CSE 312 Foundations of Computing II

1

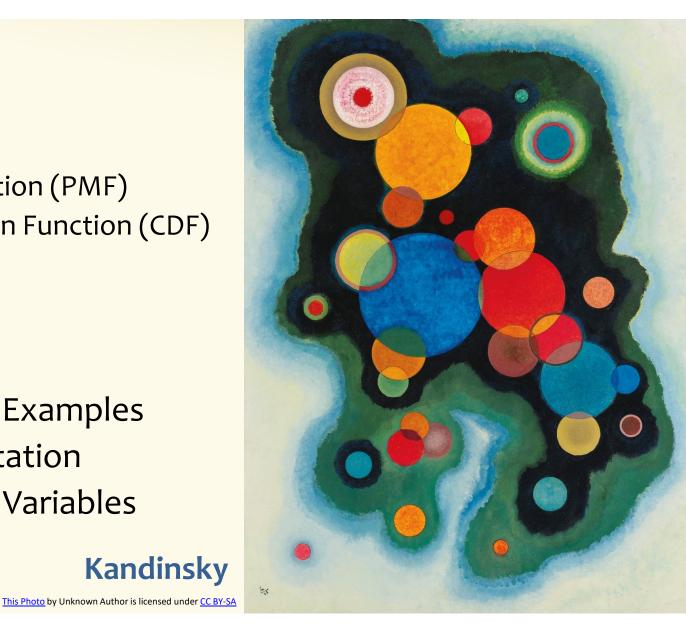
Lecture 8: Linearity of Expectation

Last Class:

- Random Variables ٠
- Probability Mass Function (PMF) •
- Cumulative Distribution Function (CDF) •
- Expectation •

Today:

- More Expectation Examples
- Linearity of Expectation
- Indicator Random Variables



Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

 $\Sigma_{x \in X(\Omega)} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$\sum_{x \in \Omega_X} p_X(x) = 1$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \le x$ $F_X(x) = P(X \le x)$

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of X is $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ or equivalently $\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expectation

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$ What is $\mathbb{E}[X]$? $0.\frac{1}{4} + 1.\frac{1}{2} + 2.\frac{1}{4} = 1$ $\frac{1}{2}.\frac{1}{2}x(x)$ X = number of heads prohability Mess px Fam MAF 1 3/4 $\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) + 2 \cdot p_X(2)$ 1/2 $= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = \frac{1}{2} + \frac{1}{2} = 1$ 1/4 3 -1 0 1 2 6 0

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, <u>on average</u>, per game, when repeatedly playing?"

Answer: $\mathbb{E}[X]$

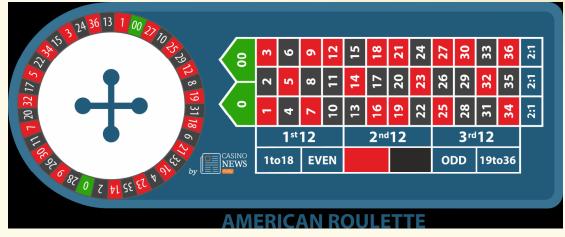
Roulette (USA)

Ω:

Numbers 1-36

- 18 Red
- 18 Black Green o and oo

RVs for gains from some bets:



Note o and oo are not EVEN

RV RED: If Red number turns up +1, if Black number, 0, or 00 turns up -1

$$\mathbb{E}[\mathsf{RED}] = (+1) \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -\frac{2}{38} \approx -5.26\%$$

RV 1st12: If number 1-12 turns up +2, if number 13-36, 0, or 00 turns up -1 $\mathbb{E}[1^{st}12] = (+2) \cdot \frac{12}{38} + (-1) \cdot \frac{26}{38} = -\frac{2}{38} \approx -5.26\%$

8

Roulette (USA)

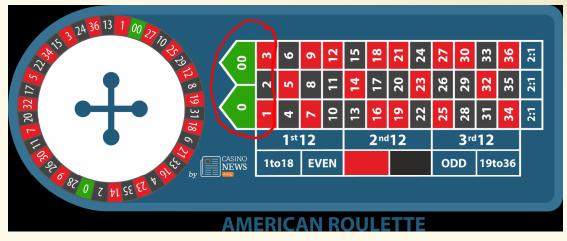
Ω:

