a second marker indicating whether
it is numeric (with inequality constraints and perhaps other numeric constraints as
well), numeric (with functional constraints only), or non-numeric. Each constraint
belongs to exactly one region; however, a variable can be shared by two or more
regions. The subsolvers communicate via these shared variables.

To partition the connected subgraphs, regions containing similar constraint types
are sorted by read-only annotations. The constraint types could be determined
by asking each class of subsolver whether it can handle each constraint, but for
efficiency we encode the standard types into the constraints. The types we encode
are: numeric/non-numeric; linear /non-linear; equality /inequality. We also add the
meta-type “cyclic” to cyclic sub-graphs. Read-only annotations are considered to
break sub-graphs, so that constraints on each side of the read-only variable will be
placed in separate regions. After this gathering phase, each region can be accurately
labeled with the set of subsolver classes that could be used to solve the region.

This choice of regions and markers is motivated by the capabilities and efficiencies
of the different subsolvers. We prefer to use a local propagation solver (Blue)
when possible, since it is simple, efficient, and applies to constraints over arbitrary
domains, not just numeric ones. However, this solver only works on acyclic networks
of functional constraints. For acyclic regions that include inequality constraints,
we need to propagate intervals rather than just values, but we can only propagate
intervals through numeric constraints. Indigo does the job here. For cycles, if all the
constraints are linear equalities, we can use Purple; if the cycle includes inequalities,
we must use the less efficient Deep Purple subsolver. The remaining possibility is
a cycle containing nonlinear or non-numeric constraints — if there is such a cycle
the constraint graph is too difficult for our current collection of subsolvers, and in
this case an exception is raised.

As noted above, when solving the connected subgraph the subsolvers communi-
cate via the variables that are shared by two or more regions. These variables can
either be unbound, or can hold a specific value (which will of course be the value for
that variable in the eventual solution). In addition, for real-valued variables, when
using inequalities the variable can also have bounds on it, which may be repeat-
edly tightened during constraint solving. Constrainable variables are represented
as instances of a separate ConstrainableVariable class, providing a place to store this
additional information as well as a specific value for the variable when known.

The obvious way to invoke the subsolvers would be to invoke them one at a time,
letting each subsolver run to completion on its constraints. However, this would
interact poorly with constraint hierarchies, since a weak constraint in region A
might attempt to set a shared variable before a strong constraint in region B on

the same variable had been considered. A key insight — due to Richard Anderson
— is that instead we should invoke each solver in turn to process its required
constraints, then each solver to process the strongest non-required constraints, and
so on through all levels in the hierarchy. After each solver is invoked for a given
strength, we must also propagate any changes to the variables to other solvers. This
technique is well-suited for finding locally-error-better solutions — but it would
not work for finding e.g. least-squares solutions, since it inherently considers some
constraints of a given strength before others with the same strength, rather than
determining some aggregate measure.
Here is the interface that must be implemented by each subsolver.

begin_solving(region)
Initialize this subsolver with the constraints and variables in region.

solve_level(strength)
Initialize the set of changed variables. Process the constraints at strength
strength. Put any variables that have been set while processing these con-
straints, or whose bounds have been tightened, into the set of changed variables.

changed_variables
Return the set of variables changed while processing the current strength, either
by setting a value or tightening a bound. This set is initialized to the empty
set by the solve_level method when it begins execution.

process_changed_variable(var)
Variable var has been changed by another subsolver — propagate any changes
that result within this region.

done_solving
All levels in the hierarchy have been processed — do any necessary finalization.

Table 1 gives a pseudocode description of the main procedure solve. It uses an
auxiliary procedure propagate_changes, shown in Table 2. The propagate_changes
procedure takes two arguments: a particular solver that forms the starting point
for the propagation, and a list of all solvers in the region. It considers the set of
variables for the starting solver that have been changed while processing the cur-
rent strength. This set is returned by the changed_variables message. The procedure
then activates in turn each other solver that shares one of these variables (using the
process_changed_variable message), asking this other solver to do any other process-
ing that might be enabled by the new information. This may cause the new solver
to change some of its variables, which may cause additional solvers to be activated,
and so forth.

4.1. An Example

Here is a simple example. Consider the constraints shown in Table 3. We first
partition the constraints and variables into regions, as shown in Table 4.

1. procedure solve(all_constraints,all_variables);

2. /* partition the constraints and variables into connected subgraphs */
3. connected_subgraphs := find_subgraphs(all_constraints,all_variables);
4. for subgrph in connected_subgraphs do

5. /* partition subgraph into regions */

6. regions := find_regions(subgrph);

7. /* select and initialize a subsolver for each region */

8. solvers := emptyset;

9. for region in regions do
10. solver := select_solver(region);
11. solver.begin_solving(region);
12. solvers := solvers U {solver};
13. end for;
14. strengths := list of all constraint strengths in subgrph, strongest first;
15. for strength in strengths do
16. for solver in solvers do
17. solver.solve_level(strength);

18. propagate_changes(solver,solvers);

19. end for;
20. end for;
21. end for;
22. end procedure solve;

Table 1. Ultraviolet pseudocode.

© PN oW

— = = =
w N = O

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

procedure propagate_changes(root_solver,all_solvers);
solver_queue := queue.new;
variable_queue := queue.new;
activate_solvers(root_solver,all_solvers,solver_queue,variable_queue);
while solver_queue is not empty do
s := solver_queue.first;
v := variable_queue first;
s.process_changed_variable(v);
activate_solvers(s,all_solvers,solver_queue,variable_queue);
solver_queue.dequeue;
variable_queue.dequeue;
end while;
end procedure propagate_changes;

procedure activate_solvers(sl,all_solvers,solver_queue,variable_queue);
for v in sl.changed_variables do
for s2 in all_solvers do
if s1 # s2 and v € s2.variables then
solver_queue.add(s2);
variable_queue.add(v);
end if;
end for;
end for;
end procedure activate_solvers;

Table 2. Ultraviolet pseudocode — auxiliary procedures.

