CSE 312

Foundations of Computing II

Lecture 7: Random Variables

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted this evening
 - First programming assignment (naïve Bayes)
 - Extensive intro in the sections tomorrow
 - Python tutorial lesson on edstem

Review Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$,

$$P(A_1 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2)$$
$$\dots P(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

Definition. Two events A and A are (statistically) **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

"Equivalently." P(A|B) = P(A).

One more related item: Conditional Independence

Definition. Two events A and B are **independent** conditioned on C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

- If $P(A \cap C) \neq 0$, equivalent to $P(B|A \cap C) = P(B|C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A|B \cap C) \stackrel{\text{def}}{=} P(A \mid C)$

Plain Independence. Two events *A* and *B* are **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

- If $P(A) \neq 0$, equivalent to P(B|A) = P(B)
- If $P(B) \neq 0$, equivalent to P(A|B) = P(A)

Example – Throwing Dice

Suppose that Coin 1 has probability of heads 0.3 and Coin 2 has probability of head 0.9.

We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

$$P(HHH) = P(HHH | C_1) \cdot P(C_1) + P(HHH | C_2) \cdot P(C_2)$$
 Law of Total Probability (LTP)
$$= P(H|C_1)^3 P(C_1) + P(H|C_2)^3 P(C_2)$$
 Conditional Independence
$$= 0.3^3 \cdot 0.5 + 0.9^3 \cdot 0.5 = 0.378$$

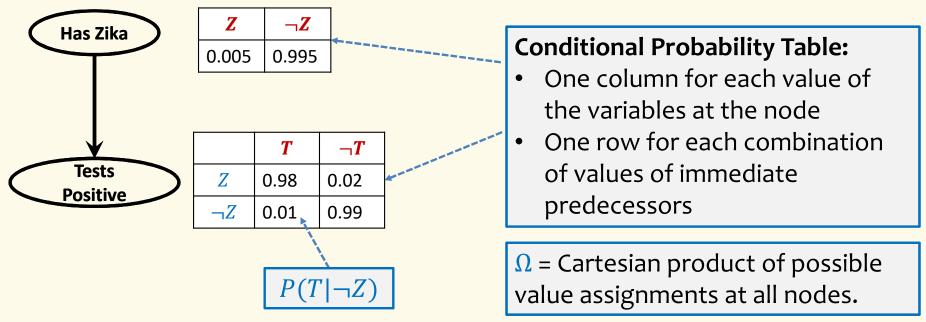
 $C_i = \text{coin } i \text{ was selected}$

Conditional independence and Bayesian inference in practice: Graphical models

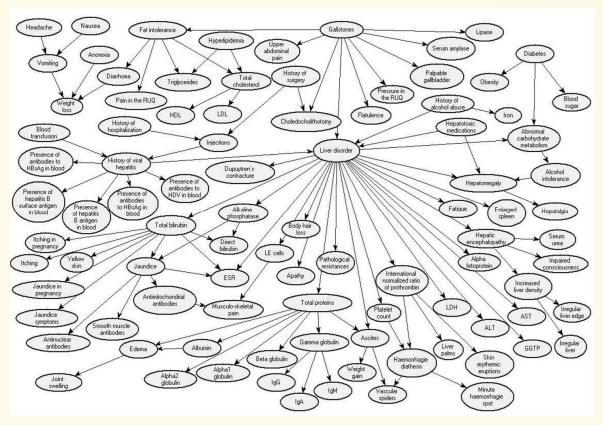
- The sample space Ω is often the Cartesian product of possibilities of many different variables
- We often can understand the probability distribution P on Ω based on **local properties** that involve a few of these variables at a time
- We can represent this via a directed acyclic graph augmented with probability tables (called a Bayes net) in which each node represents one or more variables...

Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space (Ω, P)



Graphical Models/Bayes Nets

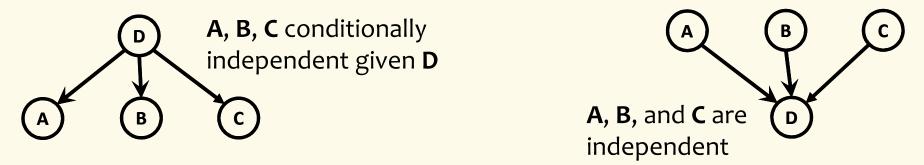


[&]quot;A Bayesian Network Model for Diagnosis of Liver Disorders" – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D., Ph.D.- September 1999.