Numbers 1-36

- 18 Red
- 18 Black

Green o and oo

An even worse bet:



```
Note o and oo are not EVEN
```

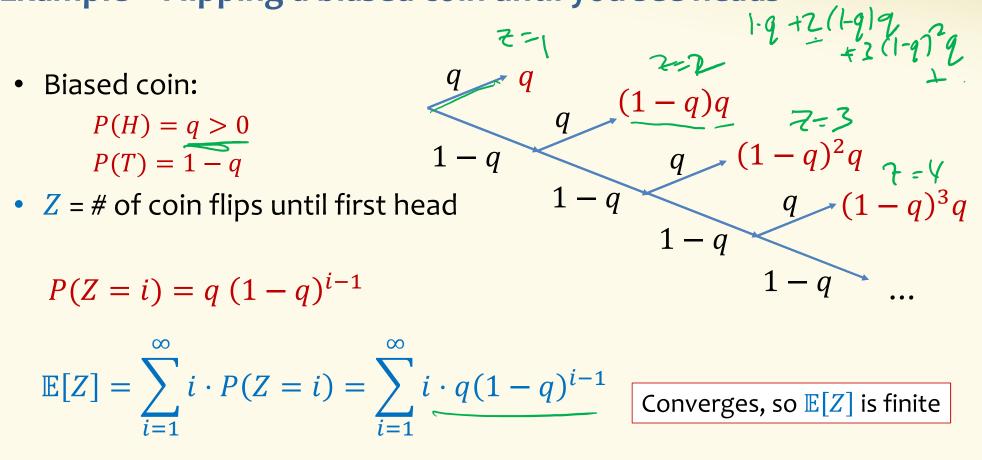
RV BASKET: If 0, 00, 1, 2, or 3 turns up +6 otherwise -1 $\mathbb{E}[BASKET] = (+6) \cdot \frac{5}{38} + (-1) \cdot \frac{33}{38} = -\frac{3}{38} \approx -7.89\%$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

10

Example – Flipping a biased coin until you see heads



Can calculate this directly but...

Example – Flipping a biased coin until you see heads

• Biased coin:

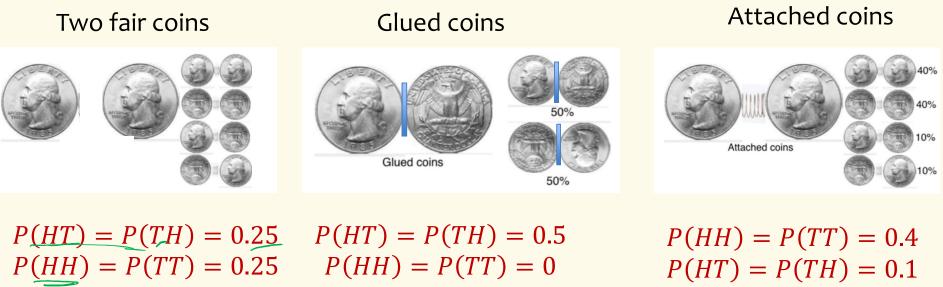
$$P(H) = q > 0$$

$$P(T) = 1 - q$$
• Z = # of coin flips until first head
Another view: If you get heads first try you get Z = 1;
If you get tails you have used one try and have the same experiment left

$$E[Z] = q \quad (1 - q) \quad (1 - q$$

Expected Value of *X***= # of heads**

Each coin shows up heads half the time.



$$\mathbb{E}(X) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$$

$$\mathbb{E}(X) = 1 \cdot 1 = 1$$

P(HT) = P(TH) = 0.1 $\mathbb{E}(X) = 1 \cdot 0.2 + 2 \cdot 0.4 = 1$

Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent) $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

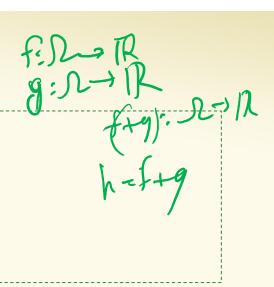
Or, more generally: For any random variables X_1, \dots, X_n , $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ Because: $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[(X_1 + \dots + X_{n-1}) + X_n]$ $= \mathbb{E}[X_1 + \dots + X_{n-1}] + \mathbb{E}[X_n] = \dots$

Linearity of Expectation – Proof

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

$$\mathbb{E}[X + Y] = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$$
$$= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$$
$$= \mathbb{E}[X] + \mathbb{E}[Y]$$



Example – Coin Tosses

We flip n coins, each one heads with probability pZ is the number of heads, what is $\mathbb{E}(Z)$?

