CSE 312Foundations of Computing II

Lecture 3: Even more counting

Binomial Theorem, Inclusion-Exclusion, Pigeonhole Principle

Recap

Two core rules for counting a set S :

- Sum rule:
	- $-$ Break up S into disjoint pieces/cases
	- $-|S|$ = the sum of the sizes of the pieces.

• Product rule:

- View the elements of S as being constructed by a series of choices, where the # of possibilities for each choice doesn't depend on the previous choices
- $-|S|$ = the product of the # of choices in each step of the series.

Recap

- $\;$ k -sequences: How many length k sequences over alphabet of size n ? $-$ Product rule $\rightarrow n^k$
- •• k -permutations: How many length k sequences over alphabet of size n , without repetition?

$$
- \text{ Permutation} \rightarrow \frac{n!}{(n-k)!}
$$

• k -combinations: How many size k subsets of a set of size n (without repetition and without order)?

$$
-\text{Combination} \blacktriangleright \binom{n}{k} = \frac{n!}{k!(n-k)!}
$$

Binomial Coefficients – Many interesting and useful properties

$$
{n \choose k} = \frac{n!}{k! (n-k)!} \qquad {n \choose n} = 1 \qquad {n \choose 1} = n \qquad {n \choose 0} = 1
$$

Fact.
$$
{n \choose k} = {n \choose n-k} \qquad \text{Symmetry in Binomial Coefficients}
$$

Fact.
$$
\sum_{k=0}^{n} {n \choose k} = 2^n \qquad \text{Following from Binomial Theorem}
$$

Fact.
$$
{n \choose k} = {n-1 \choose k-1} + {n-1 \choose k} \qquad \text{Pascal's Identity}
$$

4

Binomial Theorem: Idea

$$
(x + y)2 = (x + y)(x + y)
$$

= $xx + xy + yx + yy$
= $x2 + 2xy + y2$

Poll: What is the coefficient for xy^3 ? A. 4

B.
$$
\binom{4}{1}
$$

\nC. $\binom{4}{3}$
\nD. 3

$$
(x + y)4 = (x + y)(x + y) (x + y) (x + y)
$$

= $xxxx + yyyy + xyxy + yxyy + ...$

Binomial Theorem: Idea

$$
(x + y)n = (x + y) \dots (x + y)
$$

Each term is of the form $x^k y^{n-k}$, since each term is made by multiplying exactly n variables, either x or y , one from each copy of $(x + y)$

How many times do we get $x^k y^{n-k}$?

The number of ways to choose x from exactly k of the n copies of $(x + y)$ (the other $n - k$ choices will be y) which is:

$$
\binom{n}{k} = \binom{n}{n-k}
$$

6

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}
$$

Many properties of sums of binomial coefficients can be found by plugging in different values of x and \overline{y} in the Binomial Theorem.

Corollary.

$$
\sum_{k=0}^{n} {n \choose k} = 2^{n}
$$

Apply with $x = y = 1$

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Recall: Symmetry in Binomial Coefficients

$$
Fact. {n \choose k} = {n \choose n-k}
$$

Two equivalent ways to choose k out of \overline{n} objects (unordered)

- 1. Choose which k elements are included
- 2. Choose which $n k$ elements are excluded

Format for a combinatorial argument/proof of $a = b$

- ●• Let S be a set of objects
- ●• Show how to count $|S|$ one way $\Rightarrow |S| = a$
Show how to sount $|S|$ another way $\Rightarrow |S|$
- ●• Show how to count $|S|$ another way $\Rightarrow |S| = b$

Combinatorial argument/proof

- ●Elegant
- ●Simple
- ●Intuitive

<mark>This Photo</mark> by Unknown Author is licensed under <mark>CC BY-SA</mark>

Algebraic argument

- ●Brute force
- Less Intuitive ●

<u>This Photo</u> by Unknown Author is licensed under <mark>CC BY-SA</mark>

Pascal's Identity

Fact.
$$
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
$$

How to prove Pascal's identity?

Algebraic argument:

$$
{n-1 \choose k-1} + {n-1 \choose k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}
$$

= 20 years later ...
= $\frac{n!}{k!(n-k)!}$
= ${n \choose k}$ Hard work and not intuitive

Let's see a combinatorial argument

11

Example – Pascal's Identity

Fact.
$$
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
$$

\n
$$
\begin{vmatrix}\n|S| & = & |A| & + & |B|\n\end{vmatrix}
$$

$$
\left(\begin{array}{c}\nB \\
C\n\end{array}\right)
$$

$$
S = A \cup B
$$

Combinatorial proof idea:

- •Find *disjoint* sets A and B such that A , B , and $S = A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Combinatorial proof idea:

• $\bullet\;$ Find *disjoint sets* A *and* B such that $A, \, B, \, \text{and}$ $S = A \cup B$ have these sizes

 \pmb{n}

 \overline{k}

 $S =$

S: set of size k subsets of $[n] = \{1, 2, \cdots, n\}$

e.g. $n = 4, k = 2, S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}\$

 $A\colon$ set of size k subsets of $[n]$ that DO include n $A = \{ \{1,4\}, \{2,4\}, \{3,4\} \}$

 B : set of size k subsets of $[n]$ that DON'T include n $B = \{\{1,2\}, \{1,3\}, \{2,3\}\}\$

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$

Inclusion-Exclusion

But what if the sets are not disjoint?

