CSE 312 Foundations of Computing II

1

Lecture 6: Bayesian Inference, Chain Rule, Independence **Review Conditional & Total Probabilities**

- Conditional Probability $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \text{if } P(A) \neq 0, P(B) \neq 0$$

• Law of Total Probability E_1, \dots, E_n partition Ω

$$\Omega \xrightarrow{E_1 \qquad E_2 \qquad E_3 \qquad E_4}$$

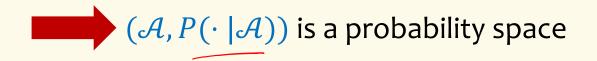
$$P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P(\mathcal{B}^{c}|\mathcal{A}) = 1 - P(\mathcal{B}|\mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A}) > 0$



Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence

Example – Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

What is the probability you have Zika (event Z) if you test positive (event T).?

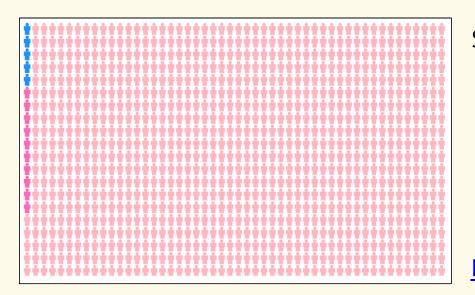
Example – Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

500 have Zika (0.5%)

What is the probability you have Zika (event Z) if you test positive (event T)?

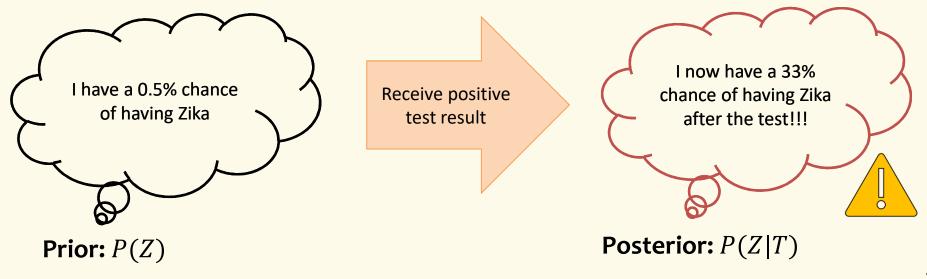


Suppose we had 100,000 people: • 490 have Zika and test positive • 10 have Zika and test negative • 995 do not have Zika and test positive • 98,505 do not have Zika and test positive • 98,505 do not have Zika and test negative • 98,505 do not have Zik

Philosophy – Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed drastically

- Z = you have Zika
- T = you test positive for Zika



Example – Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^{c})$
- 0.5% of the US population has Zika. P(Z)

What is the probability you test negative (event T^c) if you have Zika (event Z)?

 $P(T^{c}|Z) = 1 - P(T|Z) = 2\%$

Example – Zika Testing

Suppose we know the following Zika stats

- P(T|Z)A test is 98% effective at detecting Zika ("true positive")
- $P(T|Z^{c})$ However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika. P(Z)
- What is the probability you test negative (event T^{c}) if you have Zika (event Z)?

$$P(T^{c}|Z) = 1 - P(T|Z) = 2\%$$

What is the probability you have Zika (event Z) if you test negative (event T^c)? 1- 11(T(2x)

By Bayes Rule,
$$P(Z|T^c) = \frac{P(T^c|Z)P(Z)}{P(T^c)}$$

 $P(T^c|Z^c)$ By the Law of Total Probability, $P(T^c) = P(T^c|Z)P(Z)$ $\frac{10}{10} = \frac{10}{10}$

98505

So,
$$P(Z|T^c) = \frac{10}{10+98505} \approx 0.01\%$$
 9

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(E)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if *E* is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^{C})P(E^{C})}$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

We just used this implicity on the negative Zika test example with $E = Z$ and $F = T^c$
probability, then
$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^c)P(E^c)}$$

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

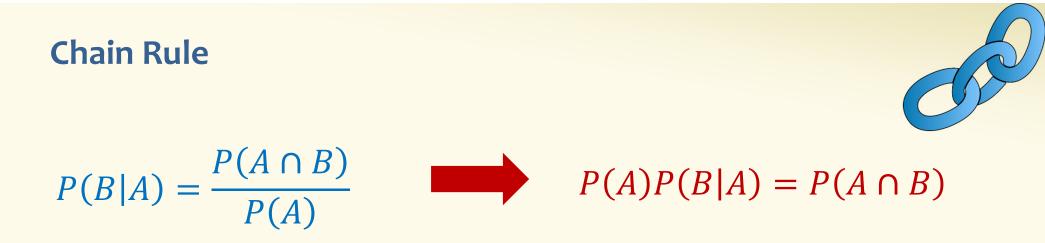
What is the probability this email is spam, given the subject contains "FREE"?

