Please dovortaol the actuary slide! (3)

Joint Distributions

Announcements

Real World 1 grades have been released.

Real World 2 due next Wednesday.
Review Summary 3 due next Friday.

Details on the Final to be announced soon.

Today

A somewhat out-of-place lecture.
When we introduced multiple random variables, we've always had them be independent.
Because it's hard to deal with non-independent random variables.

Today is a crash-course in the toolkit for when you have multiple random variables, and they aren't independent.

Going to focus on discrete RVs.

Joint PMF, support

For two (discrete) random variables X, Y their joint pmf

$$
p_{X, Y}(x, y)=\mathbb{P}(X=x \cap Y=y)
$$

When X, Y are independent then $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$.

For two (discrete) random variables X, Y their joint support

$$
\Omega(X, Y)=\left\{(a, b): p_{X, Y}(a, b)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Examples

Roll a blue die and a red die. Each die is 4 -sided. Let X be the blue die's result and Y be the red die's result.
Each die (individually) is fair. But not all results are equally likely when looking at them both together.

$$
p_{X, Y}(1,2)=\frac{3}{16}
$$

Marginals

What if I just want to talk about X ?
Well, use the law of total probability:
$\mathbb{P}(X=\underline{k})=\sum_{\text {partition }\left\{E_{i}\right\}} \mathbb{P}\left(X=k \mid E_{i}\right) \mathbb{P}\left(E_{i}\right)$
and use E_{i} to be possible outcomes for Y for the dice example
$\mathbb{P}(X=k)=\sum_{\ell=1}^{4} \mathbb{P}(X=k \mid Y=\ell) \mathbb{P}(Y=\ell)$
$=\sum_{\ell=1}^{4} \mathbb{P}(X=k \cap Y=\ell)$
$p_{X}(\underline{k})=\sum_{\ell=1}^{4} p_{X, Y}(\underline{k}, \underline{\ell})$
$p_{X}(k)$ is called the "marginal" distribution for X (because we "marginalized" Y) it's the same pmf we've always used; the name emphasizes we have gotten rid of one of the variables.

Marginals

$$
p_{X}(k)=\sum_{\ell=1}^{4} p_{X Y}(k, \ell)
$$

So

$p_{X, Y}$	$X=1$	$X=2$	$X=3$	$X=4$
$Y=1$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$Y=2$	$3 / 16$	0	0	$1 / 16$
$Y=3$	0	$2 / 16$	0	$2 / 16$
$Y=4$	0	$1 / 16$	$3 / 16$	0

Different dice

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum Are U and V independent? No Write the joint distribution in the table
What's $p_{U}(z)$? (the marginal for U)

Different dice

Roll two fair dice independently. Let U be the minimum of the two rolls and V be the maximum

$$
p_{U}(z)= \begin{cases}\frac{7}{16} & \text { if } z=1 \\ \frac{5}{16} & \text { if } z=2 \\ \frac{3}{16} & \text { if } z=3 \\ \frac{1}{16} & \text { if } z=4 \\ 0 & \text { otherwise }\end{cases}
$$

$p_{U, V}$	$\boldsymbol{U}=1$	$\boldsymbol{U}=\mathbf{2}$	$\boldsymbol{U}=\mathbf{3}$	$\boldsymbol{U}=4$
$V=1$	$1 / 16$	0	0	0
$V=2$	$2 / 16$	$1 / 16$	0	0
$V=3$	$2 / 16$	$2 / 16$	$1 / 16$	0
$V=4$	$2 / 16$	$2 / 16$	$2 / 16$	$1 / 16$

$$
\sum_{(s, t) \in \Omega(x, y)} p_{x, y}(s, t)=1
$$

Joint Expectation

Expectations of joint functions

For a function $g(X, Y)$, the expectation can be written in terms of the joint pmf.

$$
\mathbb{E}[g(X, Y)]=\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} g(x, y) \cdot p_{X, Y}(x, y)
$$

This definition hopefully isn't surprising at this point (it's the value of g times the probability g takes on that value), but it's good to review it.