Table 3. Example constraints.

required a = 10 % x
required b =15
required c=ax*xb
required T +y =717
required f =y + 12
required h=2x%g
required s = printstring(h)
strong 3xx+5xy =21
medium 5 xx +8xy =10
medium g =10x f
medium a =0

10

Table 4. Partitioning into regions.

Region Variables Constraints

1 a, b, c,x required a = 10 x x
required b =25
required ¢ = axb
medium a =0

2 T,y required x+y =7
strong 3xx+5%xy =21
medium 5 xx +8xy =10

3 y, f, 9, h required f=y+ 12
required h =2xg
required s = printstring(h)
medium g =10x f

Note that x is shared by Regions 1 and 2, and y is shared by Regions 2 and 3.
Region 1 and 3 are both acyclic functional, and will be handled by instances of
Blue, while Region 2 is a cyclic region containing linear equality constraints to be
handled by a Purple solver.

We then invoke each solver in turn to process just its required constraints. The
Blue solver for Region 1 processes its required constraints, using the b = 5 constraint
to determine that b = 5. The other two constraints, a = 10*x and b = 5*a, remain
on its active list, since they cannot yet be enforced given the currently available
information. The Purple solver for Region 2 processes the required z +y = 7
constraint, making x a nonparametric variable defined by the expression —y+7 (see
Section 5.3). However, no variables are given values, so again the propagate_changes
procedure doesn’t do anything. Finally the Blue solver for Region 3 processes its
required constraints; again no values can be determined, and all of its constraints
are put on the active list.

Next we process the strong constraints for each region. The only region with
constraints at this strength is Region 2. The 3%z + 5%y = 21 constraint allows the
solver to find values for x and y, namely x = 7 and y = 0. The propagate_changes
procedure is executed, and the newly determined value for x is sent to Region 1’s
solver, which is able to use it to determine that a = 70 and ¢ = 350. The value
y = 0 is then sent to Region 3’s solver, allowing it to determine that f = 12.

Finally we process the medium constraints. The Blue solver for Region 1 processes
the a = 0 constraint. Since a already has a value and this constraint isn’t required,
it is discarded. The Purple solver for Region 2 processes the 5« z + 8 xy = 10
constraint, replacing x and y by their values. This yields 35 = 10, which is a
contradiction, but again since this constraint isn’t required it is discarded. No
changes are propagated to other regions. The Blue solver for Region 3 processes
the ¢ = 10 * f constraint. This allows the solver to determine that g = 120,
h = 240, and s = ‘240.0’ using the active constraints. Since none of these variables
are shared with other regions, no changes are propagated to other regions. (In
a typical interactive application, all of the variables would have very weak stay

11

constraints specifying that they should keep their old values. In this example, the
weak stays would have no effect because all variables were given values by stronger
constraints.)

4.2. Remarks

In the above example it was essential to have different solvers for some of the
constraints: a simultaneous linear equation solver would not be able to handle the
string constraint on h and s, while a local propagation solver would not be able
to handle the simultaneous equations involving = and y. However, Regions 1 and
2 could have been collapsed into a single region and just handled by Purple. In
this simple case, in fact that would probably be more efficient rather than having
the overhead of two communicating solvers. However, for large local propagation
networks keeping them separate may be more efficient. This is a question that
should be investigated empirically. Note that in any case which choice is made
doesn’t affect the correctness or capabilities of the solver; it is purely an efficiency
issue.

This example illustrates why all the required constraints (in all subsolvers) are
processed first, then all the strong constraints, and so forth, rather than processing
all of the constraints for one subsolver first, then all of the constraints for another.
If we had processed all of the constraints in Region 1 before considering Region 2,
the medium a = 0 constraint would have been used to deduce that b =0 and x =0
— but both these valuations would have been incorrect, since stronger constraints
in Region 2 dictate otherwise. (There is in fact always some order in which the
subsolvers could be invoked to allow each of them to run to completion before
invoking any other subsolver — but finding this ordering may not be trivial. The
current scheme is much more straightforward.)

When inequalities are involved, the subsolvers cooperate in much the same man-
ner; the only difference is that we may communicate tightened bounds through the
shared variables in addition to specific values.

5. Subsolvers

In this section we provide an overview of each of the current subsolvers. Each
subsolver is a subclass of an abstract superclass Solver, which defines the message
protocol for all subsolvers that was described in Section 4. The primary focus of this
paper is the overall architecture of Ultraviolet and how the subsolvers communicate,
rather than the details of each subsolver, so these are primarily outlines.

5.1. Blue

Blue is the simplest of the current subsolvers; it is a batch version of our incremen-
tal DeltaBlue algorithm [10, 30]. It is a traditional local propagation solver, which
handles acyclic constraint graphs containing functional constraints only. However,

12

it can process constraints over arbitrary domains, rather than just numeric con-
straints as with the other subsolvers. Each constraint that may be processed by
Blue must have a collection of local propagation methods. Given a constraint cn,
each of c¢n’s variables that is not annotated as read-only must have an associated
method that can calculate a value for that variable that will satisfy the constraint,
given values for the other variables. (Constraint c¢n must be functional, i.e. there
must be only one such value.) For example, the constraint a + b = ¢ has three
methods: ¢ := a+b, a := c-b, and b := c-a. Executing any of these methods will
result in the a + b = ¢ constraint being satisfied.

Blue’s task is to determine which methods should be used, and in what order,
to find values for the variables in its region. An instance of Blue keeps a queue of
constraints to be processed, and also a dictionary of active constraints, each indexed
by the variables to which the constraint applies. (Active constraints are constraints
for which we are not yet able to find values for all of the constrained variables;
these constraints must be considered again if one of their constrained variables is
set by some other constraint, in case a propagation is possible.)

