CSE 312 Foundations of Computing II

Lecture 1: Introduction \& Counting
https://cs.washington.edu/312

Instructor

Paul Beame [he/him]

beame@cs

Specialty: Complexity

https://homes.cs.washington.edu/~beame
Office: CSE 668

A Team of fantastic TAs

See https://cs.washington.edu/312/staff.html to learn more about their backgrounds and interests!

Lectures and Sections

- Lectures MWF (Anderson Hall 223)
- 1:30-2:20pm
- Classes will be in person
- Lecture recording but no live streaming because of classroom
- Panopto manual recording - not automatically uploaded. Please bear with me!
- Annotated slides also uploaded.
- Poll Everywhere
- We will sometimes use Poll Everywhere during class
- You sign up directly
- Sections Thu (starts this week)
- Not recorded
- Will prepare you for problem sets!

Go to
https://www.pollevery where.com/login and login using YOURNETID@uw.edu

Questions and Discussions

- Office hours throughout the week (starting this Friday)
- See https://cs.washington.edu/312/staff.html
- Ed Discussion
- You should have received an invitation (synchronized with the class roaster)
- Material (resources tab)
- Announcements (discussion tab)
- Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructor for personal issues.

Engagement

- "Concept checks" after each lecture 5-8 \%
- Must be done (on Gradescope) before the next lecture by 1:00 pm.
- Simple questions to reinforce concepts taught in each class
- Keep you engaged throughout the week, so that homework becomes less of a hurdle
- 9 Problem Sets (Gradescope) 45-50 \%
- Solved individually. Discussion with others allowed but separate solutions
- Generally due Wednesdays starting next week, except for midterm week but Fridays after Thanksgiving
- First problem set posted later today
- Midterm 15-20 \%
- In class on Wednesday, Nov 2
- Final Exam 30-35 \%
- Monday, December 12 at 2:30-4:20 pm in this room (as in UW Autumn Quarter Exam Schedule)

Check out the syllabus for policies on late submission for checkpoints and HW

COVID-19

UW's policies are pretty much what they were last spring

- Masking is still recommended, in particular in a crowded settings
- Masking is strongly recommended for the first 2 weeks of the quarter
- Stay home 5+ days with Covid

For more details see

Course Webpage https://cs.washington.edu/312

Foundations of Computing II

Introduction to Counting, Probability \& Statistics

for computer scientists

What is probability??
Why probability?!

Probability is our tool for understanding random processes

- Randomness in nature and the sciences/social sciences
- At the quantum level, everything is random
- Best way to understand and simulate behavior of complex systems
- A way to design and understand experiments, observations
- In the lab, the field, medical trials, surveys
- In Computer Science, randomness has these kinds of roles but also important new ones...

Probability and randomness in Computer Science

- Understanding/modelling the inputs to and behavior of our algorithms
- In ML, program testing/fuzzing, algorithm analysis, ...
- Experiments to validate our designs
- In user studies, HCI, CS applications in other fields, ...
- A tool for hiding information, protecting against adversaries/failures
- Cryptography, privacy, fault tolerance, computer security, ...
- A tool for simpler and more efficient design
- Data structures, algorithms, ML, ...
- ...

Content

- Counting (basis of discrete probability)
- Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
- Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
- Various inequalities, Zoo of discrete random variables, Concentration, Tail bounds
- Continuous Probability
- Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
- A sample of randomized algorithms, differential privacy, learning ...

Today: A fast introduction to counting so you will have enough to work on in section tomorrow...

We are interested in counting the number of objects with a certain given property.
"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

$$
\begin{aligned}
& \text { "How many positive integer solutions }(x, y, z) \\
& \text { does the equation } x^{3}+y^{3}=z^{3} \text { have?" }
\end{aligned}
$$

Generally: Question boils down to computing cardinality $|S|$ of some given set S.