Graphical Models/Bayes Nets

Bayes Net assumption/requirement

- The only dependence between variables is given by paths in the Bayes Net graph:
 - if only edges are (A) (B) (C) then **A** and **C** are conditionally independent given the value of **B**



Defines a unique global probability space (Ω, P)

Inference in Bayes Nets

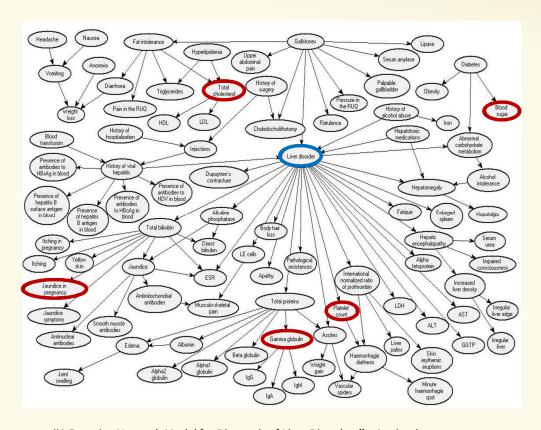
Given

- Bayes Net
 - graph
 - conditional probability tables for all nodes
- Observed values of variables at some nodes
 - e.g., clinical test results

Compute

- Probabilities of variables at other nodes
 - e.g., diagnoses

For much more see CSE 473



[&]quot;A Bayesian Network Model for Diagnosis of Liver Disorders" – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D., Ph.D.-September 1999.

Summary Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$,

$$P(A_1 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2)$$
$$\dots P(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

Definition. Two events A and A are (statistically) **independent** if

$$P(A \cap B) = P(A) \cdot P(B).$$

"Equivalently." P(A|B) = P(A).

Definition. Two events A and B are **independent conditioned on** C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support

Two common notations: $X(\Omega)$ or Ω_X

```
Example. Two coin flips: \Omega = \{\text{HH, HT, TH, TT}\}\
X = \text{number of heads in two coin flips}
X(\text{HH}) = 2 X(\text{HT}) = 1 X(\text{TH}) = 1 X(\text{TT}) = 0 range (or support) of X is X(\Omega) = \{0,1,2\}
```

Another RV Example

20 different balls labeled 1, 2, ..., 20 in a jar

- Draw a subset of 3 from the jar uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: $X(\{2,7,5\}) = 7$
 - Example: $X(\{15, 3, 8\}) = 15$

How large is $|X(\Omega)|$?

pollev.com/paulbeameo28

- A. 20^3
- B. 20
- **C.** 18
- D. $\binom{20}{3}$

Random Variables

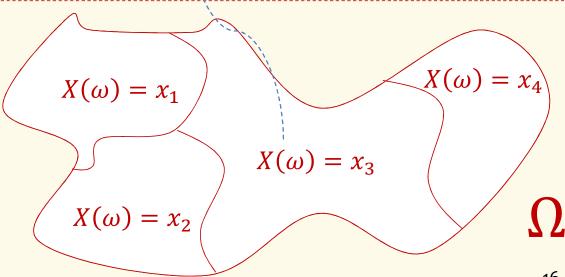
Definition. For a RV $X:\Omega \to \mathbb{R}$, we define the event

$$\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$$

We write P(X = x) = P(X = x)

Random variables partition the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$



Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$$\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$$

We write $P(X = x) = P(\{X = x\})$

Example. Two coin flips: $\Omega = \{TT, HT, TH, HH\}$

X = number of heads in two coin flips

$$\Omega_X = X(\Omega) = \{0,1,2\}$$

$$P(X = 0) = \frac{1}{4}$$
 $P(X = 1) = \frac{1}{2}$ $P(X = 2) = \frac{1}{4}$

The RV X yields a new probability distribution with sample space $\Omega_X \subset \mathbb{R}!$

Agenda

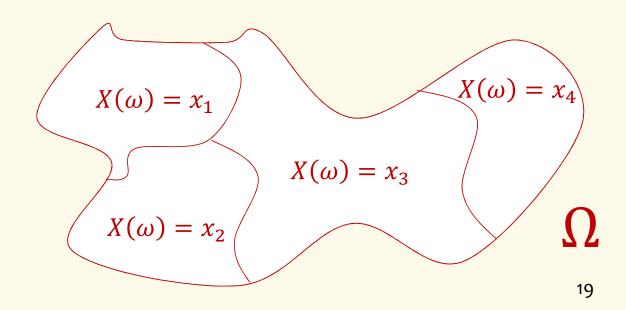
- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass** function (PMF) of X

Random variables **partition** the sample space.

