
CSE 312

Foundations of Computing II

Lecture 6: Bayesian Inference, Chain Rule, 
Independence

1



Review Conditional & Total Probabilities 

• Conditional Probability

• Bayes Theorem

• Law of Total Probability
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Conditional Probability Defines a Probability Space
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The probability conditioned on � follows the same properties as 
(unconditional) probability.

Example. � ℬ� � � 1 − �ℬ|��

Formally. Ω, �� is a probability space and � � > 0

�, �⋅ |��� is a probability space



Agenda

• Bayes Theorem + Law of Total Probability

• Chain Rule

• Independence

• Infinite process and Von Neumann’s trick

• Conditional independence
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Example – Zika Testing

Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you have Zika (event �) if you test positive (event �).?
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Suppose we had 100,000 people:
• 490 have Zika and test positive
• 10 have Zika and test negative
• 995 do not have Zika and test positive
• 98,505 do not have Zika and test negative

490
490 ! 995 # 0.33

Demo
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98% of those 
with Zika
98% of those 
with Zika

2% of those 
with Zika
2% of those 
with Zika

1% of those 
without Zika
1% of those 
without Zika

500 have Zika (0.5%)
99,500 do not



Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically

� = you have Zika

� = you test positive for Zika
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Prior: ���

I have a 0.5% chance 

of having Zika

I have a 0.5% chance 

of having Zika

Posterior: ��|��

I now have a 33% 

chance of having Zika 

after the test!!!

I now have a 33% 

chance of having Zika 

after the test!!!

Receive positive 

test result



Example – Zika Testing

Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.
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Example – Zika Testing

Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you test negative (event ��) if you have Zika (event �)?
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� �� � �  1 − � � � = 2%

By Bayes Rule, � � �� =
� �� � �(��

�(���

By the Law of Total Probability, � �� = � �� � � � + � �� �� �(���

=  
2

100
⋅

5

1000
+ 1 −

1

100
⋅

995

1000
=

10

100000
+ 

98505

100000

So, � � �� =
�(

�()*+,(,
≈ 0.01 %



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let ��, �., … , �
 be a partition of the 
sample space, and � and event. Then,

� �� �� =
� � �� �(���

�(��
=

� � �� � ��

∑ � � �	 � �	


	��

Simple Partition: In particular, if � is an event with non-zero 
probability, then 

� � �� =
� � � �(��

� � � � � + � � �0 �(�0�
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We just used this implicity on the negative Zika
test example with � = � and � = ��



Our First Machine Learning Task: Spam Filtering

Subject: “FREE $$$ CLICK HERE”

What is the probability this email is spam, given the subject contains 
“FREE”? 

Some useful stats:

– 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.

– 70% of spam emails contain the word “FREE” in the subject.

– 80% of emails you receive are spam.
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Agenda

• Bayes Theorem + Law of Total Probability

• Chain Rule

• Independence

• Infinite process and Von Neumann’s trick

• Conditional independence
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Chain Rule
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� � � =
� � ∩ �

� �
� � � � � = � � ∩ �



Often probability space Ω, ℙ is given implicitly via sequential 
process

Recall from last time:
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� B = � Left × � B|Left ! � Right × � B|Right

r B

l G

1/2

1/2
1/2

1/3

2/3

Right

Left

1/2

r G

l B

What if we have more than two (e.g., 4)  steps?



Chain Rule
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� � � =
� � ∩ �

� �
� � � � � = � � ∩ �

Theorem. (Chain Rule) For events ��, �., … , �
 , 

� �� ∩ ⋯ ∩ �
 � � �� ⋅ � �. �� ⋅ ��6|�� ∩ �.�

⋯ ��
|�� ∩ �. ∩ ⋯ ∩ �
7��

An easy way to remember: We have 4 tasks and we can do them 
sequentially, conditioning on the outcome of previous tasks



Chain Rule Example 

Shuffle a standard 52-card deck and draw the top 3 cards. 
(uniform probability space)

What is  �                                               = �� ∩ � ∩ 8�?