As with the other subsolvers, Blue is invoked to process the constraints at a
particular strength using the solve_level method. Each constraint with the given
strength is processed in turn. If enough information is available to deduce the
value of one of the constraint’s variables, this is done. We also check the dictionary
of active constraints to see if any further propagations are possible. Otherwise,
the constraint is indexed in the dictionary of active constraints. If a constraint
sets the value of a variable shared by other regions, this variable is put into the
changed_variables set, so that other subsolvers can be alerted.

When a constraint ¢n is being processed, if all of its variables already have values
then ¢n cannot be enforced. If ¢n’s strength is required, Blue checks to make sure
that cn is in fact satisfied and raises an exception if it is not; otherwise c¢n is simply
discarded.

5.2. Indigo

Indigo solves acyclic collections of numeric constraints, which may include inequal-
ity constraints as well as functional constraints. As with Blue, Indigo is invoked
to process the constraints at a particular strength. As each constraint with the
given strength is processed, the permissible intervals for variables are tightened.
If a constraint sets the value of a variable shared by other regions, or tightens its
bounds, the variable is put into the changed_variables set.

Indigo is similar in many respects to Blue; the primary difference is that Indigo
propagates intervals rather than values. Each constraint that can be processed by
Indigo has a collection of bounds propagation methods. For example, the a+b = ¢
constraint has three bounds propagation methods, which tighten the bounds on a,
b, and c respectively:

a.tighten(c.bounds - b.bounds)
b.tighten(c.bounds - a.bounds)
c.tighten(a.bounds + b.bounds)

13

If we have previously tightened the bounds on say ¢, when we process the con-
straint a+b = ¢ we may then need to tighten the bounds on both a and b. This is in
sharp contrast to the behavior of standard local propagation algorithms, in which
to satisfy a constraint a single method is executed (and hence a single variable
changed).

Like Blue, Indigo maintains a queue of constraints to be processed and a dictio-
nary of active constraints, each indexed by the variables to which the constraint
applies. When Indigo is invoked to process the constraints at a given strength using
the solve_level method, each constraint is considered in turn. The queue is initialized
with the current constraint. We then process each constraint in the queue, tight-
ening the bounds in its variables, and adding other constraints to the queue on
these same variables (thus causing tightenings to ripple out through the constraint
graph). This continues until the queue is empty. We keep track of any variables
whose bounds have been tightened in the changed_variables set. A complete de-
scription of the algorithm is given in reference [1]; proofs of correctness theorems
are given in [2].

5.3. Purple

Purple solves collections of constraints that can be represented as linear equations.
Unlike Blue and Indigo, Purple is not troubled by cycles (i.e. simultaneous equa-
tions). The algorithm is adapted from that used in CLP(R) [26] and other Con-
straint Logic Programming language implementations [7], the only difference being
provision for both required and preferential constraints. Variables are in one of
three sets: parametric, nonparametric, and known. Parametric variables may take
on any value. Nonparametric variables are defined by linear expressions involving
parametric variables plus a constant. Known variables are ones known to be equal
to a constant. (Known variables are in fact just a special case of nonparametric
variables; for convenience we keep track of them separately.) Initially all variables
are parametric.

Purple is invoked to process the constraints at a given strength using solve_level.
Each constraint is converted to a linear normal form (or delayed if this is not possi-
ble). Nonparametric and known variables are replaced by their defining expressions,
and the result is simplified and put back into normal form. If the result is 0 = 0,
the new constraint is implied by the existing constraints that have already been
satisfied, and can be discarded. If the result is 0 = ¢ for some nonzero ¢, the con-
straint is incompatible with the existing constraints. If its strength is required, a
required_constraint_not_satisfied exception is raised; if not the constraint is simply
discarded. Otherwise, the constraint adds some new information (and can be sat-
isfied). One of the equation’s variables is selected as a new nonparametric variable
and moved from parametric to nonparametric variables (or to known variables if
the equation has only one variable). In addition, the new nonparametric variable is
replaced by its defining expression in all of the expressions for other nonparamet-
ric variables. This may cause other variables to be moved from nonparametric to
known variables. As usual, any variables whose values are set, i.e. variables that

14

have been moved to known variables, are put into the set changed_variables. (How-
ever, variables that have been moved to nonparametric variables are not put into
changed_variables, since a nonparametric variable can still take on any value, given
suitable choices of values for the parametric variables that define it.)

For a multiplication constraint a * b = ¢ to be converted to linear normal form,
at least one of a or b must be known at the time the constraint is processed. If
neither a nor b is known, the constraint is instead added to the delayed_constraints
set. Each delayed constraint is then re-checked after processing each weaker level,
to see if it has become linear; if it has, it can then be processed. We check that
each such delayed constraint can be satisfied when it is processed (even if it isn’t at
the required strength) — if it can’t be satisfied, we raise a constraints_too_difficult
exception, indicating that the constraints were too difficult for the solver to handle.
The idea is that we might have been able to satisfy it, with a different choice of
values for its constrained variables, but we weren’t able to determine what those
values should have been. We also raise a constraints_too_difficult exception if it
never becomes linear. (This case will not normally arise in our interactive graphical
applications, since usually we put very weak stay constraints on every variable to
try and maintain it at its previous value; these weak stay constraints would give
specific values for each variable if a value had not been determined earlier.)

5.4. Deep Purple

Deep Purple solves collections of linear equality and inequality constraints, in-
cluding simultaneous equations and inequalities. We want to satisfy non-required
constraints as well as possible to find locally-error-better solutions. In its full gen-
erality, Deep Purple’s task is equivalent to a multi-objective linear programming
problem — each required constraint maps to a constraint in the linear program,
and each non-required constraint maps to an objective function that the error ex-
pression for the constraint have value 0. Stronger constraints map to objective
functions with higher priority; ties among constraints with the same strength are
broken arbitrarily. (Different ways of breaking these ties give rise to different but
still correct locally-error-better solutions.) A naive implementation based on this
observation would not have acceptable performance for interactive graphical use.
Instead, the current algorithm is a fast and sound, but incomplete, solver, which
solves a useful subset of the set of problems of this class.