$$\sum_{x \in X(\Omega)} P(X = x) = 1$$

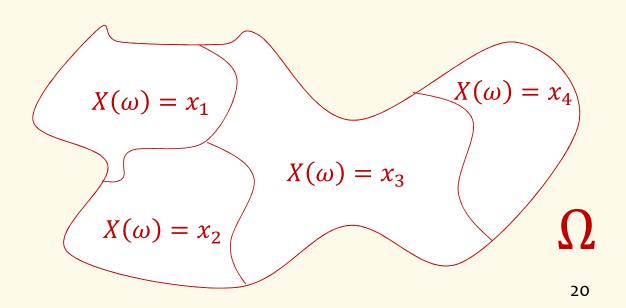


Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass** function (PMF) of X

Random variables **partition** the sample space.

$$\sum_{x \in \Omega_X} P(X = x) = 1$$

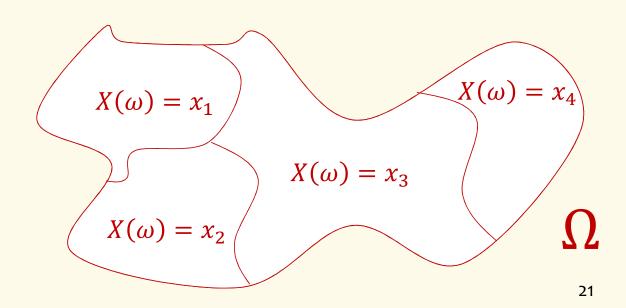


Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass** function (PMF) of X

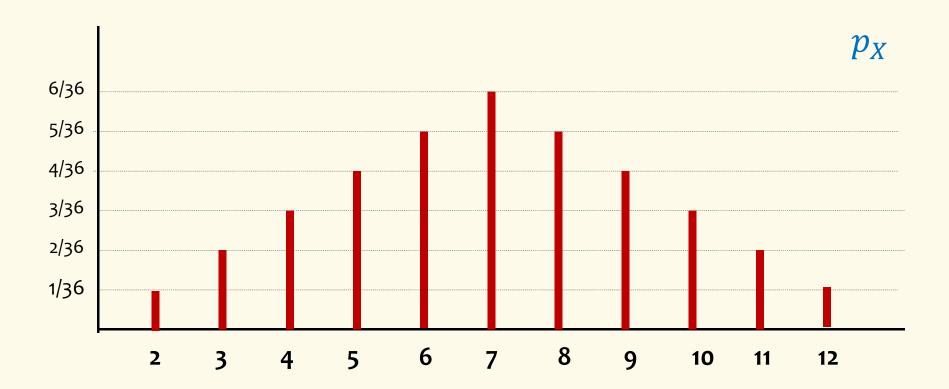
Random variables **partition** the sample space.

$$\sum_{x \in \Omega_X} p_X(x) = 1$$



Example – Two Fair Dice

X = sum of two dice throws



Example – Number of Heads

We flip n coins, independently, each heads with probability p

$$\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$$

X = # of heads

$$p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

of sequences with k heads

Prob of sequence w/k heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Events concerning RVs

We already defined
$$P(X = x) = P(\{X = x\})$$
 where $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$

Sometimes we want to understand other events involving RV X

 $-\text{e.g. } \{X \leq x\} = \{\omega \in \Omega \mid X(\omega) \leq x\}$ which makes sense for any $x \in \mathbb{R}$

More generally...

- We could take any predicate $Q(\cdot)$ defined on the real numbers, and consider an event $\{Q(X)\} = \{\omega \in \Omega \mid Q(X(\omega)) \text{ is true}\}$
- If $Q(\cdot, \cdot)$ is a predicate of two real numbers and X and Y are RVs both defined on Ω then $\{Q(X,Y)\} = \{ω ∈ Ω \mid Q(X(ω),Y(ω)) \text{ is true}\}$
- The same thing works for properties of even more RVs

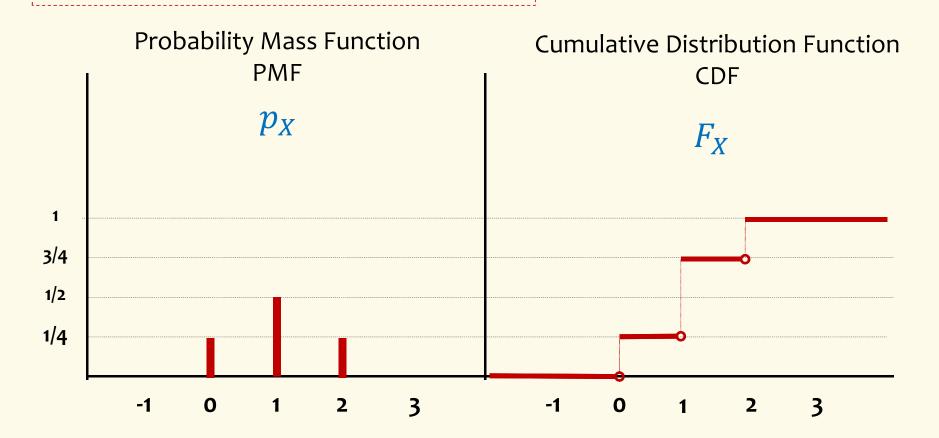
Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of X is the function $F_X: \mathbb{R} \to [0,1]$ that specifies for any real number X, the probability that $X \leq X$.