Some useful stats:

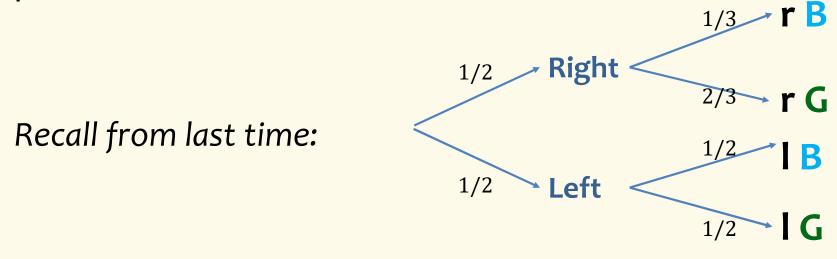
- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.
- 70% of spam emails contain the word "FREE" in the subject.
- 80% of emails you receive are spam.

Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence

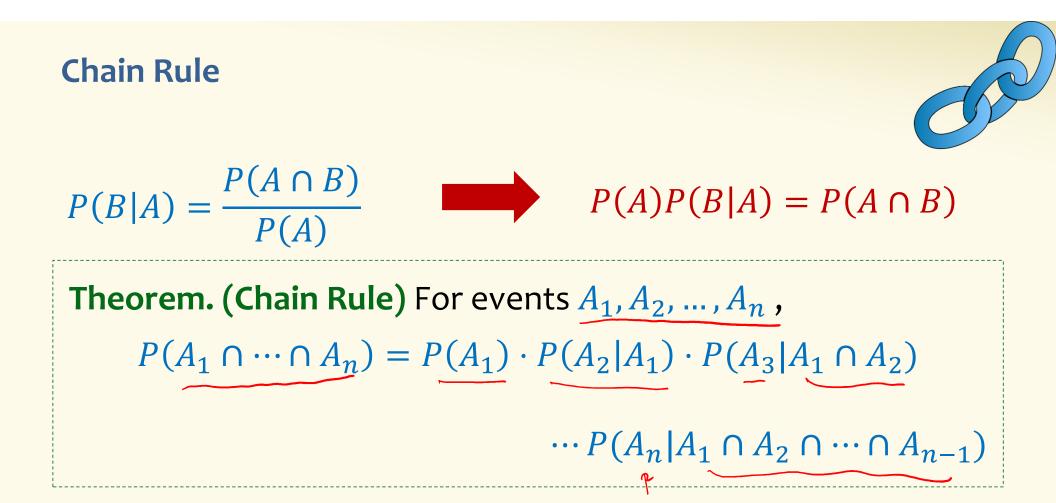


Often probability space (Ω, \mathbb{P}) is given **implicitly** via sequential process



 $P(\mathbf{B}) = P(\text{Left}) \times P(\mathbf{B}|\text{Left}) + P(\text{Right}) \times P(\mathbf{B}|\text{Right})$

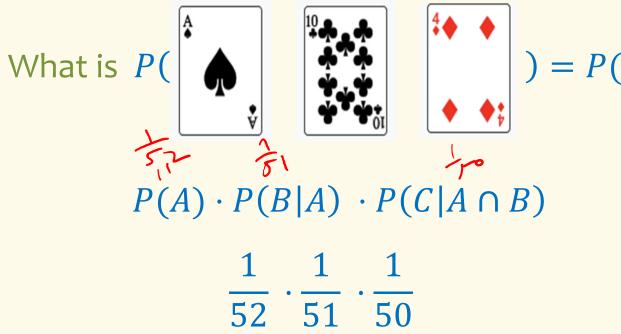
What if we have more than two (e.g., n) steps?



An easy way to remember: We have *n* tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Shuffle a standard 52-card deck and draw the top 3 cards. (uniform probability space)



 $) = P(A \cap B \cap C)$?