Not drawn to scale

$$
|A| = 43
$$

\n
$$
|B| = 20
$$

\n
$$
|C| = 35
$$

\n
$$
|A \cap B| = 7
$$

\n
$$
|A \cap C| = 16
$$

\n
$$
|B \cap C| = 11
$$

\n
$$
|A \cap B \cap C| = 4
$$

\n
$$
|A \cup B \cup C| = ? ? ?
$$

 $- |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Inclusion-Exclusion

Let A , B be sets. Then $A \cup B = |A| + |B| - |A \cap B|$

In general, if $A_1, A_2, ...$, A_n are sets, then

 $A_1 \cup A_2 \cup \cdots \cup A_n| = singles - doubles + triples - quads + ...$ $= (|A_1| + \cdots + |A_n|) - (|A_1 \cap A_2| + ... + |A_{n-1} \cap A_n|) + ...$

Brain Break

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

Pigeonhole Principle – More generally

If there are n pigeons in $k < n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole. Then, there are $\langle k \cdot \frac{n}{k} = n$ pigeons overall. Contradiction!

Pigeonhole Principle – Better version

If there are n pigeons in $k < n$ holes, then one hole must contain at least $\left|\frac{n}{k}\right|$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- •• Ceiling: $\lceil x \rceil$ is x rounded up to the nearest integer (e.g., $\lceil 2.731 \rceil = 3$)
- Floor: $\lfloor x \rfloor$ is x rounded down to the nearest integer (e.g., $\lfloor 2.731 \rfloor = 2$)

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

- 1. **367** ^pigeons = people
- **366** holes (365 for a normal year + Feb 29) = possible 2.birthdays
- 3. Person goes into hole corresponding to own birthday
- 4. By PHP, there must be two people with the same birthday

Pigeonhole Principle – Example (Surprising?)

In every set of 100 integers, there are at least twoelements whose difference is a multiple of 37.

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example (Surprising?)

In every set of 100 integers, there are at least twoelements whose difference is a multiple of 37.

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeons: integers x in S

Pigeonholes: {0,1,…,36}

Assignment: x goes to x mod 37 $\,$

Since 100 > 37, by PHP, there are $x \neq y \in S$ s.t. x mod 37 = y mod 37 which implies $x - y = 37 k$ for some integer k

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Quick Review of Cards

- ●52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A●
- 4 different suits: Hearts, Diamonds, Clubs, Spades●

Counting Cards I

- ●52 total cards
- ●13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades ●
- ●A "straight" is five consecutive rank cards of any suit (where A,2,3,4,5 also counts as consecutive). How many possible straights?

 $10 \cdot 4^5 = 10,240$

Counting Cards II

- ●52 total cards
- ●13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades●
- ● A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot \binom{13}{5} = 5148
$$

Counting Cards III

- ●52 total cards
- ●13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades ●
- ● A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot \binom{13}{5} = 5148
$$

•• How many flushes are NOT straights?

$$
= #flush - #flush and straight
$$
\n
$$
\left(4 \cdot \binom{13}{5} = 5148\right) - 10 \cdot 4
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot \binom{49}{2}
$$

Poll:A. Correct **Overcount**

<u>This Photo</u> by Unknown Author is licensed under CC BY-SA

https://pollev.com/paulbeame028

C. Undercount

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choos **Problem:** This counts a hand with contains at least 3 Aces?all 4 Aces in 4 different ways!

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot \binom{49}{2}
$$

e.g. it counts A♣*, A*♦*, A*♥*, A*♠*, 2*♥*four times:* {**A**♣, **A**♦, **A**♥} {**A**♠, **2**♥} {**A**♣, **A**♦, **A**♠} {**A**♥, **2**♥} {**A**♣, **A**♥, **A**♠} {**A**♦, **2**♥}{**A**♦, **A**♥, **A**♠} {**A**♣, **2**♥*}*

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

3

48

1

⋅

2

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?448

Use the sum rule

- **=** # 5 card hand containing exactly 3 Aces
- **+** # 5 card hand containing exactly 4 Aces

Counting when order only *partly* **matters**

We often want to count # of partly ordered lists:

Let $\ M = \#$ of ways to produce fully ordered lists

- $P = #$ of partly ordered lists
- $N = #$ of ways to produce corresponding fully ordered list given a partly ordered list

Then $M = P \cdot N$ by the product rule. $\;\;\;$ Often M and N are easy to compute:

 $P = M/N$

Dividing by N "removes" part of the order.

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Fully ordered: Pretend Rooks are different

- 1. Column for rook1
- 2. Row for rook1
- 3. Column for rook2
- 4. Row for rook2

 $(8 \cdot 7)^2$

"Remove" the order of the two rooks:

 $(8 \cdot 7)^2/2$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then, $(x + y)^n = \sum_{k=0}^{\infty} {n \choose k} x^k y^{n-k}$ \pmb{n} $k\hspace{-2pt}=\hspace{-2pt}0$

Corollary.	$Set x = y = 1$
$\sum_{k=0}^{n} {n \choose k} = 2^{n}$	

40

Binomial Theorem: A less obvious consequence

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^n = \sum_{k=0}^n {n \choose k} \widehat{x^k y^{n-k}} - \frac{1 \text{ if } k \text{ is odd}}{1 \text{ if } k \text{ is even}}
$$

Corollary. For every n , if O and E are the sets of odd and even integers between 0 and \overline{n}

$$
\sum_{k \in O} {n \choose k} = \sum_{k \in E} {n \choose k} \qquad \text{e.g., n=4: 14641}
$$

Proof: Set $x = -1$, $y = 1$ in the binomial theorem

Tools and concepts

- ●Sum rule, Product rule
- Permutations, combinations ●
- ●Inclusion-exclusion
- Binomial Theorem ●
- Combinatorial proofs \bullet
- Pigeonhole principle \bullet
- Binary encoding/stars and bars●