�: Ace of Spades First
�: 10 of Clubs Second
8: 4 of Diamonds Third

 ��� ⋅ � � �  ⋅ � 8 � ∩ �
1

52  ⋅ 1
51 ⋅ 1

50



Agenda

• Bayes Theorem + Law of Total Probability

• Chain Rule

• Independence

• Infinite process and Von Neumann’s trick

• Conditional independence
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Independence
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Equivalent formulations:
• If � � ≠ 0, equivalent to � � � = � �
• If � � ≠ 0, equivalent to � � � = � �

Definition. Two events � and � are (statistically) independent if

� � ∩ � = � � ⋅ ���.

“The probability that � occurs after observing �” – Posterior
= “The probability that � occurs” – Prior  



Independence - Example
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Assume we toss two fair coins 

“first coin is heads”

“second coin is heads”

� = {HH, HT}
� = {HH, TH} � � = 2 × 1

4 = 1
2

� � = 2 × 1
4 = 1

2

� � ∩ � = � >> =
1

4
= � � ⋅ � �



Example – Independence
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Toss a coin 3 times. Each of 8 outcomes equally likely. 

• � = {at most one �}  =  {>>>, >>�, >�>, �>>}

• � = {at most 2 >Fs} =  >>> G

Independent?

� � ∩ � = � � ⋅ �(�)?

3

8
≠

1

2
 ⋅

7

8

Poll:
A. Yes, independent

B. No 
pollev/paulbeame028



Multiple Events – Mutual Independence
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Definition. Events ��, … , �
 are mutually independent if for every 
non-empty subset I ⊆ {1, … , 4}, we have

� K �	
L

	∈N
= O ��	�

L

	∈N
.



Example – Network Communication

1

2

3

4

P

Q

R

S

Each link works with the probability given, independently

� �
8 T

i.e., mutually independent 
events �, �, 8, T with

� � = P
� � = R
� 8 = Q
� T = S



Example – Network Communication

1

2

3

4

P

Q

R

S

If each link works with the probability given, independently:         
What’s the probability that nodes 1 and 4 can communicate? 

� � ∩ � = � � ⋅ � � =  PR

� 8 ∩ T = � 8 ⋅ � T = QS � �

8 T

= � � ∩ �) + � (8 ∩ T − �(� ∩ � ∩ 8 ∩ T)

�                         = � � ∩ � ∪ (8 ∩ T)1-4 connected

� � ∩ � ∩ 8 ∩ T
= � � ⋅ � � ⋅ � 8 ⋅ � T = PRQS

�                        = PR + QS − PRQS1-4 connected



Independence as an assumption

• People often assume it without justification

• Example:  A skydiver has two chutes

�: event that the main chute doesn’t open         � � = 0.02

�: event that the back-up doesn’t open               � � = 0.1

• What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!    
Both chutes could fail because of the same rare event e.g., freezing rain.
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Independence – Another Look
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Definition. Two events � and � are (statistically) independent if

� � ∩ � = � � ⋅ �(�).

“Equivalently.” � �|� = � � .

It is important to understand that independence is a property of probabilities of 
outcomes, not of the root cause generating these events. 

Events generated independently  their probabilities satisfy independence


Not necessarily 

This can be counterintuitive!



Sequential Process
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R

3/5

1/10

3R3B

3R1B B

Setting: An urn contains:

• 3 red and 3 blue balls w/ probability 3/5

• 3 red and 1 blue balls  w/ probability 1/10 

• 5 red and 7 blue balls  w/ probability 3/10 

We draw a ball at random from the urn.

1/2

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12
7/12

� R �
3

5
2
1

2
!
1

10
2
3

4
!
3

10
2
5

12
�
1

2

Independent! � R = � R | 3R3B

� 3R3B × � R | 3R3B

Urn

Ball drawn
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Agenda

• Bayes Theorem + Law of Total Probability

• Chain Rule

• Independence

• Infinite process and Von Neumann’s trick

• Conditional independence
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Often probability space Ω, � is given implicitly via sequential 
process

• Experiment proceeds in 4 sequential steps, each step follows 

some local rules defined by the chain rule and independence

• Natural extension: Allows for easy definition of experiments 
where Ω = ∞
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Fun:  Von Neumann’s Trick with a biased coin

• How to use a biased coin to get a fair coin flip:

– Suppose that you have a biased coin:

• � > = P       � � = 1 − P

31

1. Flip coin twice:   If you get >> or �� go to step 1

2. If you got >� output >; if you got �> output �.

Why is it fair?  � >� = �>� = P 1 − P = 1 − P P = � �> = ���
Drawback:  You may never get to step 2.



