Joint Distributions CSE 312 Summer 21 Lecture 18

Announcements

Real World 1 grades have been released.

Real World 2 due next Wednesday. Review Summary 3 due next Friday.

Details on the Final to be announced soon.

A somewhat out-of-place lecture.

When we introduced multiple random variables, we've always had them be independent.

Because it's hard to deal with non-independent random variables.

Today is a crash-course in the toolkit for when you have multiple random variables, and they aren't independent.

Going to focus on discrete RVs.

Joint PMF, support

For two (discrete) random variables X, Y their joint pmf $p_{X,Y}(x,y) = \mathbb{P}(X = x \cap Y = y)$

When X, Y are independent then $p_{X,Y}(x,y) = p_X(x)p_Y(y)$.

For two (discrete) random variables X, Y their joint support $\Omega(X, Y) = \{(a, b): p_{X,Y}(a, b) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Examples

Roll a blue die and a red die. Each die is 4-sided. Let X be the blue die's result and Y be the red die's result.

Each die (individually) is fair. But not all results are equally likely when looking at them both together.

$$p_{X,Y}(1,2) = \frac{3}{16}$$

$p_{X,Y}$	<i>X</i> =1	X=2	X=3	<i>X</i> =4
<i>Y</i> =1	1/16	1/16	1/16	1/16
<i>Y</i> =2	3/16	0	0	1/16
<i>Y</i> =3	0	2/16	0	2/16
<i>Y</i> =4	0	1/16	3/16	0

Marginals

What if I just want to talk about X?

Well, use the law of total probability:

$$\mathbb{P}(X = k) = \sum_{\text{partition } \{E_i\}} \mathbb{P}(X = k | E_i) \mathbb{P}(E_i)$$

and use E_i to be possible outcomes for Y for the dice example

$$\mathbb{P}(X = k) = \sum_{\ell=1}^{4} \mathbb{P}(X = k | Y = \ell) \mathbb{P}(Y = \ell)$$

$$= \sum_{\ell=1}^{4} \mathbb{P}(X = k \cap Y = \ell)$$

 $p_X(k) = \sum_{\ell=1}^4 p_{X,Y}(k,\ell)$

 $p_X(k)$ is called the "marginal" distribution for X (because we "marginalized" Y) it's the same pmf we've always used; the name emphasizes we have gotten rid of one of the variables.

Marginals

$$p_X(k) = \sum_{\ell=1}^4 p_{XY}(k,\ell)$$

So
$$p_X(2) = \frac{1}{16} + 0 + \frac{2}{16} + \frac{1}{16} = \frac{4}{16}$$

$p_{X,Y}$	<i>X</i> =1	X=2	X=3	<i>X</i> =4
<i>Y</i> =1	1/16	1/16	1/16	1/16
<i>Y</i> =2	3/16	0	0	1/16
<i>Y</i> =3	0	2/16	0	2/16
<i>Y</i> =4	0	1/16	3/16	0

Different dice

Roll two fair dice independently. Let *U* be the minimum of the two rolls and *V* be the maximum

Are *U* and *V* independent?

Write the joint distribution in the table

What's $p_U(z)$? (the marginal for U)

Fill out the poll everywhere so Kushal knows how long to explain Go to pollev.com/cse312su21

	$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4
	<i>V</i> =1				
	V=2				
')	<i>V</i> =3				
	<i>V</i> =4				

Different dice

Roll two fair dice independently. Let *U* be the minimum of the two rolls and *V* be the maximum

$$p_U(z) = \begin{cases} \frac{7}{16} & \text{if } z = 1\\ \frac{5}{16} & \text{if } z = 2\\ \frac{3}{16} & \text{if } z = 3\\ \frac{1}{16} & \text{if } z = 4\\ 0 & \text{otherwise} \end{cases}$$

$p_{U,V}$	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4
<i>V</i> =1	1/16	0	0	0
V=2	2/16	1/16	0	0
V=3	2/16	2/16	1/16	0
<i>V</i> =4	2/16	2/16	2/16	1/16

Joint Expectation

Expectations of joint functions

For a function g(X, Y), the expectation can be written in terms of the joint pmf.

$$\mathbb{E}[g(X,Y)] = \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} g(x,y) \cdot p_{X,Y}(x,y)$$

This definition hopefully isn't surprising at this point (it's the value of g times the probability g takes on that value), but it's good to review it.

Conditional Expectations

Waaaaaay back when, we said conditioning on an event creates a new probability space, with all the laws holding.

So, we can define things like "conditional expectations" which is the expectation of a random variable in that new probability space.

$$\mathbb{E}[X|E] = \sum_{x \in \Omega} x \cdot \mathbb{P}(X = x|E)$$

$$\mathbb{E}[X|Y = y] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x|Y = y)$$

Conditional Expectations

All your favorite theorems are still true.

For example, linearity of expectation still holds

 $\mathbb{E}[(aX + bY + c) | E] = a\mathbb{E}[X|E] + b\mathbb{E}[Y|E] + c$

Law of Total Expectation

Let $A_1, A_2, ..., A_k$ be a partition of the sample space, then $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X|A_i]\mathbb{P}(A_i)$

> Let *X*, *Y* be discrete random variables, then $\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X|Y = y] \mathbb{P}(Y = y)$

Similar in form to law of total probability, and the proof goes that way as well.

LTE

You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw a exponential random variable Y from the distribution Exp(X + 1).

What is $\mathbb{E}[Y]$?

LTE

You will flip 2 (independent, fair coins). Call the number of heads X. Then (independently of the coin flips) draw a exponential random variable Y from the distribution Exp(X + 1).

What is $\mathbb{E}[Y]$?

$$\begin{split} &\mathbb{E}[Y] \\ &= \mathbb{E}[Y|X=0]\mathbb{P}(X=0) + \mathbb{E}[Y|X=1]\mathbb{P}(X=1) + \mathbb{E}[Y|X=2]\mathbb{P}(X=2) \\ &= \mathbb{E}[Y|X=0] \cdot \frac{1}{4} + \mathbb{E}[Y|X=1] \cdot \frac{1}{2} + \mathbb{E}[Y|X=2] \cdot \frac{1}{4} \\ &= \frac{1}{0+1} \cdot \frac{1}{4} + \frac{1}{1+1} \cdot \frac{1}{2} + \frac{1}{2+1} \cdot \frac{1}{4} = \frac{7}{12}. \end{split}$$

Analogues for continuous

Everything we saw today has a continuous version.

There are "no surprises" – replace pmf with pdf and sums with integrals.

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Covariance

We sometimes want to measure how "intertwined" X and Y are – how much knowing about one of them will affect the other.

If X turns out "big" how likely is it that Y will be "big" how much do they "vary together"

Covariance $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Covariance

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

That's consistent with our previous knowledge for independent variables. (for *X*, *Y* independent, $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$).

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let X be your profit and Y be your friend's profit.

What is Var(X + Y)?

Covariance

You and your friend are playing a game, you flip a coin: if heads you pay your friend a dollar, if tails they pay you a dollar. Let *X* be your profit and *Y* be your friend's profit.

What is Var(X + Y)?

 $Var(X) = Var(Y) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 1 - 0^2 = 1$ $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ $\mathbb{E}[XY] = \frac{1}{2} \cdot (-1 \cdot 1) + \frac{1}{2}(1 \cdot -1) = -1$ $Cov(X, Y) = -1 - 0 \cdot 0 = -1.$ $Var(X + Y) = 1 + 1 + 2 \cdot -1 = 0$