That is, F_X is defined by $F_X(x) = P(X \le x)$

Example – Two fair coin flips

X = number of heads



Agenda

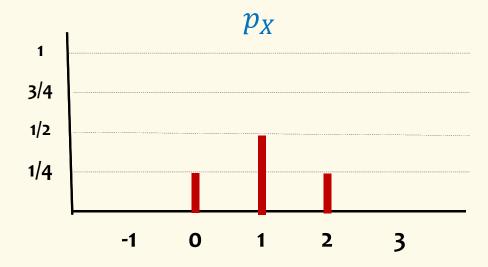
- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

Example. Two fair coin flips

 $\Omega = \{TT, HT, TH, HH\}$

X = number of heads



- If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω ?
 - The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV X is

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x) = \sum_{x} x \cdot P(X = x)$$

Example. Value X of rolling one fair die

$$p_X(1) = p_X(2) = \dots = p_X(6) = \frac{1}{6}$$

$$\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

For the equally-likely outcomes case, this is just the average of the possible outcomes!

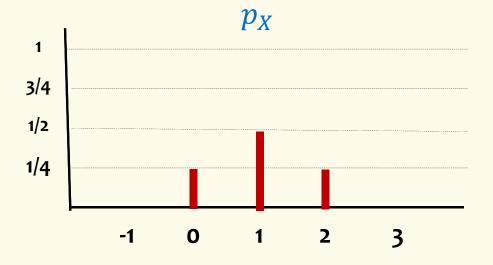
Expectation

Example. Two fair coin flips

$$\Omega = \{TT, HT, TH, HH\}$$

X = number of heads

What is $\mathbb{E}[X]$?



$$\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) + 2 \cdot p_X(2)$$
$$= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = \frac{1}{2} + \frac{1}{2} = 1$$

33

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"

Answer: $\mathbb{E}[X]$

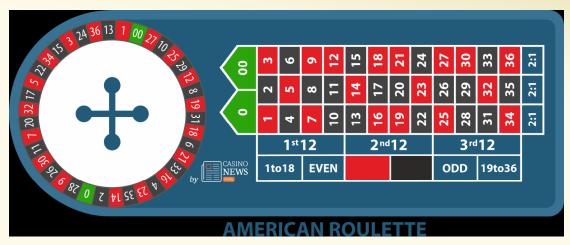
Roulette (USA)

 Ω :

Numbers 1-36

- 18 Red
- 18 Black

Green o and oo



Note o and oo are not EVEN

RVs for gains from some bets:

RV RED: If Red number turns up +1, if Black number, 0, or 00 turns up -1

$$\mathbb{E}[\mathsf{RED}] = (+1) \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -\frac{2}{38} \approx -5.26\%$$

RV 1st12: If number 1-12 turns up +2, if number 13-36, 0, or 00 turns up -1

$$\mathbb{E}[1^{\text{st}}12] = (+2) \cdot \frac{12}{38} + (-1) \cdot \frac{26}{38} = -\frac{2}{38} \approx -5.26\%$$

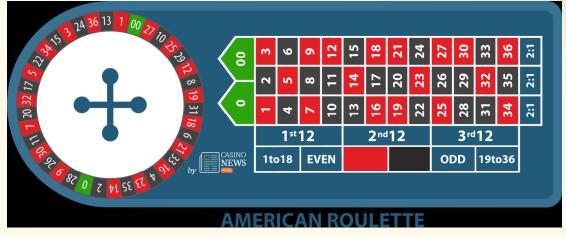
Roulette (USA)

 Ω :

Numbers 1-36

- 18 Red
- 18 Black

Green o and oo



Note o and oo are not EVEN

An even worse bet:

RV BASKET: If 0, 00, 1, 2, or 3 turns up +6 otherwise -1

$$\mathbb{E}[\text{BASKET}] = (+6) \cdot \frac{5}{38} + (-1) \cdot \frac{33}{38} = -\frac{3}{38} \approx -7.89\%$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks.
 All permutations equally likely.
- Let X be the number of students who get their own HW

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= 6 \cdot \frac{1}{6} = 1$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Next time: Properties of Expectation