We actually use two different techniques, first trying one, and if it fails, then
the other. The first technique is to rewrite the collection of constraints into a
collection of arbitrary required m-ary equational constraints and unary required
and preferential constraints. It is straightforward to do this: for any non-required
n-ary constraint at some strength s, or required inequality, we rewrite it into an
equivalent pair consisting of an m-ary required equality constraint and a unary
constraint at strength s. For example, strong a > b is rewritten as required a—b = u
and strong v > 0, where u is a new variable. We then process just the required
equality constraints using Purple. If the implicit constraint graph relating the
parametric and nonparametric variables is acyclic, we produce required constraints

15

corresponding to these relations. We add in any required unary inequalities and
preferential unary constraints. (Note that the constraint graph remains acyclic.)
This collection of constraints is then solved by Indigo.

If this technique fails because the implicit constraint graph is cyclic, we fall back
on a second technique. Here we use Purple to solve the constraints, augmenting it
by maintaining bounds on each variable. Unary inequality constraints are processed
by tightening the bounds on the constrained variable appropriately; if the constraint
can’t be satisfied exactly given the previous bounds, it is satisfied as well as possible.
(As usual, if a required constraint can’t be satisfied we raise an exception.) Equality
constraints are processed as with Purple, except that when a variable is moved
to known_variables, we check that the newly found value is compatible with the
bounds; if it is not, a constraints_too_difficult exception is raised. To process a
binary inequality constraint (e.g. < y), we tighten the bounds on its constrained
variables. If after tightening bounds one or both variables still don’t have specific
values, we place the constraint on the active constraints list, and recheck it when
the variables do take on specific values. (If it isn’t satisfied at that point we raise
a constraints_too_difficult exception.)

5.5. Incompleteness

Two desirable properties for a constraint solver are soundness and completeness.
Ultraviolet and its subsolvers are all sound — that is, if they produce an answer,
that answer will be a locally-error-better solution to the constraints. However, each
of the subsolvers is incomplete in one or more ways, that is, there are collections of
constraints that it cannot solve. (If this happens, we raise a constraints_too_difficult
exception.)

Blue is complete if each local propagation method can always calculate a value for
its variable that will satisfy the constraint, given values for the other variables. This
is the case for most constraints — an exception being multiplication and division,
caused by attempting to divide by 0 in a local propagation method. If this occurs, a
runtime exception is raised, which is re-raised as a constraints_too_difficult exception.

Similarly, Indigo is complete if each propagation method calculates exact bounds
for its variable given exact bounds for the others. It is easy to calculate exact
bounds for most constraints, except for multiplication and division if the intervals
include 0 — in this case, the calculated bounds are too large. If this occurs, as the
computation continues, other intervals may be too large as well, and if eventually
the algorithm attempts to narrow the interval for a variable to a specific value, the
error will be detected when an active constraint is determined to be unsatisfiable,
and a constraints_too_difficult exception will be raised. (This exception would also
be raised if some variables did not have specific values after all the constraints have
been processed. As noted in Section 5.3, normally this situation won’t arise given
very weak stays on each variable.) For a more detailed discussion of this issue
see [2].

16

Incompleteness manifests in Purple when a constraint c¢n must be delayed, and
after subsequent assignments of values to its variables by weaker constraints, we
find that cn is unsatisfied.

For Deep Purple, incompleteness is manifested when the constraint graph cannot
be transformed to an acyclic one. In this case, binary inequality constraints are
simply checked but not enforced, so that if they happen to not be satisfied, incom-
pleteness results. Another case is with unary inequality constraints for which the
bounds should be propagated through equality constraints.

In practice, the incompleteness of Blue, Indigo, and Purple has never been ob-
served as a problem in interactive graphical applications. Deep Purple works rea-
sonably well when the constraints can be transformed into an acyclic constraint
graph and be processed by Indigo. However, if the user includes redundant bi-
nary inequality constraints this transformation is not possible, and the resulting
constraints are often not solvable. When we tested Ultraviolet on practical indus-
trial applications, we found that in fact users often did include such redundant
constraints. Thus to make Ultraviolet practical for a wide range of realistic ap-
plications, a complete solver for simultaneous inequalities is needed that replaces
Deep Purple. Ways of addressing this need are discussed in Section 7.

6. Compilation

A common action in interactive graphical applications is to move a part of a com-
plex object with the mouse. Each time the screen is refreshed for a new mouse
position, the constraints must be re-satisfied; however, typically only the input
values are changing, not the constraints themselves or their topology. To support
good interactive performance in this situation, constraint systems for user interface
applications have often supported some form of planning or compilation.

To support compilation in Ultraviolet we introduce a new kind of constraint, an
edit constraint. Semantically an edit constraint acts just like a constant constraint
T = ¢, i.e. some constrained variable z is constrained to be equal to a constant c at
some strength. However, the value of ¢ isn’t known at compilation time. Rather, the
compiler’s task is to produce a plan containing a Smalltalk block (function), along
with other information, so that the plan can be executed repeatedly to resatisfy the
constraints with different values of ¢. An arbitrary number of edit constraints can
be used; typically the plan includes two edit constraints attached to a point being
moved, one for the x coordinate and one for the y coordinate.

A series of different plans, derived from different collections of constraints, can
be precompiled and saved. This allows us to achieve the effect of rapidly switch-
ing between different collections of constraints. Often the difference between the
collections will be just a different pair of edit constraints (corresponding to a move
action for a different part of the figure), but more drastic changes in the collection
of constraints are equally possible.

Constrainable variables maintain additional state to describe their status during
compilation. A constrainable variable can be in one of the following states:

17

unknown The value of this variable is completely unconstrained, given the con-
straints processed so far.

compile_time_known The value of this variable is known at compile time.

run_time_known The value of this variable will be known at run time, but isn’t
known at compile time.

compile_time_bounded There are bounds on this variable (which are known at com-
pile time), but it does not yet have a specific value.

run_time_bounded There will be bounds on this variable at run time, given the
constraints processed so far, but not necessarily a specific value. These bounds
aren’t known at compile time.

