
Bayes’ Rule and LTP CSE 312 Summer 21

Lecture 6



Announcements

Problem Set 2 and Review Summary 1 have been released.

Please start early and come to office hours!

You can take up to 2 late days on an assignment.

Please list your collaborators in the assignment submission.



Today

Bayes’ Rule

Law of Total Probability

More Practice



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?

Which of these is closest to the right answer?
A. 0.1%

B. 10%

C. 50%

D. 90%

E. 99%

F. 99.9%

Fill out the poll everywhere so 

Kushal knows how long to explain

Go to pollev.com/cse312su21



Conditioning

Let 𝐴 be the event you get ALERTED

Let 𝐵 be the event your bar has a ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(incorrectly) alert you 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?

ℙ(𝐵)

ℙ(𝐴|𝐵)

ℙ 𝐴 ത𝐵

ℙ(𝐵|𝐴)



Reversing the Conditioning

All of our information conditions on whether 𝐵 happens or not – does 
your bar have a golden ticket or not?

But we’re interested in the “reverse” conditioning. We know the scale 
alerted us – we know the test is positive – but do we have a golden 
ticket?



Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule



Proof of Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ 𝐴∩𝐵

ℙ 𝐵
by definition of conditional probability

Now, imagining we get 𝐴 ∩ 𝐵 by conditioning on 𝐴, we should get a 
numerator of ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

=
ℙ(𝐵|𝐴)⋅ℙ 𝐴

ℙ 𝐵

As required. 



Bayes’ Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

Bayes’ Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001



Filling In

What’s ℙ(𝐴)?

We’ll use a trick called “the law of total probability”:



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

A partition of a set 𝑆 is a family of subsets 𝑆1, 𝑆2, … , 𝑆𝑘 such that:

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖, 𝑗 and

𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑘 = 𝑆. 

i.e. every element of Ω is in exactly one of the 𝐴𝑖 .



Law of Total Probability

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be a partition of Ω.

For any event 𝑬, 

ℙ 𝑬 = 

𝐚𝐥𝐥 𝒊

ℙ 𝑬|𝑨𝒊 ℙ(𝑨𝒊)

Law of Total Probability



Why?

The proof is actually pretty informative on what’s going on. 

σall 𝑖ℙ 𝐸|𝐴𝑖 ℙ(𝐴𝑖)

= σall 𝑖
ℙ 𝐸∩𝐴𝑖

ℙ 𝐴𝑖
⋅ ℙ(𝐴𝑖) (definition of conditional probability)

= σall 𝑖ℙ 𝐸 ∩ 𝐴𝑖

= ℙ(𝐸)

The 𝐴𝑖 partition Ω, so 𝐸 ∩ 𝐴𝑖 partition 𝐸. Then we just add up those 
probabilities. 

𝐴1 𝐴2 𝐴3

𝐸

𝐴4



Back to Chocolate

What’s ℙ(𝐴)?

We don’t know ℙ(𝐴), but we do know ℙ(𝐴|𝐵) and ℙ 𝐴 ത𝐵 . That’s a 
partition of Ω!

ℙ 𝐴 = ℙ 𝐴 𝐵 ⋅ ℙ 𝐵 + ℙ 𝐴 ത𝐵 ⋅ 𝑃 ത𝐵

= 0.999 ⋅ 0.001 + 0.01 ⋅ 0.999

= 0.010989



Bayes’ Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ 0.010989

0.001

Solving ℙ 𝐵 𝐴 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Instead of saying “we tested one and got a positive” imagine we tested 
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Let's say those are exactly 
right.

Let's just say that one golden is truly found

(about) 1% of the 999 without would be a positive. Let's say it’s exactly 
10.

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 

you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 

(falsely) alert you only 1% of the time. 



Visually

Gold bar is the one (true) golden ticket bar.

Purple bars don’t have a ticket and tested 

negative.

Red bars don’t have a ticket, but tested 

positive.

The test is, in a sense, doing really well. 

It’s almost always right.

The problem is it’s also the case that the 

correct answer is almost always “no.”



Updating Your Intuition

Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a 

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 



Updating Your Intuition

Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative.



Updating Your Intuition

Take 3: Viewing tests as updating your beliefs, not revealing the 
truth.

Bayes’ Rule says that ℙ(𝐵|𝐴) has a factor of ℙ 𝐵 in it. You have to
translate “the test says that there is a golden ticket” to “the test says you 
should increase your estimate of the chances that you have a golden 
ticket.”