A: Ace of Spades FirstB: 10 of Clubs SecondC: 4 of Diamonds Third

Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence

Independence

Definition. Two events *A* and *B* are (statistically) **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

P (A 137 - p (3)

Equivalent formulations:

- If $P(A) \neq 0$, equivalent to P(B|A) = P(B)
- If $P(B) \neq 0$, equivalent to P(A|B) = P(A)

"The probability that *B* occurs after observing A" – Posterior

= "The probability that *B* occurs" – Prior

Independence - Example

Assume we toss two fair coins $P(A) = 2 \times \frac{1}{4} = \frac{1}{2}$ "first coin is heads" $A = \{HH, HT\}$ "second coin is heads" $B = \{HH, TH\}$ $P(B) = 2 \times \frac{1}{4} = \frac{1}{2}$

$$P(A \cap B) = P(\{HH\}) = \frac{1}{4} = P(A) \cdot P(B)$$

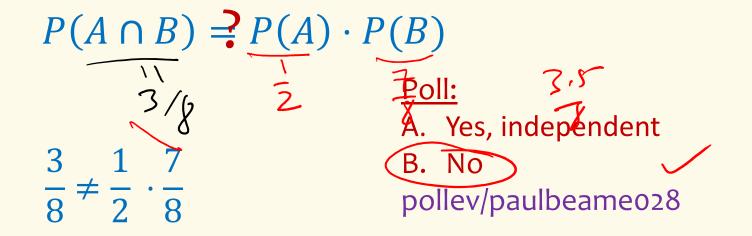
Example – Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

• $A = \{ at most one T \} = \{ HHH, HHT, HTH, THH \}$

•
$$B = \{ at most 2 H's \} = \{ HHH \}^{c}$$

Independent?



Multiple Events – Mutual Independence

Definition. Events $A_1, ..., A_n$ are **mutually independent** if for every non-empty subset $I \subseteq \{1, ..., n\}$, we have

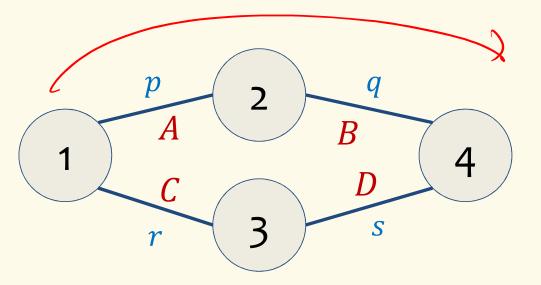
$$P\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}P(A_i).$$

Example – Network Communication

Each link works with the probability given, independently

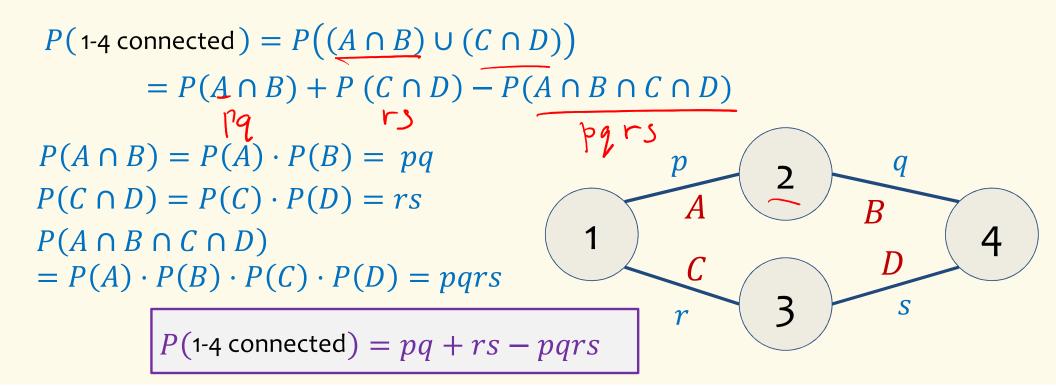
i.e., mutually independent events *A*, *B*, *C*, *D* with

$$P(A) = p$$
$$P(B) = q$$
$$P(C) = r$$
$$P(D) = s$$



Example – Network Communication

If each link works with the probability given, **independently**: What's the probability that nodes 1 and 4 can communicate?



Independence as an assumption

- People often assume it **without justification**
- Example: A skydiver has two chutes

A: event that the main chute doesn't openP(A) = 0.02B: event that the back-up doesn't openP(B) = 0.1

• What is the chance that at least one opens assuming independence? -0.02×0.1 -002×0.1 -002×0.1

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Independence – Another Look

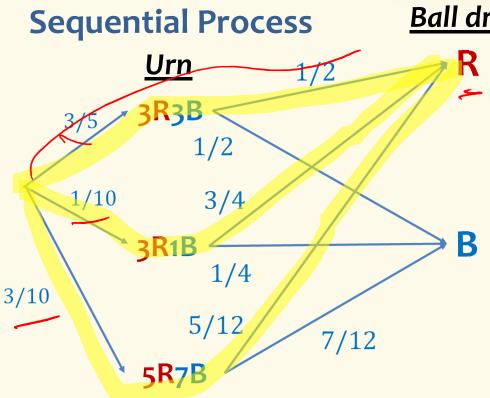
Definition. Two events *A* and *B* are (statistically) **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

"Equivalently." P(A|B) = P(A).

