CSE 312
 Foundations of Computing II

Lecture 11: Bloom Filters continued, Zoo of Discrete RVs, part I

Review Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest

$$
\begin{gathered}
|U| \approx 2^{128} \\
|S| \approx 1000
\end{gathered}
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Combine with fallback mechanism - can distinguish false positives from true positives with extra cost

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array

t_{1}	1	0	1	0	0
t_{2}	0	1	0	0	1
t_{3}	1	0	0	1	0

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

$$
(0,1, \ldots, m-1)
$$

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function INITIALIZE }(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k: \mathbf{d o} \\
t_{i}\left[h_{i}(x)\right]=1 \\
\hline
\end{gathered}
$$

- Check if $x \in S$

$$
\begin{aligned}
& \text { function } \operatorname{CONTAINS}(x) \\
& \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{aligned}
$$

Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter \boldsymbol{t} of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE ( }k,m\mathrm{ )
    for i=1,\ldots,k: do
        ti
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Add

function $\operatorname{ADD}(x)$

$$
\begin{gathered}
\text { for } i=1, \ldots, k: \mathbf{d o} \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered} \longrightarrow \begin{gathered}
\text { for each hash } \\
\text { function } \mathbf{h}_{i}
\end{gathered}
$$

Index into i-th bit-vector, at index produced by hash function and set to 1
$\mathbf{h}_{i}(x) \rightarrow$ result of hash
function \mathbf{h}_{i} on x

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
$h_{1}($ "thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS (x) return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector t_{i} for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS \((x)\)
return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{array}{cc}
\begin{array}{c}
\text { function CONTAINS }(x) \\
\text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{array} & \begin{array}{c}
\text { contains("thisisavirus.com") } \\
\text { True }
\end{array} \\
h_{1}(\text { ("thisisavirus.com") } \rightarrow 2
\end{array}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{coNTAINS}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$	contains("thisisavirus.com")
True \quad True	h_{1} ("thisisavirus.com") $\rightarrow 2$
	h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CONTAINS}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$			contains("thisisavirus.com")				
True	True	True		$\begin{aligned} h_{1}(\text { "thisisavirus.com") } & \rightarrow 2 \\ h_{2}(\text { "thisisavirus.com") } & \rightarrow 1 \\ h_{3}(\text { "thisisavirus.com") } & \rightarrow 4 \end{aligned}$			
		Index \longrightarrow	0	1	2	3	4
		t_{1}	0	0	1	0	0
		t_{2}	0	1	0	0	0
		t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CoNTANS}(x) \\ & \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \end{aligned}$	$t_{k}\left[l_{k}(x)\right]$		s("th			
True True	True		$\begin{aligned} & h_{1}(\text { (thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \\ & h_{3}(\text { (thisisavirus.com") } \rightarrow 4 \end{aligned}$			
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly) $l_{\text {l }}$						
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{array}{cc}
\hline \begin{array}{c}
\text { function } \operatorname{conTAINS}(x) \\
\text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{array} & \begin{array}{c}
\text { contains("verynormalsite.com") } \\
\hline \text { True }
\end{array} \\
h_{1}(\text { "verynormalsite.com") } \rightarrow 2
\end{array}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{conTAINS}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$	contains("verynormalsite.com")
True \quad True	h_{1} ("verynormalsite.com") $\rightarrow 2$
	h_{2} ("verynormalsite.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CONTANS}(x) \\ & \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \end{aligned}$	$t_{k}\left[l_{k}(x)\right]$					
True True	True		h_{1} ("verynormalsite.com") $\rightarrow 2$ h_{2} ("verynormalsite.com") $\rightarrow 0$ h_{3} ("verynormalsite.com") $\rightarrow 4$			
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (incorrectly)						
	t_{2}	1	1	0	0	0
	t_{3}	0	0	0	0	1

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (x) returns true if $\operatorname{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}$
Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_{i}(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each \mathbf{h}_{i} are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability - Events

Assume we perform $\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)$

$$
+\operatorname{contains}(x) \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
$$

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$

$$
P(\text { false positive })=P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{k}\right)=\prod_{\substack{\text { Sows áve indepenflet } \\ \mathbf{h}_{1}, \ldots, \mathbf{h}_{k} \text { independent } \\ \text { Sow ace }}}^{k} P\left(E_{i}\right)
$$

False positive probability - Events
Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\sum_{\substack{m=1}}^{\text {Congut There no matfe what }} \begin{aligned}
& z\left(\mathbf{h}_{i}(x)=z\right) \\
& \\
& \text { LTP }
\end{aligned}
$$