A test takes you from your “prior” beliefs of the probability to your 
“posterior” beliefs.



More Bayes Practice



Marbles and Coin Tosses

You have three red marbles and one blue marble in your left pocket, 
and one red marble and two blue marbles in your right pocket.

You will flip a fair coin; if it’s heads, you’ll draw a marble (uniformly) from 
your left pocket, if it’s tails, you’ll draw a marble (uniformly) from your 
right pocket.

Let 𝐵 be you draw a blue marble. Let 𝑇 be the coin is tails.

What is ℙ(𝐵|𝑇)? What is ℙ(𝑇|𝐵) ?



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

H T

ℙ 𝐻 =
1

2
ℙ 𝑇 =

1

2

ℙ 𝐵|𝑇 =
2

3

ℙ 𝑅|𝑇 =
1

3

ℙ 𝐵|𝐻 =
1

4

ℙ 𝑅|𝐻 =
3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Updated Sequential Processes

For sequential processes with probability, 
at each step multiply by 
ℙ next step all ∩ prior ∩ steps)

ℙ 𝐵 𝑇 =
2

3
; ℙ 𝐵 =

1

8
+

1

3
=

11

24

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.
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1
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3

4

ℙ 𝑅 ∩ 𝐻 = 3/8

ℙ 𝐵 ∩ 𝐻 = 1/8

ℙ 𝑅 ∩ 𝑇 = 1/6

ℙ 𝐵 ∩ 𝑇 = 1/3



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

Fill out the poll everywhere

pollev.com/cse312su21



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Pause, what’s your intuition?

Is this probability 

A. less than ½

B. equal to ½

C. greater than ½

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.

The right (tails) pocket is far more likely to produce a blue marble if picked 

than the left (heads) pocket is. Seems like ℙ(𝑇|𝐵) should be greater than ½.



Flipping the conditioning

What about ℙ(𝑇|𝐵)?

Bayes’ Rule says:

ℙ 𝑇 𝐵 =
ℙ(𝐵|𝑇)ℙ 𝑇

ℙ 𝐵

=
2

3
⋅
1

2
11

24

=
8

11

You have three red marbles and one blue marble in your left pocket, 

and one red marble and two blue marbles in your right pocket.

if it’s heads, you’ll draw a marble (uniformly) from your left pocket, 

if it’s tails, you’ll draw a marble (uniformly) from your right pocket.



Some Technical Notes



Technical Note

After you condition on an event, what remains is a probability space.

With 𝐵 playing the role of the sample space, 

ℙ(𝜔|𝐵) playing the role of the probability measure.

All the axioms are satisfied (it’s a good exercise to check)

That means any theorem we write down has a version where you 
condition everything on 𝐵. 



An Example

Bayes Theorem still works in a probability space where we’ve already 
conditioned on 𝑆.

ℙ 𝐴 [𝐵 ∩ 𝑆] =
ℙ 𝐵 [𝐴 ∩ 𝑆] ⋅ℙ 𝐴 𝑆

ℙ(𝐵|𝑆)



A word of caution!

I often see students write things like 

ℙ([𝐴 𝐵] 𝐶)

This is not a thing. 

You probably want ℙ(𝐴| 𝐵 ∩ 𝐶 )

𝐴|𝐵 isn’t an event – it’s describing an event and telling you to restrict 
the sample space. So, you can’t ask for the probability of that 
conditioned on something else.



Extra Practice



Where There’s Smoke There’s…

There is a dangerous (you-need-to-call-the-fire-department-
dangerous) fire in your area 1% of the time.

If there is a dangerous fire, you’ll smell smoke 95% of the time;

If there is not a dangerous fire, you’ll smell smoke 10% of the time 
(barbecues are popular in your area)

If you smell smoke, should you call the fire department? 



𝑆 be the event you smell smoke

𝐹 be the event there is a dangerous fire

ℙ 𝐹 𝑆 =
ℙ(𝑆|𝐹)⋅ℙ 𝐹

ℙ(𝑆)
=

ℙ(𝑆|𝐹)⋅ℙ 𝐹

ℙ 𝑆 𝐹 ℙ 𝐹 +ℙ 𝑆 ത𝐹 ℙ ത𝐹

=
.95⋅.01

.95⋅.01+.1⋅.99
≈ .088

Probably not time yet to call the fire department.