This information is used by the subsolvers so that they can generate more efficient
code. For example, suppose that variables and y are marked as unknown, and we
have processed a constraint 2« z = y (without being able to infer any more specific
information about z or y). If we next process the constraint z = 5, we know that
x can safely be set to 5 and y to 10 — and furthermore, we know this information
at compile time, since it is independent of information coming in from an edit
constraint at run time. The compiled code can therefore simply include assignment
statements to set x to 5 and y to 10. On the other hand, if we have a constraint
¢ edit, and ¢ is marked as unknown, then after processing the edit constraint c is
marked as run_time_known — we don’t know what ¢’s value is at compile time, but
we know it will have a specific value at runtime after satisfying the edit constraint.

We do similar reasoning for inequality constraints. If z is marked as unknown
and y is marked as run_time_known, then after we process the constraint z > y we
mark x as run_time_bounded — we won’t know a specific value for x at this point
at runtime, but we will have some bounds information (and thus won’t be free to
set x to any arbitrary value, in contrast to variables marked as unknown).

Using this status information, we may be able to determine some values at compile
time rather than at run time. In other cases, we may be able to avoid compiling
code since we can determine that executing that code would have no effect.

The overall operation of the Ultraviolet compiler is similar to that of the solver
described in Section 4. The interface implemented by each subsolver to support
compilation is also similar to the interface for interpreted constraint satisfaction.
Each subsolver must support the following invocations:

begin_compiling(region)
Initialize compilation for this subsolver.

compile_level(strength)
Initialize the set of changed variables, and compile code to satisfy the constraints
at strength strength if possible. Put any variables that have been set while
processing these constraints, or whose bounds have been tightened, into the set
of changed variables.

18

changed_variables
Return the set of variables changed while processing the current strength, either
by setting a value or tightening a bound. This set is initialized to the empty
set by the compile_level method when it begins execution.

compile_process_changed_variable(var)
Variable var has been changed by another subsolver — compile code propagate
to any changes that result within this region.

done_compiling
All levels in the hierarchy have been processed — do any necessary finalization.

6.1. Blue

The operation of the Blue compiler is similar to that for the solver. When a
constraint is processed, if its variable v is marked as unknown and all its other
variables are marked as compile_time_known, the local propagation method for v
is used to set v to its appropriate value, and v is marked as compile_time_known.
Otherwise, if v is marked as unknown and all its other variables are marked either
as compile_time_known or run_time_known, then the constraint adds code to the
method being constructed to set v (at run time) to its value, and v is marked
as run_time_known. If an edit constraint can be enforced (because its variable is
unknown), Blue generates code to set the variable at runtime to the value, which
will be supplied to the plan each time it is run, and the variable is marked as
run_time_known.

6.2. Indigo

The operation of the Indigo compiler is similar to that for the solver, and bounds
propagation method compilation is handled in a manner analogous to that described
for Blue. The principal novel feature of the Indigo compiler is the use of degrees
of freedom information for variables to allow code for some of the bounds propa-
gation methods to be omitted or more efficient code to be compiled. The analysis
makes use of the status flags unknown, compile_time_known, run_time_known, com-
pile_time_bounded, and run_time_bounded listed above. It is done on a constraint-by-
constraint basis, and is handled by appropriate methods invoked for each constraint.

Consider the constraint a + b = ¢. Suppose that the bounds on ¢ have just been
tightened. Normally we would need to compile code to tighten the bounds on
both a and b, which in turn would result in code to tighten bounds on variables
connected to a or b by other constraints, and so forth, rippling out through the
constraint graph. However, if both a and b are marked as unknown, so that the
bounds for each are (—o0,0), then we know at compile time that tightening the
bounds would have no effect, and so no code is compiled. Now suppose that a is
marked as unknown but b as run_time_bounded. In this case we only compile code
to tighten the bounds on a, since we know at compile time that no tightening for

19

b’s bounds will occur. If a variable is marked as having a run_time_known value, we
know that tightening its bounds would have no effect, and so no code is compiled
in this case. Finally, suppose instead that ¢ has a known value (i.e. its bounds have
just been tightened to a single value), and b already has a known value. In this
case we can compile code for the more efficient local propagation method as used
by Blue to set the value of a.
To illustrate, consider the following constraints (all in an Indigo region).
requited a+b=c
required ¢ < 10
strong a edit
weak a stay
weak b stay
weak ¢ stay

The variables a, b, and ¢ are initially all marked as unknown. Processing the
a + b = ¢ constraint leaves all of them still unknown — we could set any single one
of them to an arbitrary value and still satisfy the a + b = ¢ constraint. We next
process ¢ < 10. This compiles code to tighten ¢’s bounds to (—o0,10]. In general
Indigo would then tighten the bounds on both a and b. However, since both are
marked as unknown, we know either one can take on any value at this point, and
so trying to tighten the bounds on a and b would have no effect — so no code is
compiled for this.

We next process strong a edit. Since a is unknown, we know it can be set to
the input value from the edit, whatever it may be, and so we simply compile an
assignment statement to set a rather than the more general and expensive operation
of tightening the bounds on a. We can now mark a as run_time_known. As before,
in general Indigo would then tighten the bounds on both b and ¢. However, since b
is still unknown, we know that tightening the bounds on ¢ would have no effect — so
we only compile code to tighten the bounds on b, and mark b as run_time_bounded.

