
Ruby (on Rails)

CSE 190M, Spring 2009

Week 3



Web Programming in Ruby

• Ruby can be used to write dynamic web pages

• Similar to PHP, chunks of Ruby begins with "<%" 

and ends with "%>"

• Ruby code goes between these tags

• Our web pages will have file extensions of .erb

• Just like PHP, we cannot view our .erb files from 

our hard drive; upload it and view it from webster



erb

• We have been using the Ruby interpreter for our 
pure Ruby programs

• For web pages, we need to use a Ruby parser that 
knows how to deal with embedded Ruby in an HTML 
file, just like PHPfile, just like PHP

• This detail does not really matter…

• …But for completeness, we are using erb/eruby

• Thanks to Morgan, this is already setup and 
configured on webster, so you do not need to worry 
about it



erb syntax

• Code Blocks

• Equivalent to <?php … ?> in PHP

<%

ruby statementsruby statements

%>

• Printing expression values 

• Equivalent to <?= … ?> in PHP 

<%= expression %> 



99 Bottles of Beer

• Write an embedded Ruby file for the 99 

Bottles of Beer example from lecture

• It should generate the HTML for 99 Bottles of • It should generate the HTML for 99 Bottles of 

Beer

https://webster.cs.washington.edu/rctucker/99bottles.erb



99 Bottles of Beer

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>CSE 190 M: Embedded Ruby</title></head>  

<body>

<%

num = 99

while num > 0

%>

<p> <%= num %> bottles of beer on the wall, <br />

<%= num %> bottles of beer. <br />

Take one down, pass it around, <br />

<%= num - 1 %> bottles of beer on the wall. </p>

<%

num = num - 1

end

%>

</body>

</html>



CGI

• CGI: Common Gateway Interface

• "CGI Programming" is a fancy way of saying 

that we will be writing server side programs that we will be writing server side programs 

that will produce output as a response to a 

visitors request 

• Ruby has a cgi library to make web 

programming in Ruby easier



require

• We want to use functionality from Ruby's cgi

library

• In Java, we would use the keyword "import"

import java.io.* import java.io.* 

• To do this in Ruby, we use "require"

• If we wanted to use the Ruby CGI library:

require 'cgi'



Query Parameters

• To get query parameters, we must create a 

CGI object

• Then, we can access the query parameters of 

a web request through the associative array, a web request through the associative array, 

with the parameters as the keys

• Example

require 'cgi' # requires the cgi library

cgi = CGI.new

name = cgi['name'] # example.erb?name=Ryan



Query Parameters

• Accessing the values of parameters returns 

them as Strings

• If you want to use them as other values, you • If you want to use them as other values, you 

need to tell them to behave that way

num = cgi['quantity'].to_i

• You can also check if a parameter is set

cgi.has_key?('name') # equivalent to PHP's isset()



99 Bottles of Beer (revisited)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>CSE 190 M: Embedded PHP</title></head>  

<body>

<%<%

require 'cgi'

cgi = CGI.new

if cgi.has_key?('bottles')

num = cgi['bottles'].to_i

else

num = 99

end



99 Bottles of Beer (revisited)(cont.)

while num > 0

%>

<p> <%= num %> bottles of beer on the wall, <br />

<%= num %> bottles of beer. <br />

Take one down, pass it around, <br />

<%= num - 1 %> bottles of beer on the wall. </p><%= num - 1 %> bottles of beer on the wall. </p>

<%

num = num - 1

end

%>

</body>

</html>



Query Params and Check Boxes

• Accessing query parameters like a hash on our 

CGI object works fine for typical inputs where 

there is only one value per key

• But, if we try to get all of the values of a set of 

checkboxes, only the first value is returned

• To get all the values, we will use the CGI 

params() method



Query Params and Check Boxes

• The CGI params() method returns a hash with 

the query parameters as the keys of the hash

• The value of each key is an array of the values 

of the parameterof the parameter

• For parameters with one value, this still 

returns an array of size one

• For checkboxes, we are able to get all of the 

values instead of just the first one



form.html

<form action="params.erb">

<label><input type="checkbox" name="reason" value="ruby" /> 

You learn Ruby!</label><br />

<label><input type="checkbox" name="reason" value="rails" /> 

You will learn Rails!</label><br />You will learn Rails!</label><br />

<label><input type="checkbox" name="reason" value="not_early" /> 

It is not early in the morning!</label><br />

<label><input type="checkbox" name="reason" value="hw_optional" /> 

Homework is optional!</label><br />

<input type="submit" />

</form>



params.erb

<%

require 'cgi'

cgi = CGI.new

%>

<h1> Using the params() method </h1><h1> Using the params() method </h1>

<%  cgi.params.each do |key, value|  %>

<%= "#{key}: #{value}" %> <br />

<%  end %>

<h1> Not using the params() method</h1>

<%   cgi.keys.each do |param| %>

<%= "#{param}: #{cgi[param]} <br />" %>

<%  end %>



Debugging in erb

• It is not easy…

• Most errors, especially syntactical errors, 

result in a "HTTP Error 500: Internal Server 

Error"Error"

• It says to email Morgan Doocy… but don't, it is 

just an error in the script

• Debugging will be easier when we start to use 

Rails where Rails provides better built-in error 

handling