Example – Coin Tosses – The brute force method

We flip n coins, each one heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$?

$$\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot \underline{P(Z=k)} = \sum_{k=0}^{n} k \cdot \underbrace{\binom{n}{k} p^{k} (1-p)^{n-k}}_{k=0}$$
$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

17

Computing complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• LOE: Apply linearity of expectation.

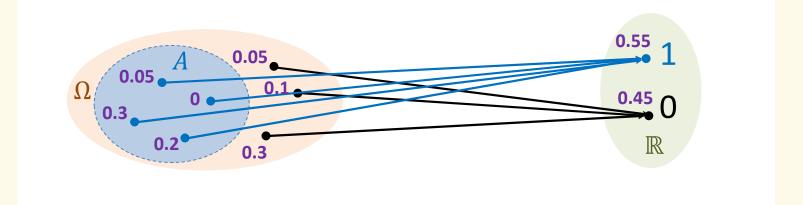
 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ Conquer: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variables

For any event A, can define the indicator random variable X_A for A

 $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases} \xrightarrow{P(X_A = 1) = P(A)}_{P(X_A = 0) = 1 - P(A)}$



Example – Coin Tosses

We flip *n* coins, each one heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$? - $X_i = \begin{cases} 1, & i^{\text{th}} \text{ coin flip is heads} \\ 0, & i^{\text{th}} \text{ coin flip is tails.} \end{cases}$ Fact. $Z = X_1 + \dots + X_n$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

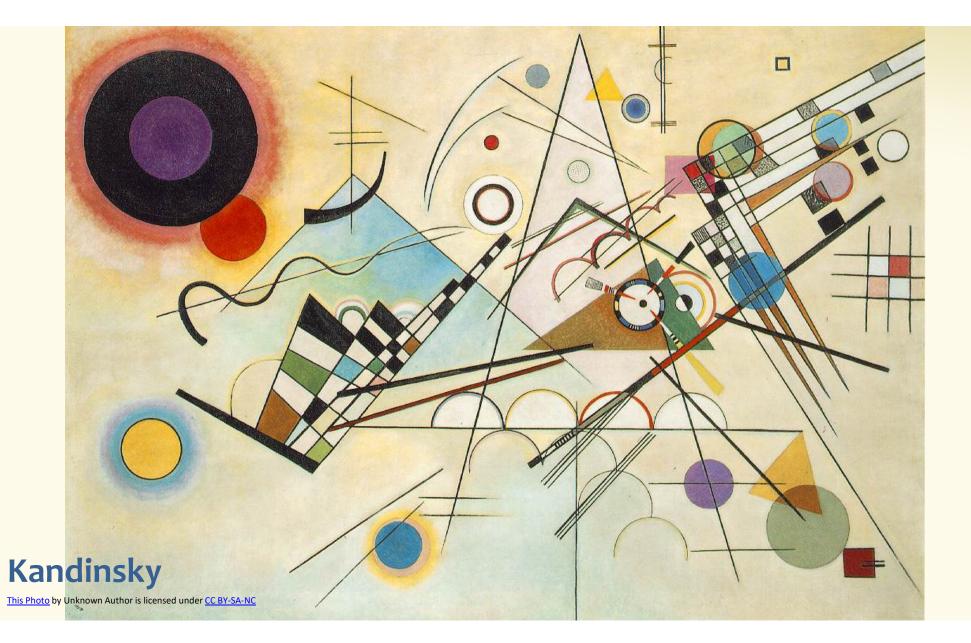
$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

i-----

$$\mathbb{E}[X_i] = \underbrace{p \cdot 1}_{} + (1-p) \cdot 0 = \underbrace{p}_{}$$

20



Example: Returning Homeworks

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

(n=2)		
Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1,2,3	3
1/6	€ 3,2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose:</u> What is *X_i*?

 $X_i = 1$ iff i^{th} student gets own HW back

LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$

<u>Conquer:</u> What is $\mathbb{E}[X_i]$? $(A, \frac{1}{n}) B, \frac{1}{n-1} C, \frac{1}{2}$

Poll: pollev.com/paulbeame028 22