(Discrete) Probability and Counting are Twin Brothers

"What is the probability that a random student from CSE312 has black hair?"

$=\frac{\# \text { students with black hair }}{\# \text { students }}$

Today - Two basic rules

- Sum rule
- Product rule

Sum Rule

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n
then the number of possible outcomes of the experiment is

$$
n+m
$$

Counting "lunches"

If a lunch order consists of either one of 6 soups or one of 9 salads, how many different lunch orders are possible?

Product Rule: In a sequential process, there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), ..., and
- n_{m} choices for the $m^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{m}$

Example: "How many subs?"
$2 \times 3 \times 3=18$

Product rule examples - Strings

How many strings of length 5 over the alphabet $\{A, B, C, \ldots, Z\}$ are there?

- E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...
$26 \times 26 \times 26 \times 26 \times 26=26^{5}$

How many binary strings of length n over the alphabet $\{0,1\}$?

- E.g., $0 \cdots 0,1 \cdots 1,0 \cdots 01, \ldots$
$2 \times 2 \times 2 \times \cdots \times 2$

Product rule example - Cartesian Product

Definition. The cartesian product of two sets S, T is

$$
S \times T=\{(a, b): a \in S, b \in T\}
$$

Called a 2 -sequence
Order matters! $(a, b) \neq(b, a)$

$$
|S \times T|=|S| \times|T|
$$

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| \times\left|A_{3}\right| \times \cdots \times\left|A_{n}\right|
$$

Product rule example - Power set

Definition. The power set of S is the set of all subsets of S,

$$
\{X: X \subseteq S\}
$$

$$
2^{\varnothing}=\{\varnothing\}
$$

How many different subsets of S are there if $|S|=n$?

Product rule example - Power set
set $S=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n}\right\}$
subset $X=\left\{{ }^{\downarrow} e_{1},{ }^{\gamma}, e_{2}, \ldots,{ }^{x}\right\}$

$$
2 \times 2 \times 2 \times \cdots \times 2=2^{n}
$$

Proposition. $\left|2^{S}\right|=2^{|S|}$

Note: Sequential process for product rule works even if the sets of options are different at each point
"How many sequences in $\{1,2,3\}^{3}$ with no repeating elements?"

Factorial

"How many ways to order elements in S, where $|S|=n$?"
Permutations

$$
\text { Answer }=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

Definition. The factorial function is

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

Note: $0!=1$

Nice use of sum rule: Counting using complements

"How many sequences in $\{1,2,3\}^{3}$ have repeating elements?" m "\# of sequences in $\{1,2,3\}^{3}$ with no repeating elements" $n=6$ "\# of sequences in $\{1,2,3\}^{3} \quad 3^{3}=27=m+n$ by the sum rule All sequences

Distinct Letters

"How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

$$
26 \times 25 \times 24 \times 23 \times 22
$$

Answer: $26 \times 25 \times 24 \times 23 \times 22=$ 7893600

In general

Aka: k-permutations

Fact. \# of k-element sequences of distinct symbols from an n-element set is

$$
\begin{array}{r}
P(n, k)=n \times(n=1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!} \\
\frac{2.6!}{21!}
\end{array}
$$

Product rule - One more example 5 books

Alice

Every book to one person, everyone gets ≥ 0 books.

Example Book Assignment

Book assignment - Modeling

Correct?
Poll:
A. Correct
B. Overcount
C. Undercount
D. No idea
pollev.com/paulbeame028

Problem - Overcounting

Problem: We are counting some invalid assignments!!!
\rightarrow overcounting!

What went wrong in the sequential process?
After assigning A to Alice,
B is no longer a valid option for Bob

$$
C=\{\theta, \nabla\}
$$

Book assignments - A Clever Approach

Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself Think about counter examples to your own solution.

The first concept check is out and due at 1:00pm before Friday's lecture

The concept checks are meant to help you immediately reinforce what is learned.

Students from previous quarters have found them really useful!

