
Web Programming Step by Step
Lecture 26

Web Security

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp,
Jessica Miller, and Kevin Wallace.

1. The "security mindset"

security mindset

some basic web attacks
breaking and securing an example page

CSE <= 190M

until now, we have assumed:
valid user input
non-malicious users
nothing will ever go wrong

this is unrealistic!

The real world

in order to write secure code, we
must assume:

invalid input
evil users
everybody is out to get you

trust nothing

2. Some basic web attacks

security mindset
some basic web attacks

breaking and securing an example page

HTML injection

a flaw where a user is able to inject arbitrary HTML content into your page

why is this bad? it allows others to:
disrupt the flow/layout of your site
put words into your mouth
(possibly) run JavaScript on your users' computers

kinds of injected content:
annoying: results.php?name=<blink>lololol</blink>
malicious and harmful: onlinebanking.php?text=
<script>transferMoneyTo("Evil Kevin", 1000, "USD");
</script>

injecting JavaScript content is called cross-site scripting or XSS
example: magic 8-ball

https://webster.cs.washington.edu/kwal/lecture26/8ball/

Securing against HTML injection

one idea: disallow harmful characters
HTML injection is impossible without < >
can strip those characters from incoming input
or, just reject the entire request if they are present

better idea: allow them, but escape them
< > → < >
PHP's htmlspecialchars function escapes HTML characters:

<?= htmlspecialchars($username) ?>

SQL injection

a flaw where the user is able to inject arbitrary SQL commands into your query

$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$password'";

Password:
$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '' OR
'1'='1'";

What will the above query return? Why is this bad?
example: simpsons grade lookup

https://webster.cs.washington.edu/kwal/lecture26/grades/

Securing against SQL injection

similar to securing against HTML injection, escape the string before you include it in your
query
use the PHP mysql_real_escape_string function

$username = mysql_real_escape_string($_REQUEST["username"]);
$password = mysql_real_escape_string($_REQUEST["password"]);
$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$password'";

3. Breaking and securing an example page

PHP/SQL review
some basic web attacks
breaking and securing an example page

