A Second Example

Suppose the average number of ads you see on a website is 25 . Give an upper bound on the probability of seeing a website with 75 or more ads.

Markov's Inequality

Fill out the poll everywhere so
Kushal knows how long to explain
Go to pollev.com/cse312su21
Let X be a random variable supported (only) on non-negative numbers. For any $\boldsymbol{t}>\mathbf{0}$

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

Useless Example

Suppose the average number of ads you see on a website is 25 . Give an upper bound on the probability of seeing a website with 20 or more ads.

Markov's Inequality

Fill out the poll everywhere so
Kushal knows how long to explain
Go to pollev.com/cse312su21
Let X be a random variable supported (only) on non-negative numbers. For any $\boldsymbol{t}>\mathbf{0}$

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

Better Example

Suppose the average number of ads you see on a website is 25 . And the variance of the number of ads is 16 . Give an upper bound on the probability of seeing a website with 30 or more ads.

Chebyshev's Inequality

Let X be a random variable. For

$$
\begin{gathered}
\text { any } t>0 \\
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{\boldsymbol{t}^{2}}
\end{gathered}
$$

> Fill out the poll everywhere so
> Kushal knows how long to explain
> Go to pollev.com/cse312su21