The sample space for Von Neumann’s trick

• For each round of Von Neumann’s trick we flipped the 
biased coin twice.

– If >� or �> appears, the experiment ends:

• Total probability each round:  2P(1 − P� call this R
– If >> or �� appears, the experiment continues:

• Total probability each round:  P. + 1 − P . this is 1 − R

• Probability that flipping ends in round W is 1 − R X7� ⋅ R

– Conditioned on ending in round W, � > = � � = 1/2
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Sequential Process – Example
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R

1 − R
R

1 − R
R

1 − R
R

1 − R …

>� ∪ �>

>> ∪ ���>� ∪ �>�

>> ∪ �� .>� ∪ �>�

>> ∪ �� 6>� ∪ �>�



The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:      

⋃ >> ∪ �� X7�>� ∪ �>�ZX��
which together have probability ∑ 1 − R X7�RZX�� for R = 2P 1 − P
as well as all of the failing outcomes in >> ∪ �� Z.

Observe that R ≠ 0 iff 0 < P < 1.   We have two cases:

• If R ≠ 0 then ∑ 1 − R X7� = 1/RZ
X�� so successful outcomes account 

for total probability 1.

• If R = 0 then either:

– P = 1 and >> Z has probability 1.

– P = 0 and �� Z has probability 1.
34



Agenda

• Bayes Theorem + Law of Total Probability

• Chain Rule

• Independence

• Infinite process and Von Neumann’s trick

• Conditional independence
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Plain Independence. Two events � and � are independent if

� � ∩ � = � � ⋅ �(�).

Conditional Independence

36

• If � � ≠ 0, equivalent to � � � = � �

• If � � ≠ 0, equivalent to � � � = � �

• If � � ∩ 8 ≠ 0, equivalent to � � � ∩ 8 = � � | 8
• If � � ∩ 8 ≠ 0, equivalent to � � � ∩ 8 = � � | 8

Definition. Two events � and � are independent conditioned on 8 if
� 8 ≠ 0 and � � ∩ � | 8 = � � | 8 ⋅ � �  8�.



Example – Throwing Dice 

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9. 

We choose one coin randomly with equal probability and flip that coin 3 
times independently.   What is the probability we get all heads?

� >>>�  = � >>> 8�� ⋅ � 8��  + �>>>  8. ⋅ � 8.�
     = � > 8� 6 � 8��  + � >  8. 6 �8.�
     = 0.36 ⋅ 0.5 + 0.96 ⋅ 0.5 = 0.378

Law of Total Probability
(LTP)

Conditional Independence

8	 = coin \ was selected



Conditional independence and Bayesian inference in practice:              
Graphical models 

● The sample space Ω is often the Cartesian product of possibilities of 
many different variables

● We often can understand the probability distribution � on Ω based on 
local properties that involve a few of these variables at a time

● We can represent this via a directed acyclic graph augmented with 
probability tables (called a Bayes net) in which each node represents 
one or more variables…
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Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space Ω, �

39

Has ZikaHas Zika

Tests 

Positive

Tests 

Positive

] ¬]
0.005 0.995

_ ¬_
� 0.98 0.02

¬� 0.01 0.99

Conditional Probability Table:

• One column for each value of 
the variables at the node

• One row for each combination 
of values of immediate 
predecessors

��|¬��
Ω = Cartesian product of possible 
value assignments at all nodes.  



Graphical Models/Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka Onisko, M.S., 
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.
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Graphical Models/Bayes Nets

Bayes Net assumption/requirement

• The only dependence between variables is given by paths in 
the Bayes Net graph:

• if only edges are 

then A and C are conditionally independent given the value of B

41

AA BB CC

BBAA CC

DDBBAA CC

DD A, B, C conditionally 
independent given D

A, B, and C are
independent

Defines a unique global probability space Ω, ��



Inference in Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka
Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-
September 1999.
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Given
• Bayes Net

• graph
• conditional probability tables 

for all nodes
• Observed values of variables at 

some nodes
• e.g., clinical test results

Compute
• Probabilities of variables at 

other nodes
• e.g., diagnoses

For much more see CSE 473