$$
E[x y]=\sum_{x} \sum_{y} x_{y} \cdot P_{x y}(x, y)
$$

Conditional Expectations

Waaaaaay back when, we said conditioning on an event creates a new probability space, with all the laws holding.
So, we can define things like "conditional expectations" which is the expectation of a random variable in that new probability space.

$$
\mathbb{E}[X \mid E]=\sum_{x \in \Omega} x \cdot \mathbb{P}(X=x \mid E)
$$

$$
\mathbb{E}[X \mid Y=y]=\sum_{x \in \Omega_{X}} x \cdot \mathbb{P}(X=x \mid Y=y)
$$

Conditional Expectations

All your favorite theorems are still true.
For example, linearity of expectation still holds

$$
\mathbb{E}[(a X+b Y+c) \mid E]=a \mathbb{E}[X \mid E]+b \mathbb{E}[Y \mid E]+c
$$

Law of Total Expectation

 $P(A)=\sum_{i=1}^{n} P\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)$Let $A_{1}, A_{2}, \ldots, A_{k}$ be a partition of the sample space, then

$$
\mathbb{E}[X]=\sum_{i=1} \mathbb{E}\left[X \mid A_{i}\right] \mathbb{P}\left(A_{i}\right)
$$

Let X, Y be discrete random variables, then

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \mathbb{P}(Y=y)
$$

Similar in form to law of total probability, and the proof goes that way as well.

LIE
You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw a metric random variable Y from the distribution $(X+1)$. exponential
What is $\mathbb{E}[Y]$?

$$
\begin{array}{ll}
\mathbb{P}(X=0)=1 / 4 \text { then } y \sim \operatorname{Geo}(0+1) & E[y]=\frac{1}{1} \\
\mathbb{P}(X=1)=1 / 2 \text { then } y \sim \operatorname{Geo}(1+1) & E[y]=\frac{1}{2} \\
\mathbb{P}(X=2)=1 / 4 \text { then } y \sim \operatorname{Geo}(2+1) & E[y]=\frac{1}{3}
\end{array}
$$

LIE

You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw a random variable Y from the distribution -Geo $(X+1)$. What is $\mathbb{E}[Y]$?

$$
=\mathbb{E}[Y \mid X=0] \mathbb{P}(X=0)+\mathbb{E}[Y \mid X=1] \mathbb{P}(X=1)+\mathbb{E}[Y \mid X=2] \mathbb{P}(X=2)
$$

$$
=\mathbb{E}[Y \mid X=0] \cdot \frac{1}{4}+\mathbb{E}[Y \mid X=1] \cdot \frac{1}{2}+\mathbb{E}[Y \mid X=2] \cdot \frac{1}{4}
$$

$$
=\frac{1}{0+1} \cdot \frac{1}{4}+\frac{1}{1+1} \cdot \frac{1}{2}+\frac{1}{2+1} \cdot \frac{1}{4}=\frac{7}{12} .
$$

Analogues for continuous

Everything we saw today has a continuous version.
There are "no surprises"- replace pmf with pdf and sums with integrals.

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Covariance

We sometimes want to measure how "intertwined" X and Y are - how much knowing about one of them will affect the other.
If X turns out "big" how likely is it that Y will be "big" how much do they "vary together"

Covariance

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

$$
E[X Y]=E[X] \text {. } E[Y] \text { for indpembut } r=v \text {. }
$$

Covariance

$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$

That's consistent with our previous knowledge for independent variables. (for X, Y independent, $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y])$.

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let X be your profit and Y be your friend's profit.
What is $\operatorname{Var}(X+Y)$?

Covariance

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let X be your profit and Y be your friend's profit.
What is $\operatorname{Var}(X+Y)$?
$\operatorname{Var}(X)=\operatorname{Var}(Y)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=1-0^{2}=1$
$\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
$\mathbb{E}[X Y]=\frac{1}{2} \cdot(-1 \cdot 1)+\frac{1}{2}(1 \cdot-1)=-1$
$\operatorname{Cov}(X, Y)=-1-0 \cdot 0=-1$.
$\operatorname{Var}(X+Y)=\underline{1}+\underline{1}+\underline{2} \cdot \underline{-1}=\underline{0}$