We then process the weak stay constraints. We first process the stay on a — but
since a is already marked as run_time_known it already has a specific value, and so
this stay has no effect. Processing the stay on b, we do have to compile code, since
b is run_time_bounded. We can now mark b as run_time_known — after processing
the stay, b will be set to the single value within its current bounds that is closest to
its old value. As usual, in general we would then tighten the bounds on both a and
¢ — we do need to compile code to tighten the bounds on ¢, but since we know a
already has a specific value, we don’t need to compile code to tighten a’s bounds.
Since a and b had specific values, we know that tightening the bounds on ¢ will
result in a specific value for ¢, and so we can also now mark ¢ as run_time_known.
Finally, we process the stay on ¢, and since ¢ is run_time_known, no code need be
compiled.

The complete code for this example is as follows:

1. c.bounds := (—o0, 10];
2. a := input value;
3. b.tighten(c.bounds-a.bounds);

20

4. b.tighten(b.old_value,b.old_value);
5. c.tighten(a.bounds+b.bounds);

Suppose that we execute this code with an input value of 5 for a, and that
previously the variables had the values a = 2, b = 8, and ¢ = 10. After executing
line 1, ¢’s bounds will be (—o0,10]. After executing 2, a will have value 5, i.e.
its bounds are [5,5]. After executing 3, we will tighten d’s bounds to (—o0, 5].
Executing 4 will set b to 5, that being the closest value within (—o0,5] to the
desired value of 8. Finally, executing 5 sets ¢ to 10. The result is thus a =5, b =5,
¢ = 10, which is a locally-error-better solution to the constraints.

6.3. Purple and Deep Purple

In Purple, variables are partitioned into one of three sets: parametric, nonparamet-
ric, and known, as described in Section 5.3. The primary difference between the
operation of the Purple solver and the Purple compiler lies in the treatment of edit
constraints and variables marked as run_time_known. A variable may be marked as
run_time_known when Purple processes an edit constraint. Also, a variable may be
marked as run_time_known by another subsolver — in this case the Purple compiler
is notified of this action by the compile_process_changed_variable invocation. When
a variable is marked as run_time_known, it is locked in the parametric variable set
by the compiler — it cannot be moved to nonparametric variables, or of course
to known variables (which contains variables whose values are known at compile
time).

When the Purple solver finishes processing all the constraint strengths, normally
all variables will be in the known variable set. In contrast, for the Purple compiler,
variables will be in the known variable set if their values are known at compile
time; but some variables may remain in the sets of parametric and nonparametric
variables. However, each remaining parametric variable should be run_time_known,
and each remaining nonparametric variable should be a linear combination of para-
metric variables, each of which is run_time_known. The code generated by Purple
simply sets each nonparametric variable to the appropriate value, given the values
for the parametric variables that define it.

In more detail, suppose the Purple compiler processes an edit constraint on a
variable v. If v is marked as run_time_known, it has already been given a value and
so the edit constraint can’t be enforced. If the edit constraint is required, we compile
a runtime check to make sure that v’s value is the same as that supplied by the edit
constraint; otherwise we simply discard the edit constraint. Suppose instead that v
is marked as unknown. If v is parametric, it can take on any value (and in particular
it can take on the value that will be supplied at runtime for the edit constraint).
We mark v as run_time_known. If v is nonparametric, we swap it with a parametric
variable w in v’s defining expression, making v parametric and w nonparametric,
and mark v as run_time_known. Next we check if any of the nonparametric variables
whose defining expressions involve v are now run_time_known — this is the case if all
of the parametric variables in its defining expression is marked as run_time_known.

21

Table 5. Compilation example.

required k edit /* new constraint */
required a = 10 xx
required b =15
required c=ax*b
required T +y ==k /* changed from the example in Section 3 */
required f =1y + 12
required h =2xg
required s = printstring(h)
strong 3xx+bxy =21
medium S5xx+ 8xy =10
medium g = 10x f
medium a =0

If this is the case, we mark these nonparametric variables as run_time_known as well,
and generate code to set them to their values.

The other case is when a variable v is marked as run_time_known by another
subsolver. This case is handled similarly. If v is parametric, we leave it in the set
of parametric variables, and check whether any nonparametric variables are linear
combinations of run_time_known variables. If v is nonparametric, we swap it with a
parametric variable, as described above.

The compiler for Deep Purple is similar, except that bounds are maintained for
variables, and runtime checks are compiled to make sure that any attempt to set a
variable to a value is within its current bounds.

6.4. An Example

Consider the example shown in Table 5. (This is similar to the example shown in
Table 3 — the changes are commented in the table.) We partition the constraints
and variables into regions as showin in Table 6.

The Blue compiler for Region 1 processes its required constraints, and determines
that b = 5. (Note that b is thus compile_time_known.) However, it is unable to
determine the values for a, ¢, or x, or to determine that any of them will be known
at runtime. The Purple compiler for Region 2 first processes the required k edit
constraint. All the variables in this region, including k, are initially in parametric
variables, so k is marked as run_time_known and code is compiled to set k to the
supplied input value at runtime. Purple then processes the required x +y = k
constraint, making z a nonparametric variable defined by the expression k — y. (y
could have been selected as the new nonparametric variable instead, but not k.)
Finally, the Blue compiler for Region 3 processes its required constraints, but no
values can be determined.

Next we process the strong constraints for each region. The only region with
constraints at this strength is Region 2. We process the 3xz +5+y = 21 constraint,
first substituting the expression k —y for x in the constraint and then simplifying to
yield 3%k + 2y = 21. Purple chooses y as a new nonparametric variable (it can’t

22

Table 6. Partitioning the constraints for compila-

tion.
Region Variables Constraints
1 a, b, c,x required a = 10 % x
required b =15
required ¢ = a*b
medium a =0
2 T, y, k required k edit
required x+y ==k
strong 3xx+5xy =21
medium 5xx +8xy =10
3 Yy, £, 9, h required f=y+ 12

required h = 2xg
required s = printstring(h)
medium g = 10% f

choose k, since k has been marked as run_time_known). It solves for y, yielding the
equation y = —1.5%k+10.5, and adds y to nonparametric variables. The expression
—1.5% k 4+ 10.5 is also substituted for the occurrence of y in the expression for x,
so that z is now defined by the expression 2.5 * k — 10.5. Both of the defining
expressions for the nonparametric variables and y now involve only variables
marked as run_time_known, so the compiler marks z and y as run_time_known as
well, and adds the following assignment statements to the compiled code:

x := 2.5%k - 10.5;
y := -1.5%k + 10.5;