False positive probability - Events

Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
$$

$$
\begin{aligned}
& \text { Independence of values } \\
& \text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{aligned} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{\frac{i}{\left(x_{n}\right)}}^{\frac{m_{-1}-1}{n}} \neq z\right)
$$

Outputs of \boldsymbol{h}_{i} uniformly spread

$$
\begin{gathered}
\text { tputs of } \boldsymbol{h}_{i} \text { uniformly spread } \\
\begin{array}{l}
q_{0} 0 d \\
P
\end{array} \prod_{j=1}^{n}\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n} \\
\longrightarrow \sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)=\left(1-\frac{1}{m}\right)^{n}
\end{gathered}
$$

False positive probability - Events
Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
\begin{gathered}
\text { qood } \\
P\left(E_{i}^{c}\right)=\left(1-\frac{1}{m}\right)^{n}
\end{gathered}
$$

False Positivity Rate_- Example

$$
\mathrm{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
$$

$$
\text { e.g., } n=5,000,000 ~\left(\begin{array}{l}
n= \\
\\
\\
m=2,500,000
\end{array}\right.
$$

$F P R=1.28 \%$

Comparison with Hash Tables - Space

$5 \times 10=200$

- Google storing 5 million URLs, each URL 40 bytes,
- Bloom filter with $k=30$ and $m=2,500,000$

Hash Table
(optimistic)
$5,000,000 \times 40 B=200 \mathrm{MB}$

Bloom Filter

$2,500,000 \times 30=75,000,000$ bits
$<10 \mathrm{MB}$

Time

100 mp

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Brain Break

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

$X \sim \operatorname{Unif}(a, b)$		$\sim \operatorname{Ber}(p)$
$P(X=k)=\frac{1}{b-a+1}$	$P(X=1)=p, P(X=0)=1-p$	$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\mathbb{E}[X]=\frac{a+b}{2}$	$\mathbb{E}[X]=p$	$\mathbb{E}[X]=n p$
$\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$	$\operatorname{Var}(X)=p(1-p)$	$\operatorname{Var}(X)=n p(1-p)$
$X \sim \operatorname{Geo}(p)$	$P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$	$P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$P(X=k)=(1-p)^{k-1} p$	$\mathbb{E}[X]=\frac{r}{p}$	$\mathbb{E}[X]=n \frac{K}{N}$
$\mathbb{E}[X]=\frac{1}{p}$	$\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$	$\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$		

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:
PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.
is distrimuted al
Notation: $X \sim \operatorname{Unif}(a, b)$
PMF: $\mathrm{P}(X=i)=\frac{1}{b-a+1}=甘\{a,-\cdots, h]$
Expectation: $\mathbb{E}[X]=\frac{a+b}{2_{\varsigma}}$
Example: value shown on one roll of a fair die is $\operatorname{Unif}(1,6)$:

- $P(X=i)=1 / 6$
- $\mathbb{E}[X]=7 / 2 \quad 3.5$
- $\operatorname{Var}(X)=35 / 12$

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$

Expectation:

Variance:

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $P(X=1)=p, P(X=0)=1-p$
Expectation: $\mathbb{E}[X]=p \quad$ Note: $\mathbb{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)$
Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Agenda

- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables \quad
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Examples:

- \# of heads in n coin flips
- \# of 1 is in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table

Poll:

pollev.com/paulbeame028
$P(X=k)$
A. $p^{k}(1-p)^{n-k}$
B. $n p$
C. ${ }_{k}^{n} \begin{aligned} & k \\ & k\end{aligned} p^{k}(1-p)^{n-k}$
D. $\left(\begin{array}{l}n-k\end{array}\right) p^{k}(1-p)^{n-k}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Expectation:

Variance:

Poll:
pollev.com/paulbeame028
Mean Variance
$\left.\begin{array}{lll}\text { A. } & p & p \\ \text { B. } & n p \\ \text { C. } & n p \\ \text { D. } & n p\end{array}\right) \quad \begin{aligned} & n p(1-p) \\ & n p^{2} \\ & n^{2} p\end{aligned}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$.
X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathbb{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial

"i.i.d." is a commonly used phrase.
It means "independent \& identically distributed"
If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d.), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$

Claim $\mathbb{E}[X]=n p$

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 5})$

PMF for $X \sim \operatorname{Bin}(10,0.25)$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, \mathbf{0 . 1})$

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What is $\mathbb{E}[X]$?

Poll:

pollev.com/paulbeame028
a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough information to compute

