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1. The "security mindset"
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CSE <= 190M

until now, we have assumed:
valid user input
non-malicious users
nothing will ever go wrong

this is unrealistic!

The real world

in order to write secure code, we
must assume:

invalid input
evil users
everybody is out to get you

trust nothing



2. Some basic web attacks
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HTML injection

a flaw where a user is able to inject arbitrary HTML content into your page

why is this bad? it allows others to:
disrupt the flow/layout of your site
put words into your mouth
(possibly) run JavaScript on your users' computers

kinds of injected content:
annoying: results.php?name=<blink>lololol</blink>
malicious and harmful: onlinebanking.php?text=
<script>transferMoneyTo("Evil Kevin", 1000, "USD");
</script>

injecting JavaScript content is called cross-site scripting or XSS
example: magic 8-ball

https://webster.cs.washington.edu/kwal/lecture26/8ball/



Securing against HTML injection

one idea: disallow harmful characters
HTML injection is impossible without < >
can strip those characters from incoming input
or, just reject the entire request if they are present

better idea: allow them, but escape them
< > → &lt; &gt;
PHP's htmlspecialchars function escapes HTML characters:

<?= htmlspecialchars($username) ?>

SQL injection

a flaw where the user is able to inject arbitrary SQL commands into your query

$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$password'";

Password: 
$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '' OR
'1'='1'";

What will the above query return? Why is this bad?
example: simpsons grade lookup

https://webster.cs.washington.edu/kwal/lecture26/grades/



Securing against SQL injection

similar to securing against HTML injection, escape the string before you include it in your
query
use the PHP mysql_real_escape_string function

$username = mysql_real_escape_string($_REQUEST["username"]);
$password = mysql_real_escape_string($_REQUEST["password"]);
$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$password'";

3. Breaking and securing an example page
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