The propagate_changes procedure is executed. Blue for Region 1 is notified that
x is now run_time_known using the compile_process_changed_variable message. Blue
compiles the following assignments based on the local propagation methods for its
constraints, and marks a and ¢ as run_time_known:

a = 10*x;
c = a*b;

Also, Blue for Region 3 is notified that y is run_time_known, so it compiles the
following assignment and marks f as run_time_known:

f:=y+12;

Finally we process the medium constraints. The Blue compiler for Region 1
processes the a = 0 constraint. Since a is already marked as run_time_known, this
constraint can’t be enforced, but since it isn’t required it is discarded. The Purple
compiler for Region 2 processes the 5z +8+y = 10 constraint, replacing = and y by
their defining expressions. This yields £ = —43. Since k is already run_time_known,
we can’t assign another value to k, but since the constraint isn’t required it is
discarded. No changes are propagated to other regions. The Blue compiler for

23

Region 3 processes the g = 10* f constraint. This allows Blue to add the following
assignments to the generated code and to mark g, h, and s as run_time_known:

g = 10*f;
h := 2*g;
s := printstring(h);

Since none of these variables are shared with other regions, no changes are propa-
gated to other regions.
The complete code is:

initial values: b=5;

k := input value;

x = 2.5%k - 10.5;
y := -1.5%k + 10.5;
a = 10*x;

¢ := a*b;
f:=y+12;

g = 10*f;

h := 2*g;

s := printstring(h);

To use this plan for several different input values for k, we set b = 5 (just once),
then run the code for each input value. For example, for k = 7, we get x = 7,
y=0,a="70,c=2350, f=12, g =120, h = 240, and s = ‘240.0’.

7. Conclusion

This paper represents a snapshot of an ongoing research project on using constraints
in interactive graphical applications. In the time since this paper was written, there
has been both experience in using Ultraviolet as well as a number of significant
new developments. In this section we discuss the strengths and weaknesses of the
algorithm, and suggest directions for future work.

We experimented with using Ultraviolet in a number of industrial applications,
primarily for diagram layout and manipulation in systems for computer-aided soft-
ware engineering. Regarding the power of the solver, we found that users often
added redundant constraints, since this arose naturally when expressing the de-
sired layout. For linear equality constraints this is no problem, but for inequality
constraints it often resulted in cycles that Deep Purple was unable to solve. Based
on this experience we concluded it is essential to provide a complete solver for si-
multaneous linear inequalities. Regarding performance, the speed of the compiled
code was excellent. However, the time to run the compiler was a problem if the
collection of constraints changed repeatedly as a result of adding and deleting parts
of the diagram.

There are now several candidates for complete solvers for simultaneous inequali-
ties intended for user interface applications. Two of these, QOCA and Cassowary

24

(Section 2), are adaptations of the simplex algorithm. They are both incremental
and have very good performance. Their disadvantages are that they only handle lin-
ear equalities and inequalities, and unlike the Ultraviolet compiler, a runtime solver
is needed. Another disadvantage is that the update time is variable: while the av-
erage time is very fast, if there are many non-required constraints that transition
between being unsatisfied and satisfied, then the update time becomes longer. (In
the graphical domain this typically corresponds to one part colliding with another,
or moving away from another. See [6].)

Another candidate algorithm uses Fourier elimination to compile constraint-free,
straight line code that solves simultaneous equalities and inequalities [15]. The
resulting code is faster than using QOCA or Cassowary, and it also has uniform
running time. However, the algorithm is batch, making it unsuitable for rapidly
changing collections of constraints.

To be used in the Ultraviolet framework, a solver for simultaneous inequalities
must be able to process the constraints level by level, and after processing each
level provide bounds information for variables shared by other regions. Unfortu-
nately neither QOCA nor Cassowary is well-suited for this — these facilities could
be provided, but at a higher cost than simply running the algorithm on the entire
collection of constraints. Processing the constraints level-by-level requires invoking
the solver n times, where n is the number of levels, rather than just once. More
significantly, providing bounds information on a level-by-level basis appears to re-
quire two optimization steps per variable for each level (to extract the upper and
lower bound), which would slow down its operation considerably. However, it ap-
pears that the Fourier-based compiler can be easily adapted both to process the
constraints level-by-level and to extract bounds information.

In view of this, the most direct evolutionary step for Ultraviolet would be to
replace Deep Purple with the Fourier elimination algorithm. The result would
be a system that solves simultaneous linear equalities and inequalities, along with
arbitrary constraints using local propagation. It would be a batch system that
produces very efficient, straight-line, constraint-free code. It would thus be useful
when the set of constraints is fixed. An example application would be a constraint-
based authoring environment for producing Java applets, where the behavior of
the applet is partially specified using constraints. After the applet was written
and tested in the authoring environment, Ultraviolet would be used to produce
Java code that can be shipped over the net and run on a remote machine, without
requiring a runtime constraint solver on the remote machine. As a second example,
when building an embedded real-time engine controller, predictable performance
is needed: compiled code can provide that, but calls to runtime constraint solvers
generally cannot. Finally, in developing a product, a company might use constraints
in developing the application and not want to ship a proprietary constraint solving
package with that application.

For applications in which constraints are added and deleted, an incremental al-
gorithm such as QOCA or Cassowary is needed. In this case an Ultraviolet-like
framework could be used to handle non-numeric constraints as well as numeric
ones. Given the difficulties in extracting bounds information, all of the linear nu-

25

meric constraints should be collapsed into one region and given to QOCA or Cas-
sowary; the only constraints in the local propagation region would be non-numeric
ones. We are currently designing just such a hybrid algorithm.

