CSE 312 Foundations of Computing II

Lecture 11: Bloom Filters continued, Zoo of Discrete RVs, part I

Review Variance – Properties

Definition. The variance of a (discrete) RV X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

2

Review Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $Var\left(\sum_{i=1}^n X_i\right) = \sum_i^n Var(X_i)$

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

Example. U = set of 128 bit strings $|U| \approx 2^{128}$ S = subset of strings of interest $|S| \approx 1000$

Two goals:

- **1.** Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Bloom Filters

to the rescue

(Named after Burton Howard Bloom)

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Possible *false positives* **Combine with fallback mechanism** – can distinguish false positives from true positives with extra cost

t ₁	1	0	1	0	0
t ₂	0	1	0	0	1
t ₃	1	0	0	1	0

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- $k \text{ rows } t_1, \dots, t_k$, each of size m
- Think of each row as an *m*-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k: U \to [m]$ Start at 0

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Bloom Filters - Initialization

Bloom filter *t* of length m = 5 that uses k = 3 hash functions

function INITIALIZE (k, m) for $i = 1,, k$: do t_i = new bit vector of m 0s						
	Index →	0	1	2	3	4
	t ₁	0	0	0	0	0
	t ₂	0	0	0	0	0
	t ₃	0	0	0	0	0

Bloom Filters: Add

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

- h_1 ("thisisavirus.com") $\rightarrow 2$
- h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(*x*) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$				ains("this			
True True	Tri	ue	$h_2($ "	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com")	→ 1	
	Index →		0	1	2	3	4
	t ₁		0	0	1	0	0
	t ₂		0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots$	$\wedge t_k[h_k(x)] ==$		ains("this	isavirus.c	om")	
True True	Trı	ue $h_1("$ $h_2("$	thisisavir thisisavir <mark>thisisavir</mark>	us.com") -	→ 1	
	Index	0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (corre	ctly)			
	ι ₁	U	U	I	U	0
	t ₂	0	1	0	0	0
	t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

 h_2 ("verynormalsite.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] ==$	$= 1 \wedge \cdots \wedge t_k[h_k(x)] ==$		ntains("ver	ynormals	ite.com")	
True Tru	e Tri	h_2	("verynorm ("verynorm <mark>("verynorm</mark>	nalsite.cor	n") → 0	
	Index →	0	1	2	3	4
	t ₁	0	1	1	0	0
	t ₂	1	1	0	0	0
	t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots$	$\wedge t_k[h_k(x)] ==$		tains("ver	ynormalsi	te.com")	
True True	Tru	Le $h_1(")$ $h_2(")$	verynorm	alsite.cor alsite.cor alsite.cor	n") → 0	
	Index	0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (incor	rectly)		с.	
	L ₁	U	l	l	U	0
	t ₂	1	1	0	0	0
	t ₃	0	0	0	0	1

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that **contains**(x) returns true if **add**(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m]' for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability – Events

Assume we perform $add(x_1), \dots, add(x_n)$ + contains(x) for $x \notin \{x_1, \dots, x_n\}$

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)}$

False positive probability – Events Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)$$

$$Compt \quad \text{for a first what}$$

$$Z = ij$$

$$LTP$$

35

False positive probability – Events and

Event
$$E_i^c$$
 holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ...
and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

 $P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$ $= P(\mathbf{h}_{i}(x_{1}) \neq z, \dots, \mathbf{h}_{i}(x_{n}) \neq z)$ $= \prod_{n \in \mathbb{N}} P(\mathbf{h}_{i}(x_{j}) \neq z)$ Independence of values of h_i on different inputs i=1Outputs of *h*_i uniformly spread buts of \mathbf{h}_i uniformly spread $= \prod_{j=1}^n \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n$ $P(E_i^c) = \sum_{n=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

False Positivity Rate – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$
FPR = 1.28%

Comparison with Hash Tables - Space

Sx110-200

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Hash Table

(optimistic) $5,000,000 \times 40B = 200$ MB

Time

100 mp

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Brain Break

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Welcome to the Zoo! (Preview) 🏠 🖓 😳 🦣 🎲

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$ $\mathbb{E}[X] = \frac{a + b}{2}$ $Var(X) = \frac{(b - a)(b - a + 2)}{12}$	$P(X = 1) = p, P(X = 0) = 1 - p$ $\mathbb{E}[X] = p$ $Var(X) = p(1 - p)$	$P(X = k) = {\binom{n}{k}} p^k (1 - p)^{n-k}$ $\mathbb{E}[X] = np$ $Var(X) = np(1 - p)$
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \text{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$ $\mathbb{E}[X] = \frac{1}{p}$ $Var(X) = \frac{1 - p}{p^2}$	$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$ $\mathbb{E}[X] = \frac{r}{p}$ $Var(X) = \frac{r(1-p)}{p^2}$	$P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ $\mathbb{E}[X] = n\frac{K}{N}$ $Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables 🗨
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Discrete Uniform Random Variables

A discrete random variable *X* equally likely to take any (integer) value between integers *a* and *b* (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

46

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF:
$$P(X = i) = \underbrace{1}_{b-a+1}$$

Expectation: $\mathbb{E}[X] = \frac{a+b}{2}$
Variance: $Var(X) = \frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is Unif(1,6):

• P(X = i) = 1/6

•
$$\mathbb{E}[X] = 7/2$$
 \Im

•
$$Var(X) = 35/12$$

47

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables 🗲
 - Binomial Random Variables
 - Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ PMF: P(X = 1) = p, P(X = 0) = 1 - pExpectation: Variance: Poll: pollev.com/paulbeame028

Poll: pollev.com/paulbeame028			
	Mean	Variance	
Α.	p	p	
Β.	<i>p</i>	1-p	
C.	p	p(1-p)	
D.	p	p^2	
'			49

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable. Notation: $X \sim Ber(p)$ **PMF:** P(X = 1) = p, P(X = 0) = 1 - p**Expectation:** $\mathbb{E}[X] = p$ Note: $\mathbb{E}[X^2] = p$ Variance: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1-p)$ **Examples:** • Coin flip Randomly guessing on a MC test question • A server in a cluster fails • Any indicator RV

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables 🗲
 - Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Examples: # of heads in n coin flips # of 1s in a randomly generated n bit string # of servers that fail in a cluster of n computers # of bit errors in file written to disk # of elements in a bucket of a

large hash table

Poll: pollev.com/paulbeame028 P(X = k)A. $p^{k}(1-p)^{n-k}$ B. npC. $\binom{n}{k}p^{k}(1-p)^{n-k}$ D. $\binom{n}{n-k}p^{k}(1-p)^{n-k}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$ Expectation: Variance:

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ PMF: $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$ Expectation: $\mathbb{E}[X] = np$ Variance: Var(X) = np(1 - p) Mean, Variance of the Binomial "i.i.d." is a commonly used phrase. It means "independent & identically distributed"

If $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$ and independent (i.i.d.), then $X = \sum_{i=1}^n Y_i, X \sim \text{Bin}(n, p)$

Claim
$$\mathbb{E}[X] = np$$

 $\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$
Claim $\operatorname{Var}(X) = np(1-p)$

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(Y_{i}) = n\operatorname{Var}(Y_{1}) = np(1-p)$$

55

Key new idee

Binomial PMFs

PMF for X ~ Bin(10,0.5)

PMF for X ~ Bin(10,0.25)

Binomial PMFs

PMF for X ~ Bin(30,0.1)

Example

1

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let *X* be the number of corrupted bits.

What is $\mathbb{E}[X]$?