It is important to understand that independence is a property of probabilities of outcomes, not of the root cause generating these events.

Events generated independently → their probabilities satisfy independence Not necessarily

This can be counterintuitive!



Are **R** and **3R3B** independent?

Ball drawn Setting: An urn contains: • 3 red and 3 blue balls w/ probability 3/5 • 3 red and 1 blue balls w/ probability 1/10 • 5 red and 7 blue balls w/ probability 3/10 We draw a ball at random from the urn. $P(\mathbf{R}) = \frac{3}{5} \times \left(\frac{1}{2}\right) + \frac{1}{10} \times \frac{3}{4} + \frac{3}{10} \times \frac{5}{12} = \frac{1}{2}$

$$\frac{P(\mathbf{3R3B}) \times P(\mathbf{R} \mid \mathbf{3R3B})}{\mathsf{ndependent!} P(\mathbf{R}) = P(\mathbf{R} \mid \mathbf{3R3B})} = \frac{1}{27}$$

Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence

Often probability space (Ω, P) is given **implicitly** via sequential process

- Experiment proceeds in *n* sequential steps, each step follows some local rules defined by the chain rule and independence
- Natural extension: Allows for easy definition of experiments where $|\Omega| = \infty$

Fun: Von Neumann's Trick with a biased coin

- How to use a biased coin to get a fair coin flip:
 Suppose that you have a biased coin:
 - P(H) = p P(T) = 1 p

1. Flip coin twice: If you get *HH* or *TT* go to step 1 2. If you got *HT* output *H*; if you got *TH* output *T*.

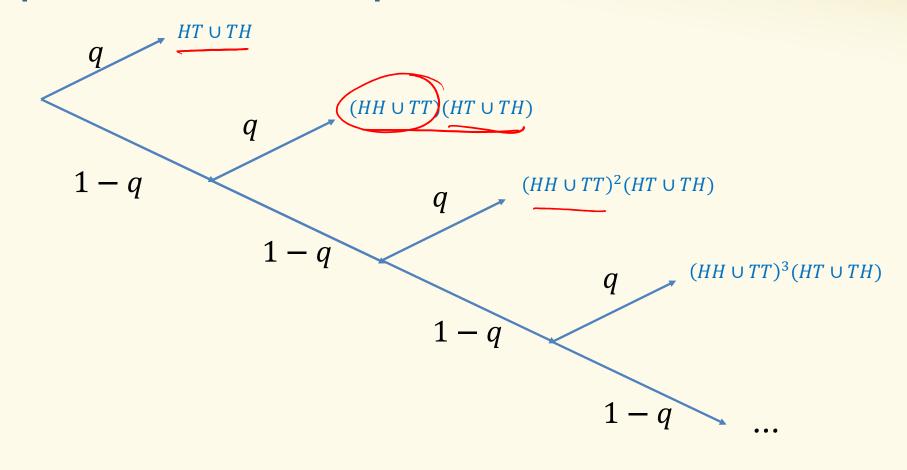
Why is it fair? P(H) = P(HT) = p(1-p) = (1-p)p = P(TH) = P(T)

Drawback: You may never get to step 2.

The sample space for Von Neumann's trick

- For each round of Von Neumann's trick we flipped the biased coin twice.
 - If *HT* or *TH* appears, the experiment ends:
 - Total probability each round: 2p(1-p) call this q
 - If *HH* or *TT* appears, the experiment continues:
 - Total probability each round: $p^2 + (1-p)^2$ this is 1-q
- Probability that flipping ends in round t is $(1-q)^{t-1} \cdot q$
 - Conditioned on ending in round t, P(H) = P(T) = 1/2

Sequential Process – Example



The sample space for Von Neumann's trick

More precisely, the sample space contains the successful outcomes: $\bigcup_{t=1}^{\infty} (HH \cup TT)^{t-1} (HT \cup TH)$ which together have probability $\sum_{t=1}^{\infty} (1-q)^{t-1}q$ for q = 2p(1-p)as well as all of the failing outcomes in $(HH \cup TT)^{\infty}$.

Observe that $q \neq 0$ iff $0 \leq p < 1$. We have two cases:

- If $q \neq 0$ then $\sum_{t=1}^{\infty} (1-q)^{t-1} = 1/q$ so successful outcomes account for total probability 1.
- If q = 0 then either:
 - -p = 1 and $(HH)^{\infty}$ has probability 1.
 - -p = 0 and $(TT)^{\infty}$ has probability 1.