Acknowledgments

This project has been funded in part by Object Technology International and in part
by the National Science Foundation under Grants IRI-9302249 and CCR-9402551.
Thanks to Richard Anderson for his help with this project.

References

10.

11.

12.

13.

14.

15.

16.

Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. Indigo: A local propagation
algorithm for inequality constraints. In Proceedings of the 1996 ACM Symposium on User
Interface Software and Technology, pages 129-136, Seattle, November 1996.

Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. The Indigo algorithm. Techni-
cal Report 96-05-01, Dept. of Computer Science and Engineering, University of Washington,
Seattle, WA, July 1996.

Alan Borning and Bjorn Freeman-Benson. The OTI constraint solver: A constraint library for
constructing interactive graphical user interfaces. In Proceedings of the First International
Conference on Principles and Practice of Constraint Programming, pages 624-628, Cassis,
France, September 1995.

Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and
Symbolic Computation, 5(3):223-270, September 1992.

Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings of
ACM MULTIMEDIA’97, November 1997.

Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic con-
straints for user interface applications. In Proceedings of the 1997 ACM Symposium on User
Interface Software and Technology, October 1997.

Jennifer Burg, Peter J. Stuckey, Jason C.H. Tai, and Roland H.C. Yap. Linear equation solv-
ing for constraint logic programming. In Proceedings of the Twelfth International Conference
on Logic Programming, pages 33-47, Tokyo, June 1995. MIT Press.

S.S. Chok and K. Marriott. Automatic construction of user interfaces from constraint multiset
grammars. In IEEE Symposium on Visual Languages, pages 242-250, 1995.

Ernest Davis. Constraint propagation with interval labels. Artificial Intelligence, 32(3):281—
331, July 1987.

Bjorn Freeman-Benson, John Maloney, and Alan Borning. An incremental constraint solver.
Communications of the ACM, 33(1):54-63, January 1990.

Michel Gangnet and Burton Rosenberg. Constraint programming and graph algorithms. In
Second International Symposium on Artificial Intelligence and Mathematics, January 1992.
Michael Gleicher. A graphics toolkit based on differential constraints. In Proceedings of the
ACM SIGGRAPH Symposium on User Interface Software and Technology, pages 109-120,
Atlanta, Georgia, November 1993.

Michael Gleicher. A Differential Approach to Constraint Satisfaction. PhD thesis, School of
Computer Science, Carnegie-Mellon University, 1994.

Michael Gleicher. Practical issues in programming constraints. In Vijay Saraswat and Pascal
Van Hentenryck, editors, Principles and Practice of Constraint Programming: The Newport
Papers, pages 407-426. MIT Press, 1995.

Warwick Harvey, Peter Stuckey, and Alan Borning. Compiling constraint solving using
projection. In Proceedings of the 1997 Conference on Principles and Practice of Constraint
Programming (CP97), pages 491-505, October 1997.

W. He and K. Marriott. Constrained graph layout. In Graph Drawing ’96, volume 1190 of
LNCS, pages 217-232. Springer-Verlag, 1996.

26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Richard Helm, Tien Huynh, Catherine Lassez, and Kim Marriott. A linear constraint tech-
nology for interactive graphic systems. In Graphics Interface 92, pages 301-309, 1992.
Allan Heydon and Greg Nelson. The Juno-2 constraint-based drawing editor. Technical
Report 131a, DEC Systems Research Center, Palo Alto, CA, 1994.

Hiroshi Hosobe, Satoshi Matsuoka, and Akinori Yonezawa. Generalized local propagation:
A framework for solving constraint hierarchies. In Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, Boston, August 1996.
Hiroshi Hosobe, Ken Miyashita, Shin Takahashi, Satoshi Matsuoka, and Akinori Yonezawa.
Locally simultaneous constraint satisfaction. In Proceedings of the 1994 Workshop on Prin-
ciples and Practice of Constraint Programming, pages 51-62. Springer-Verlag LLNCS 874,
1994.

Scott Hudson and Ian Smith. SubArctic UI toolkit user’s manual. Technical report, College
of Computing, Georgia Institute of Technology, 1996.

Scott Hudson and Ian Smith. Ultra-lightweight constraints. In Proceedings of the 1996 ACM
Symposium on User Interface Software and Technology, pages 147-155, Seattle, November
1996.

Eero Hyvonen. Constraint reasoning based on interval arithmetic: The tolerance propagation
approach. Artificial Intelligence, 58(1-3):71-112, December 1992.

Eero Hyvonen. Evaluation of cascaded interval function constraints. In Proceedings of the
International Workshop on Constraint-Based Reasoning (CONSTRAINT-95), Melbourne
Beach, Florida, April 1995.

Eero Hyvonen, Stefano De Pascale, and Aarno Lehtola. Interval constraint programming in
C++. In Brian Mayoh, Enn Tyugu, and Jaan Penjam, editors, Constraint Programming,
pages 350-366. Springer-Verlag, 1994. NATO Advanced Science Institute Series, Series F:
Computer and System Sciences, Vol. 131.

Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339-395, July
1992.

Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring,
Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The amulet environ-
ment: New models for effective user interface software development. ITEEE Transactions on
Software Engineering, 23(6):347-365, June 1997.

Greg Nelson. Juno, a constraint-based graphics system. In SIGGRAPH ’85 Conference
Proceedings, pages 235-243, San Francisco, July 1985. ACM.

Michael Sannella. SkyBlue: A multi-way local propagation constraint solver for user interface
construction. In Proceedings of the 1994 ACM Symposium on User Interface Software and
Technology, pages 137146, 1994.

Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way
versus one-way constraints in user interfaces: Experience with the DeltaBlue algorithm.
Software—Practice and Experience, 23(5):529-566, May 1993.

Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD
thesis, Department of Electrical Engineering, MIT, January 1963.

Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way
dataflow constraints. ACM Transactions on Programming Languages and Systems, 18(1):30—
72, January 1996.

